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Abstract: Object detection and classification in autonomous vehicles are crucial for ensuring safe
and efficient navigation through complex environments. This paper addresses the need for robust
detection and classification algorithms tailored specifically for Indian roads, which present unique
challenges such as diverse traffic patterns, erratic driving behaviors, and varied weather conditions.
Despite significant progress in object detection and classification for autonomous vehicles, existing
methods often struggle to generalize effectively to the conditions encountered on Indian roads.
This paper proposes a novel approach utilizing the YOLOv8 deep learning model, designed to be
lightweight, scalable, and efficient for real-time implementation using onboard cameras. Experimen-
tal evaluations were conducted using real-life scenarios encompassing diverse weather and traffic
conditions. Videos captured in various environments were utilized to assess the model’s performance,
with particular emphasis on its accuracy and precision across 35 distinct object classes. The experi-
ments demonstrate a precision of 0.65 for the detection of multiple classes, indicating the model’s
efficacy in handling a wide range of objects. Moreover, real-time testing revealed an average accuracy
exceeding 70% across all scenarios, with a peak accuracy of 95% achieved in optimal conditions. The
parameters considered in the evaluation process encompassed not only traditional metrics but also
factors pertinent to Indian road conditions, such as low lighting, occlusions, and unpredictable traffic
patterns. The proposed method exhibits superiority over existing approaches by offering a balanced
trade-off between model complexity and performance. By leveraging the YOLOv8 architecture, this
solution achieved high accuracy while minimizing computational resources, making it well suited
for deployment in autonomous vehicles operating on Indian roads.

Keywords: YOLOv8; scalable; memory efficient; weather conditions; dense traffic; sensors; intelligent
transportation systems (ITSs); intelligent vehicles (IVs); artificial intelligence (AI)

1. Introduction

Autonomous vehicles have the potential to change transportation networks globally,
providing advantages like heightened security, diminished gridlock, and enhanced mobility.
However, achieving this goal requires overcoming formidable technical obstacles mainly
related to guaranteeing the dependability and safety of autonomous navigation systems.
This challenge revolves around real-time obstacle detection and classification, which is
essential to allowing autonomous vehicles to perceive and navigate through dynamic and
complex environments safely. With a focus on addressing the particular challenges posed
by Indian roads, this research presents a novel machine learning-based system designed
specifically for real-time obstacle detection and classification in autonomous vehicles.
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While various object detection models, such as YOLOv7, YOLOv5, and Fast R-CNN,
have demonstrated success in obstacle detection tasks, they are primarily designed and
trained on datasets that do not fully capture the unique and unpredictable conditions preva-
lent on Indian roads. Indian roads are characterized by a wide range of obstacles, including
fluctuating traffic patterns, erratic driver behavior, varying environmental conditions, and
infrastructural inconsistencies. Existing models often struggle to maintain accuracy and
reliability in such conditions, as they are not specifically tailored to handle the diverse and
chaotic nature of this environment.

Moreover, research on autonomous driving systems has largely focused on well-
structured roads found in Western and developed nations, leaving a significant gap in
the understanding and optimization of such systems for developing countries like India.
The lack of dedicated research and datasets designed for Indian roads further compounds
the challenge, as current models may not generalize well to the intricate road scenarios
encountered here.

Using the YOLOv8 object detection model, which is well-known for its effectiveness
and precision in recognizing objects in pictures and video streams, this system seeks to
offer strong and dependable obstacle detection capabilities that can function in real time.
By precisely identifying and categorizing obstacles found on Indian roads, the system
aims to improve safety and situational awareness in autonomous vehicle navigation. The
Indian roads dataset, which captures the varied and difficult road conditions common in
India, such as fluctuating traffic patterns, environmental factors, driver uncertainty, and
infrastructure limitations, is used to analyze real-world scenarios in order to achieve this.

This work’s principal contributions are as follows:

• Tailored solution for Indian road conditions: Unlike existing object detection models,
which are typically optimized for structured road environments found in developed
regions, this study presents a novel approach specifically designed to address the
unique challenges of Indian roads. These include irregular driving patterns, diverse
weather conditions, and highly dynamic traffic situations. By using a dataset that
captures these specific nuances, the model is able to outperform existing methods in
scenarios that are underexplored by conventional object detection systems.

• Effective YOLOv8 real-time object detection: While prior models like YOLOv7 and
YOLOv5 have demonstrated strong object detection performance, this paper leverages
the YOLOv8 deep learning architecture for its superior balance between accuracy
and computational efficiency. This contribution distinguishes itself by minimizing
computational overhead while maintaining real-time detection capabilities, making
it feasible for deployment in resource-constrained environments like autonomous
vehicles in India, where low-latency processing is critical.

• Comprehensive evaluation and high precision: Unlike most existing research, which
is often tested under limited or controlled conditions, this study rigorously evaluates
the proposed model in diverse real-world scenarios, including adverse weather and
complex traffic patterns. With a very good accuracy across all tested scenarios and
a precision of 0.65 for 35 different object classes, the model demonstrates robustness
and reliability that surpasses many traditional approaches, which tend to specialize in
fewer object classes or fail in challenging environments.

2. Related Study
2.1. Object Detection in Autonomous Vehicles: Status and Open Challenges

Deep learning-based two-stage and single-stage detectors are the two primary methods
used in object detection. Strong but computationally demanding models are produced by
two-stage detectors, such as R-CNN, Fast R-CNN, and Faster R-CNN, which employ a
region proposal stage followed by object classification. Single-stage detectors prioritize
speed over complexity, performing localization and classification in a single pass. Examples
of such detectors are YOLO, SSD, EfficientNet, and RetinaNet [1].
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R-CNN, the precursor to modern object detection, had problems with accuracy and
efficiency. By incorporating feature extraction for the full image, Fast R-CNN enhanced
and Faster R-CNN further expedited detection with a specialized region proposal network.
In contrast, YOLO, especially YOLOv2 and YOLOv3, revolutionized object detection
with single-pass detection, greatly improving inference speed along with enhancement of
accuracy by normalization and anchor boxes.

2.2. YOLO Versions Architecture: Review

The evolution of the YOLO (You Only Look Once) series, spanning YOLOv1 to
YOLOv8, has significantly influenced the field of object detection in computer vision.
Each iteration has introduced innovative architectural designs and features, reshaping the
landscape of real-time object detection. This review provides a detailed examination of the
architectural evolution, key features, and performance metrics of each YOLO version [2].

Single-stage object detection was introduced in YOLOv1, the predecessor to YOLO. Us-
ing anchor boxes of various sizes and Darknet backbones, YOLOv2 and YOLOv3 improved
the architecture. YOLOv5 employed the EfficientDet design, while YOLOv4 embraced
CSPNet. YOLOv6 used EfficientNet-L2 to maximize efficiency, and YOLOv7 used spa-
tial pyramid pooling (SPP) to increase speed, with improved Bottleneck structures and
anchor-free detection. YOLOv8 made even more progress.

Each YOLO version showcases unique architectural elements. Darknet backbones,
characterized by convolutional layers and 1 × 1 convolutions for parameter reduction,
formed the foundation of YOLO architectures. Batch normalization and focal loss functions
were integrated to enhance model regularization and address challenges in detecting small
objects. YOLOv4 introduced CSPNet, a modified ResNet architecture optimized for object
detection tasks, while YOLOv5 adopted EfficientDet architecture, leveraging EfficientNet-
L2 for improved computational efficiency. YOLOv7 introduced the focused loss function to
prioritize challenging examples, enhancing model robustness. YOLOv8 [3] made signifi-
cant modifications to Bottleneck structures and embraced anchor-free detection. Further
developments in YOLOv8 [4–6] promise to unlock new possibilities in object detection.

2.3. YOLOv8-Based Visual Detection of Road Hazards: Potholes, Sewer Covers, and Manholes

In order to tackle the crucial issue of identifying road hazards including potholes,
sewer covers, and manholes [7], this research explores the use of YOLOv8, a sophisticated
object detection model [8]. It thoroughly analyzes the architecture of YOLOv8 [9] and
compares it to previous versions such as YOLOv7 and YOLOv5.

From a methodological perspective, this study carefully describes the architectural
details of YOLOv8, clarifying its fundamental elements, including the detecting head,
backbone characteristics, and the addition of YOLOv8-Seg for semantic segmentation. It
carefully outlines the several facets of training a model, including selecting the right dataset,
applying preprocessing steps [10], and using training approaches that maximize model
performance [11].

2.4. DC-YOLOv8: Small Size Object Detection Algorithm Based on Camera Sensor

The DC-YOLOv8 algorithm [12] is developed to address challenges in accurately
detecting small objects in complex scenes using camera sensors. It incorporates several
enhancements:

• Small target identification: DC-YOLOv8 addresses challenges in detecting small
targets often overshadowed by larger objects or complex scenes [13].

• Algorithmic improvements: It introduces the MDC Module, leveraging depth sepa-
rable convolution, max-pooling, and refined feature fusion to preserve context infor-
mation effectively. The DC Module integrates DenseNet and VOVNet concepts for
deeper network architecture, minimizing information loss from large objects.

• Experimental validation: DC-YOLOv8 undergoes rigorous evaluation on datasets
like Visdrone [14], Pascal VOC2007 [15], and Tinyperson [16], demonstrating superior
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performance over classical algorithms such as YOLOv3, YOLOv5, and YOLOv7,
especially in detecting small targets.

This study concludes that DC-YOLOv8 offers significant advancements in both accu-
racy and speed for small object detection in complex scenes.

2.5. StrongSORT: Make DeepSORT Great Again

“StrongSORT” is an upgraded version of the traditional DeepSORT [17] tracker, de-
signed to enhance its performance in multiple object tracking (MOT) tasks. The enhance-
ments include the integration of new modules and inference techniques, which collectively
improve the tracking accuracy and robustness of the system. Additionally, two lightweight
algorithms named AFLink and GSI are introduced to address specific challenges related to
missing association and missing detection [18].

2.6. Multi-Modal 3D Object Detection in Autonomous Driving: A Survey

Multi-modal 3D object detection [19] is a crucial technology for autonomous vehicles
to perceive their surroundings. It combines data from radar, LiDAR, and cameras, which
provides a comprehensive view. Radar performs better in poor weather but has lower
resolution, while LiDAR is better at measuring distance but struggles with sparse data.

Researchers use datasets like KITTI [20] and Waymo [21] to benchmark and improve
detection algorithms under various conditions. A key challenge is how to best fuse data
from these different sensors. Common fusion techniques include region-of-interest (RoI),
voxel, and point-level fusion. Additionally, cost-effective detection methods are necessary.
Techniques like knowledge distillation from LiDAR to camera data are being explored to
achieve good detection accuracy at a lower cost.

Finally, the scarcity of real-world data is a hurdle. Researchers are looking into
synthetic datasets and techniques like photorealistic rendering to bridge the gap and create
more training data. Overall, multi-modal 3D object detection [22] is a rapidly developing
field with the potential to revolutionize autonomous driving.

2.7. Monocular Camera-Based Complex Obstacle Avoidance via Efficient Deep
Reinforcement Learning

The literature introduces a framework for mobile robot navigation using only a monoc-
ular RGB camera [23]. It utilizes a pseudo-laser, combining depth and semantic information,
alongside a Feature Extraction Guidance module and deep reinforcement learning. The
framework demonstrates a solution for monocular camera-based obstacle avoidance in
mobile robotics [24].

2.8. IDD: A Dataset for Exploring Problems of Autonomous Navigation in
Unconstrained Environments

This paper introduces the Indian Driving Dataset (IDD) [25], aiming to address the
limitations of existing datasets for autonomous navigation by focusing on unstructured
driving environments. Unlike datasets that primarily cover structured environments with
well-defined infrastructure and traffic rules [26], IDD captures the complexity of Indian
roads, including diverse traffic participants, ambiguous road boundaries, and varying
environmental conditions.

The dataset comprises 10,004 images annotated with 34 classes, collected from 182 drive
sequences in Indian cities. IDD expands the label set compared to benchmarks like
Cityscapes, reflecting the unique characteristics of Indian road scenes. This paper suggests
IDD is an ideal resource for addressing new research problems such as domain adaptation,
few-shot learning, and behavior prediction in unstructured road scenes, emphasizing the
need for larger and more diverse datasets for autonomous systems.



Sensors 2024, 24, 6319 5 of 21

2.9. NITCAD—Developing an Object Detection, Classification, and Stereo Vision Dataset for
Autonomous Navigation in Indian Roads

The literature introduces the NITCAD dataset, designed specifically for developing au-
tonomous navigation systems suited to Indian road conditions [27]. The dataset comprises
both RGB and stereo images collected using cameras mounted on a vehicle traversing
rural and urban roads in Kerala, India. This comprehensive dataset includes two main
components: the NITCAD object dataset and the NITCAD stereo vision dataset. The former
focuses on object classification and detection, while the latter aims to estimate depth for
navigation purposes.

For evaluating the performance of autonomous navigation systems, the authors em-
ployed various deep learning architectures on the NITCAD object dataset. These architec-
tures were tested for classification accuracy, precision, and recall across six different classes,
which are auto-rickshaw, bus, car, pedestrian, truck, two-wheeler, and van [28]. Results
showed variations in performance among architectures, with Xception demonstrating the
highest precision and recall for most classes.

Object detection was evaluated using Faster R-CNN, achieving an accuracy of 89.4%.
Precision and recall values varied across classes, with each architecture demonstrating
strengths and weaknesses in detecting specific objects.

2.10. Faster RCNN-Based Robust Vehicle Detection Algorithm for Identifying and then
Classifying Vehicles

This research proposes a new method for real-time vehicle detection using deep
learning. It improves upon Faster R-CNN [29] by incorporating techniques like Soft NMS
and using modified base network architectures like MobileNetV3 and a tweaked VGG16.
The model is trained on a custom dataset with heavily occluded vehicles, similar to real-
world situations. It outperforms older Faster R-CNN versions and competes well with
state-of-the-art methods.

2.11. Single Shot Multi-Box Detector Algorithm over Fast R-CNN: An Ingenious Technique for
Increasing Object Detection Classification Accuracy

This review examines advancements in object detection algorithms, with a focus on
achieving higher classification accuracy. Researchers have proposed various methods to
address precision challenges. Some approaches include Kumar et al.’s (2017) [30] pivot-
aware target location for Faster R-CNN, which boosted precision by 2.5%, and the Single
Shot Multi-box Detector (SSD) [31] introduced by Xiang et al. (2018) [32] as a fast and
effective object recognition method.

The latter half of the review emphasizes the superiority of the recent SSD algorithm
compared to traditional methods like Fast R-CNN. SSD achieves better accuracy through
its use of skip pooling to combine contextual data.

3. Proposed Work
3.1. Data Acquisition

For this research, the Dats_2022 [33] dataset was carefully curated to specifically
address the unique challenges of the Indian road environment. Pedestrian-related classes
are particularly critical in Indian road settings, and the dataset emphasizes these classes to
enhance accuracy in object detection and classification. With a size of 10 GB, the dataset
contains 2048 training images and 802 test images, offering a diverse representation of
urban landscapes, vehicular traffic, and pedestrian activity characteristic of Indian streets.

The dataset’s footage was collected from Indian roads, and its class labels reflect objects
that are more commonly encountered in this setting than in others, making it an ideal
fit for the research. Some of the key classes include rickshaws, tractors, cattle, and carts,
which are prevalent on Indian roads in many regions. These factors contribute to improved
performance when addressing the complexities of Indian traffic. Figure 1 provides an
example image that captures the essence of the dataset.
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Figure 1. Data sample.

The data collection process was comprehensive, drawing from various sources to
accurately reflect the diversity of Indian road conditions. Initially, the distribution of the
Dats_2022 dataset was found to be skewed, as shown in Figures 2 and 3, which display the
training and validation data distributions. To address this imbalance, additional images
were sourced from Roboflow [34] for classes that were underrepresented or nearly absent
in the original dataset. These underrepresented classes include objects such as manholes,
ambulances, petrol pumps, and overbridges. The new images were provided in a YOLOv8-
trainable format, which allowed them to be seamlessly integrated into the dataset.

Figure 2. Training data distribution.

This augmentation resulted in a total of 4296 training images [35], comprising 3451 im-
ages with objects and 845 background images. The dataset spans various road types,
including urban streets, highways, and rural roads, as well as different environmental
conditions like variable lighting, weather, and traffic densities.
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Figure 3. Validation data distribution.

The dataset features 35 distinct labels, covering a wide range of objects, from vehicles
such as cars and bikes to pedestrians, and environmental elements like traffic signs. The
full list of labels includes the following: Traffic signal, Lamp post, Zebra crossing, Bike, Car,
Rickshaw, Tyre works, Tree, Tractor, Cattle, Vegetation, Electric pole, Building, Wall, Person,
Bus, Bridge, Road Divider, Traffic signboard, Flag, Crane, Cycle, Dog, Truck, Overbridge,
Manhole, Bus stop, Barricade, Petrol pump, Ambulance, Goat, Cart, and Background.
Notably, the most common labels in the images are Car, Bike, and Rickshaw.

3.2. Preprocessing

Recognizing the pivotal role of data preprocessing in fortifying model robustness and
enhancing generalization capabilities, this methodology prioritizes the application of a
suite of sophisticated data augmentation techniques:

• Annotation: Annotators were trained to accurately label objects in the images using
bounding boxes, ensuring consistency and accuracy across the dataset.

• Augmentation: To increase dataset diversity and improve model generalization, aug-
mentation techniques were applied. This includes geometric transformations such as
rotation, scaling, and flipping. They ensure that the model learns to recognize objects
from different angles, distances, and orientations, which is especially important in the
context of autonomous vehicles navigating dynamic environments where obstacles
may appear in various forms.
Photometric transformations, on the other hand, like brightness adjustment and color
augmentation, help the model become robust to changes in lighting conditions and
visual appearance, such as those caused by weather or time of day. These augmenta-
tions introduce variability into the training data, simulating the diverse conditions
the model will encounter in deployment. By training the model on these augmented
data, we reduce the risk of overfitting and improve its performance on unseen data,
ensuring better detection and classification accuracy in unpredictable environments
like Indian roads.

• Data splitting: The dataset was divided into training, validation, and testing sets
to facilitate model training and evaluation. Care was taken to ensure that each set
represented a balanced distribution of classes to prevent bias during training.
By subjecting the dataset to these transformative operations, the aim is to imbue this

model with a heightened adaptability to the myriad of real-world scenarios encountered
on Indian roads. An example of the preprocessed data is shown in Figure 4 to better
understand the process.
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Figure 4. Preprocessed data.

3.3. Feature Engineering and Model Architecture

The feature engineering and model architecture involve a streamlined dataflow
pipeline designed for real-time obstacle detection in autonomous vehicles, as shown in
Figure 5. The process begins with a camera capturing live images of the surroundings.
These images are then fed into the deep learning model, specifically YOLOv8, which pro-
cesses the input to detect and classify objects present in the scene. The model extracts
relevant features from the images, such as shapes, colors, and textures, allowing it to
identify different types of obstacles with high accuracy. Once detected and classified, the
model outputs the results.

Figure 5. Dataflow pipeline.

1. Input data acquisition: The input data are acquired from a camera sensor, which could
be mounted on a device or integrated into a surveillance system. The camera captures
images or video streams of the scene, providing the raw data for object detection.

2. Frame extraction (video to frames): For video inputs, the video stream is processed
to extract individual frames using video processing techniques. Libraries such as
OpenCV are commonly used for this task, allowing seamless conversion of video
streams into a series of frames.

3. Object detection and classification: The core of the dataflow pipeline is the YOLOv8
Nano model, which is utilized for real-time object detection and classification. YOLOv8
Nano is a lightweight variant of the YOLOv8 architecture, optimized for resource-
constrained environments while maintaining high accuracy. The YOLOv8 architecture
employs a single neural network to predict bounding boxes and class probabilities
directly from full images in one evaluation. This approach enables efficient real-time
inference by eliminating the need for region proposal networks or multiple stages
of processing.

4. YOLOv8 architecture: The YOLOv8 [36] architecture builds upon the previous ver-
sions of YOLO (You Only Look Once) models, introducing improvements in accuracy
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and efficiency. The backbone network of YOLOv8, typically based on Darknet, extracts
features from the input images. This is crucial for detecting objects in diverse and
cluttered environments typical of Indian roads, where road scenes can vary widely
in terms of vehicle types, pedestrian density, and environmental conditions. Detec-
tion layers are responsible for predicting bounding boxes and class probabilities at
multiple scales.
YOLOv8 uses PANet for better multi-scale feature fusion. PANet enhances the model’s
ability to detect objects at various scales and improves its robustness to variations in
object size and appearance due to different lighting and environmental conditions.
This is achieved through the aggregation of features from multiple layers, which helps
in capturing finer details even when objects are partially obscured or under varying
illumination. Prediction heads refine the detections and produce the final output.
YOLOv8 achieves real-time performance by optimizing network architecture and
leveraging techniques such as feature pyramid networks and anchor boxes.

5. YOLOv8 variants and model selection: The YOLOv8 architecture offers a spectrum
of variants tailored to meet specific requirements, providing scalability and memory
efficiency for diverse applications. These variants range from large models suitable
for intricate feature extraction to nano or small models optimized for constrained
computational resources, enabling seamless integration into autonomous vehicle
systems where memory and processing power are limited.
In the context of YOLOv8 models, three key metrics parameters (params), FLOPs
(floating point operations), and CPU ONNX speed are commonly used to describe a
model’s computational complexity and performance, as shown in Table 1.

Table 1. YOLOv8 variants comparison.

Variant Speed (ms) Speed (ms) Parameters (M) FLOPs (B)CPU ONNX A100 TensorRT

Nano 80.4 0.99 3.2 8.7
Small 128.4 1.20 11.2 28.6

Medium 234.7 1.83 25.9 78.9
Large 375.2 2.39 43.7 165.2

(a) Parameters (params): The number of trainable weights in a model. More
parameters increase learning capacity, thus requiring more memory and com-
putational power.

(b) FLOPs (floating point operations): The total number of mathematical oper-
ations required for inference. Higher FLOPs indicate more computational
complexity, leading to better accuracy but slower speed.

(c) CPU ONNX speed: The inference time (in ms) of a model on a CPU using the
ONNX format.

(d) A100 TensorRT speed: It refers to the rapid inference achieved by optimizing
models with TensorRT on NVIDIA’s A100 GPU.

In practical applications, the choice of YOLOv8 variant is crucial for achieving optimal
performance while adhering to resource constraints. While large and medium vari-
ants may exhibit high training accuracy owing to their capacity to capture complex
features, the performance in terms of testing accuracy, particularly precision, can
vary significantly across different variants. Surprisingly, experiments reveal that nano
and small models often outperform their larger counterparts, especially in real-life
scenarios encountered on Indian roads.
Real-life scenario testing serves as a robust validation of the performance of YOLOv8
variants. These evaluations encompass diverse conditions, including varying weather,
traffic patterns, and lighting conditions, mirroring the complexities of real-world driv-
ing environments. Notably, nano and small models consistently demonstrate superior



Sensors 2024, 24, 6319 10 of 21

performance in terms of accuracy and precision during these tests, showcasing their
effectiveness in practical autonomous driving applications.
In essence, the selection of YOLOv8 variants is a critical consideration in optimizing
the balance between model complexity, memory efficiency, and performance in real-
world scenarios. By strategically choosing the appropriate variant based on specific
requirements and constraints, autonomous vehicle systems can achieve efficient and
reliable object detection and classification while minimizing computational overhead.

6. Bounding box visualization: Detected objects are visualized by overlaying bounding
boxes on the original frames. Additionally, the confidence scores associated with each
detection are displayed alongside the bounding boxes, providing insights into the
reliability of the detections.

7. Output generation: The processed frames, with bounding boxes and confidence scores
having a threshold value of 0.25 overlaid, are aggregated into a final output format.
This could involve generating annotated images or reconstructing the frames into a
video with visual annotations.

3.4. Training

The training process commenced with initializing the selected YOLOv8 models using
pretrained weights from the COCO dataset [37]. Transfer learning was employed to adapt
the models to the specific characteristics of Indian road scenes, leveraging the knowledge
learned from the COCO dataset.

The training process involved several steps:

• Fine-tuning: The initialized models were fine-tuned on the improved Dats_2022
dataset using gradient descent-based optimization algorithms. Hyperparameters
such as learning rate, batch size, and regularization techniques were carefully tuned
through iterative experimentation to optimize model performance.

• GPU acceleration: Training was performed on GPU-accelerated hardware to expedite
convergence and reduce training times, enabling faster iterations and model refinement.

Several variants of YOLOv8 were trained with different numbers of epochs; the details
are as follows:

1. YOLOv8-Nano for 10 epochs.
2. YOLOv8-Nano for 20 epochs.
3. YOLOv8-Nano for 100 epochs.
4. YOLOv8-Small for 30 epochs.
5. YOLOv8-Small for 100 epochs.
6. YOLOv8-Medium for 30 epochs.
7. YOLOv8-Large for 10 epochs.

3.5. Evaluation Standards
3.5.1. Experimental Setup

The experimental setup for evaluating the proposed YOLOv8-based object detection
and classification system in autonomous vehicles involved the utilization of Google Colab
for cloud-based computing resources. This section outlines the details of the software
environment and computing resources employed during the experimentation process.

• Software environment: The software environment comprised the Ultralytics reposi-
tory, a deep learning framework specifically tailored for object detection tasks, and
associated libraries to support the development and deployment of the YOLOv8-
based system. The software components utilized in the experimental setup included
the following:

1. Ultralytics repository: Utilized for training and inference with YOLOv8 architecture.
2. Python programming language: Python 3.10.
3. OpenCV library: OpenCV 4.5.3.
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These software tools and libraries provided a robust development environment for
training the YOLOv8 model, conducting experiments, and evaluating the performance
of the object detection system within the Google Colab environment.

• Hardware environment: The hardware environment comprises the webcam and CPU
used during live testing of the trained model on Indian roads. Given below are the
specifications of each item used:

1. Camera: ASUS Webcam C3 (Asus India)—1080p and 60 fps.
2. CPU: 11th Gen Intel Core i7-1165G7 Processor (Intel India)—4 cores and 8 logical

processors.

3.5.2. Performance Metrics

The performance of each trained YOLOv8 variant was evaluated using comprehensive
testing protocols to assess detection accuracy and classification performance. The following
metrics were computed:

1. Precision, recall, and F1-score: Metrics used to measure the model’s ability to detect
and classify objects accurately.

2. Qualitative analysis: In addition to quantitative metrics, qualitative analysis was
conducted to evaluate the models’ performance in real-world scenarios. This involved
visually inspecting the model’s predictions and assessing its ability to detect and
classify obstacles accurately in diverse environments.

3.6. Optimization and Deployment

After satisfactory performance evaluation, the selected YOLOv8 variant underwent
optimization for deployment in real-time applications. This optimization process involved
the following.

3.6.1. Model Compression

Techniques such as quantization and pruning were applied to reduce the model’s
memory footprint and inference latency without sacrificing performance.

3.6.2. Integration

The optimized model was integrated into a real-time obstacle detection and clas-
sification system tailored for deployment in autonomous vehicles operating on Indian
roads. A pretrained YOLOv8 model, optimized for vehicle detection, forms the core of the
real-time system.

Integrated with Flask, a lightweight web framework, it creates the backend for a live
web application. Flask efficiently manages video streams captured using OpenCV’s camera
access functionalities. Each frame is routed to the YOLOv8 model within the application,
enabling real-time detection and bounding box generation for identified vehicles. These
processed frames are then streamed back to the user’s web browser for visualization.
Leveraging a standard camera prioritizes cost-effectiveness, making the system suitable for
resource-limited deployments. Further optimization strategies, like model quantization and
WebRTC for video streaming, could be explored for enhanced performance. When deploy-
ing this system in real-world scenarios, addressing privacy concerns through techniques
like anonymization is crucial.

3.7. Iterative Refinement

Throughout the methodology, an iterative approach was adopted to refine the models
and system components based on insights gained from experimentation and evaluation.
Feedback from testing and validation phases informed adjustments to data preprocessing,
model architecture, and training strategies, ensuring that the final system was robust
and well-adapted to the challenges of real-time obstacle detection and classification in
autonomous vehicle navigation on Indian roads.



Sensors 2024, 24, 6319 12 of 21

1. Experimentation and evaluation: Initial YOLOv8 models and system components are
built and tested with various configurations.

2. Testing and validation: The system is rigorously tested against datasets and real-world
scenarios to assess accuracy, speed, and robustness.

3. Feedback collection: Insights, challenges, and areas for improvement are identified
from testing and validation.

4. Analysis and insights: Feedback is analyzed to pinpoint key areas requiring refinement.
5. Adjustments and refinements: The system is adjusted based on the analysis, includ-

ing hyperparameter tuning, data preprocessing modifications, model architecture
optimization, or training strategy adjustments.

6. Iterative testing and validation: The refined system is retested and validated to
measure the impact of adjustments. This loop continues until satisfactory performance
is achieved.

7. Performance monitoring: Performance metrics are continuously monitored through-
out the process to track progress and identify any issues.

8. Deployment and continuous improvement: Once a satisfactory system is developed,
it is deployed for real-world use. However, the refinement process is ongoing to
ensure the system remains adaptable and effective over time.

4. Experimental Evaluation
4.1. Object Classification Performance

The training metrics for different model variants are presented in Table 2. Across
various configurations, the model’s precision, recall, and F1-score exhibit notable variations.
In the “Large” variant trained for 10 epochs, precision stands at 0.31, with recall and F1-
score at 0.2, indicating modest performance. Conversely, the “Medium” variant trained for
30 epochs displays significantly improved metrics, with precision reaching 0.79, recall at
0.93, and F1-score at 0.82, suggesting robust classification capabilities.

Table 2. Evaluation study.

Variant Epochs Trainable Precision Recall F1-Score Precision Recall F1-Score
Parameters (Train) (Train) (Train) (Test) (Test) (Test)

Large 10 43.7m 0.64 0.54 0.54 0.31 0.20 0.20
Medium 30 25.9m 0.79 0.93 0.82 0.30 0.16 0.16

Small 30 11.2m 0.72 0.88 0.80 0.50 0.15 0.15
Small 100 11.2m 0.80 0.97 0.89 0.25 0.20 0.15
Nano 10 3.2m 0.65 0.23 0.23 0.50 0.20 0.15
Nano 20 3.2m 0.65 0.40 0.41 0.60 0.50 0.30
Nano 50 3.2m 0.65 0.62 0.60 0.23 0.13 0.13

The “Small” variant trained for 30 epochs yields a precision of 0.5, recall of 0.15, and
F1-score of 0.15, indicating a considerable drop in performance compared to previous
configurations. Increasing the training duration to 100 epochs for the “Small” variant
notably enhances performance, with precision and recall reaching 0.8 and 0.97, respectively,
resulting in an F1-score of 0.89, signifying significant improvement.

Examining the “Nano” variants, which likely represent models designed for resource-
constrained environments, it can be seen that the performance metrics vary. The “Nano”
variant trained for 10 epochs exhibits a precision of 0.65 and a recall of 0.23, indicating a
trade-off between precision and recall compared to previous configurations. Further, the
“Nano” variant for 30 epochs enhances performance, achieving a precision of 0.65, recall of
0.4, and F1-score of 0.41.

It can be said that the best model is the “Nano” variant trained for 20 epochs because
of its performance as well as the trainable parameters, i.e., 3.2 million. Even comparing it
with “NITCAD—Developing an object detection, classification and stereo vision dataset
for autonomous navigation in Indian roads” results, i.e., a precision of 0.84 over 6 classes,
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this model performs really well for having a precision of 0.65 over 35 classes. Overall, these
results highlight the impact of model architecture, training duration, batch size, and fine-
tuning on the performance of object detection models, providing insights for optimizing
model configurations tailored to specific use cases and resource constraints.

Table 3 provides a comprehensive comparison of various YOLO models across dif-
ferent variants and metrics, including precision, recall, and F1-score for both training and
testing phases. Notably, YOLOv8 models exhibit remarkable performance improvements
compared to their predecessors. Specifically, YOLOv8 Small demonstrates significant en-
hancement in training metrics, achieving a precision of 0.72 and recall of 0.88, although
its test performance shows room for improvement. YOLOv8 Nano also stands out with
a balanced precision of 0.65 and recall of 0.50, translating to a higher F1-score of 0.41
on training data and 0.30 on testing data, outperforming many other variants in the test
phase. These results underscore YOLOv8’s superior efficacy and robustness, making it a
compelling choice over other state-of-the-art models in the YOLO series.

Table 3. Comparison with state-of-the-art models.

Model Variant Epochs Precision Recall F1-Score Precision Recall F1-Score
(Train) (Train) (Train) (Test) (Test) (Test)

YOLOv5 Small 20 0.56 0.10 0.17 0.50 0.09 0.15
YOLOv5 Nano 20 0.59 0.09 0.15 0.53 0.13 0.21
YOLOv7 - 20 0.62 0.24 0.35 0.52 0.11 0.19
YOLOv7 Tiny 20 0.65 0.26 0.37 0.58 0.23 0.23
YOLOv8 Small 30 0.72 0.88 0.80 0.50 0.15 0.15
YOLOv8 Nano 20 0.65 0.40 0.41 0.60 0.50 0.30

4.2. Object Detection Performance

During the analysis of the model for performance with syntactic data, it was observed
that the model detected all the objects, and most of them were classified correctly. Even
though there were some misclassifications, the performance can be considered as excellent
because the training was performed in an Indian setting, whereas the simulation it was
tested on is more of an international setting. This showcases the flexibility of the model
and the fact that it is not limited to just Indian roads. A sample image in Figure 6 from the
video the model was tested upon is showed below.

Figure 6. Syntactic testing data.

During the thorough analysis of the performance of real-time object identification, a
number of situations with changing traffic and ambient circumstances were examined. The
goal was to evaluate the detection model’s resilience and reliability in various settings by
utilizing a camera configuration. The best testing model was used, i.e., YOLOv8-Nano
Variant trained for 20 epochs for the detection performance analysis. The confusion matrix
of the model is complex but determines the fact that all the classes are detected and classified
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with utmost precision, and this fact is backed up by the real-time analysis of the model
performance as shown later.

First, it can be seen in Figure 7 how “Overlapping” conditions affect the precision of
object detection. The model showed respectable recall and precision in conditions where
vehicles overlap with each other. However, as distance is increased, it does not seem to
detect objects like some cars. It does not seem to have any problem detecting a particular
class, but the distance is surely a factor to consider here.

Figure 7. Overlapping condition.

It can be seen in Figure 8, for a range of 10–50 m, that all the detections and classifica-
tions such as Car, Bike, and Lamp Post are correct except for one misclassification.

Figure 8. Distance of 10–50 m.

As for the range of 10–100 m in Figure 9, all the detections are correct, but as the
distance increases, the model is not able to detect objects.

It can be seen how “Distance” affects the effectiveness of object detection in Figure 10.
When objects were in the range 10–50 m, the model demonstrated impressive precision.
Almost all the objects seem to be detected and classified correctly. In object detection for the
range of 10–100 m, the model’s accuracy did, however, decrease as the distance between
the camera and objects increased. Some objects were not detected, but there seems to be
no misclassifications.
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Figure 9. Distance of 10–100 m.

Figure 10. Distance condition.

Furthermore, the distance here is calculated relatively, based on the size of bounding
boxes surrounding the object. So, in looking at the size of bounding boxes, it can be inferred
that as distance increases, meaning the box size decreases, the accuracy decreases.

The effect of environmental elements like “Weather” conditions was also looked at to
see how it affected the accuracy of object detection. The model proved resilient in inclement
circumstances, including rain and fog.

It can be seen in Figure 11 that all objects present are getting detected but not all
detected objects are classified correctly, for example, along with all the cars, a tent is getting
detected and classified as a car. This could be due to the overlapping behavior of objects in
this scenario or due to the fact that “Car” class is the predominant one on roads.

It can be seen in Figure 12 that even in misty conditions, the model predicts everything
correctly. There is a lot of uncertainty in the image, but the result is really good. There seem
to be no misclassifications, but one thing to note here would be the low confidence score
for the detected objects.

Additionally, assessment of the model’s performance in scenarios with “Light Traffic”,
“Medium Traffic”, and “Dense Traffic” situations was carried out. The model’s accuracy
held up well in circumstances with heavily packed traffic, in the day, and at night when
light is limited. On the other hand, the model performed consistently in scenarios with less
traffic during daytime and medium traffic during nighttime, respectively.

It can be seen in Figure 13 that the model is able to detect most of the objects and
classify them correctly. As the distance and overlapping increases, we can see that some
objects get detected and the rest are undetected.
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Figure 11. Rainy condition.

Figure 12. Misty condition.

Figure 13. Dense traffic (day).

It can be seen in Figure 14 that the model is able to detect almost all of the objects and
classify them correctly, but it missed traffic signals and has a misclassification. The reason
for it could be the increased complexity because of distance and low brightness.

It can be seen in Figure 15 that all the objects, even distant, are detected and classified
correctly except for the traffic signals in the distance. For traffic conditions, distance
seems to be a relevant factor for object detection and classification, more so than any
other condition.
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Figure 14. Dense traffic (night).

Figure 15. Low traffic (day).

It can be seen in Figure 16 that objects like Cars and Bike are detected and classified
correctly, but there are misclassifications due to it being nighttime and having low visibility.
As per the observations before, distance seems to be playing a role here.

Figure 16. Medium traffic (night).
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All things considered, the results highlight the detection model’s adaptability and
efficacy in a variety of real-world circumstances, from changing ambient parameters to
dynamic traffic situations. These findings offer insightful information for implementing
object detection systems in real-time applications, guaranteeing dependability and excellent
performance in a variety of scenarios.

5. Discussion

Previous object detection models include algorithms like Faster R-CNN and SSD, but
YOLOv8 turns out to be the best with this problem statement. What we want to achieve is
that the objects get detected accurately in the Indian roads setting, and YOLOv8 has certain
advantages over the previous methods used by many other object detection models.

Table 4 shows the comparison between the top five Indian datasets and the dataset
used here. It can be seen that the most number of classes as well as diverse conditions like
traffic and weather along with the pedestrian classes, which are the most important classes
in an Indian roads setting, are included in the dataset used for this paper, i.e., DATS_2022
Dataset. This dataset has a variety of vehicle and background images as well as images
added for making the distribution less skewed and to give more importance to certain
classes. Hence, it can be said that this dataset would be the best to capture the essence of
Indian roads and give the best accuracy if the model is trained on it.

Table 4. Top five Indian datasets comparison with this dataset.

Dataset Name No. of Classes Diversity Pedestrians

DATS_2022 35 Yes Yes
Indian Vehicle Image [38] 11 Yes No

YOLOv8 Indian Roads [39] 10 No Yes
Vehicle Detection [40] 8 No No

IDD 34 Yes Yes
IRUVD [41] 14 Yes Yes

To strengthen the discussion, it is important to clarify the research gaps addressed
and highlight the scientific contributions of this work in relation to prior research. One
major gap addressed by this study is the lack of a dedicated dataset tailored to the diverse
and unpredictable conditions of Indian roads. While existing models like YOLOv7 and
Fast-RCNN have shown high performance on standard datasets, they often fall short
in environments characterized by irregular traffic patterns, diverse weather conditions,
and the frequent presence of pedestrians, which are common in the Indian context. By
leveraging the DATS_2022 dataset, which includes a comprehensive range of object classes
and conditions specific to Indian roads, this research directly fills this gap and provides a
more realistic and effective solution for obstacle detection in such environments.

Furthermore, while prior research has often relied on complex point cloud data pro-
cessing from LIDAR or RADAR sensors, this paper proposes a more accessible approach
using only camera-based visual data, significantly simplifying the system architecture
while maintaining robust detection capabilities. This research contributes scientifically by
demonstrating that accurate real-time obstacle detection and classification can be achieved
over a wider range of object classes and environmental conditions without the need for
expensive sensor setups. The versatility and flexibility of the proposed model, combined
with its ability to generalize across varied and challenging conditions, offer a valuable
step forward in advancing autonomous vehicle technologies, particularly for developing
regions like India where such technologies have been less explored.

Despite the promising results and the suitability of the DATS_2022 dataset for cap-
turing the complexities of Indian roads, the proposed method has certain limitations that
must be addressed. One of the main challenges is the relatively lower recall rate of 0.5,
which indicates that the model may still miss detecting some objects in certain scenarios,
especially in extreme lighting conditions or when objects are partially occluded. Addition-
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ally, while the model is designed to handle a diverse range of classes, its accuracy could
potentially drop when exposed to rare or highly unusual objects that are underrepresented
in the dataset. Another limitation is the reliance solely on visual data from cameras, which
may not be sufficient in low-visibility conditions such as heavy rain, fog, or night-time
driving, where other sensory inputs like LIDAR or RADAR might offer complementary
information. Lastly, while the method simplifies object detection by using bounding boxes,
more advanced techniques like 3D bounding boxes or depth estimation could further
enhance obstacle detection and improve overall safety in complex traffic environments.
These limitations present opportunities for future improvements to ensure more robust
and reliable performance in real-world autonomous driving scenarios.

6. Conclusions and Future Work

In conclusion, this paper introduces a novel approach to object detection for au-
tonomous vehicles, leveraging the robust YOLOv8 architecture to provide real-time obsta-
cle avoidance. By utilizing camera-based image sensors, the model offers a cost-effective,
scalable solution that reduces the dependency on expensive sensors like LIDAR, without
compromising detection accuracy. This work represents a significant step forward in sim-
plifying the integration of obstacle detection systems into existing autonomous platforms,
lowering barriers to adoption while maintaining high performance across diverse road
conditions, particularly on complex Indian roads.

The broader impact of this research lies in its potential to reshape the landscape of
autonomous driving technology. By focusing on a camera-only detection system, this
approach makes autonomy more accessible for regions with infrastructural and environ-
mental challenges, contributing to the global push for safer, more reliable, and affordable
autonomous vehicles. Furthermore, this study opens new avenues for future research,
particularly in integrating camera-based detection systems with other sensor modalities
to further enhance accuracy in adverse conditions. The advancements presented here not
only improve the current state of the field but also pave the way for future innovations in
autonomous navigation, with a clear focus on real-world applicability and scalability.

In future work, an interesting avenue for exploration could involve comparing the
performance of camera-based systems with LiDAR-based systems for object detection and
classification in autonomous vehicles. This comparison could shed light on the strengths
and weaknesses of each technology and provide insights into their complementary roles in
enhancing the perception capabilities of autonomous vehicles.
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Abbreviations
The following abbreviations are used in this manuscript:

YOLO V8 You Only Look Once Version 8
GSI GPU-friendly Subgraph Isomorphism
LiDAR Light Detection Furthermore, Ranging
IDD Indian Driving Dataset
NITCAD National Institute of Technology Calicut Autonomous Driving
RCNN Region-Based Convolutional Neural Network
SSD Single-Shot Multi-box
DATS Driver Assistance System
TLA Three-Letter Acronym
LD Linear Dichroism
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