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Abstract: Despite significant advancements in CNN-based object detection technology, adverse
weather conditions can disrupt imaging sensors’ ability to capture clear images, thereby adversely
impacting detection accuracy. Mainstream algorithms for adverse weather object detection enhance
detection performance through image restoration methods. Nevertheless, the majority of these
approaches are designed for a specific degradation scenario, making it difficult to adapt to diverse
weather conditions. To cope with this issue, we put forward a degradation type-aware restoration-
assisted object detection network, dubbed DTRDNet. It contains an object detection network with
a shared feature encoder (SFE) and object detection decoder, a degradation discrimination image
restoration decoder (DDIR), and a degradation category predictor (DCP). In the training phase, we
jointly optimize the whole framework on a mixed weather dataset, including degraded images and
clean images. Specifically, the degradation type information is incorporated in our DDIR to avoid
the interaction between clean images and the restoration module. Furthermore, the DCP makes the
SFE possess degradation category awareness ability, enhancing the detector’s adaptability to diverse
weather conditions and enabling it to furnish requisite environmental information as required. Both
the DCP and the DDIR can be removed according to requirement in the inference stage to retain the
real-time performance of the detection algorithm. Extensive experiments on clear, hazy, rainy, and
snowy images demonstrate that our DTRDNet outperforms advanced object detection algorithms,
achieving an average mAP of 79.38% across the four weather test sets.

Keywords: object detection in various weather scenes; restoration-assisted object detection;
degradation type awareness; multi-task joint learning

1. Introduction

Object detection technology, which is dedicated to extracting target information such
as spatial coordinates, semantic category, and physical dimensions from images or videos,
constitutes one of the foundational tasks in the field of computer vision. In recent years, the
rapid evolution of deep learning has catalyzed significant advancements in learning-based
object detection technologies, showcasing exceptional accuracy and real-time performance
across diverse datasets sourced from various sensors, including cameras, surveillance
systems, vehicles, drones, and satellites [1–5]. Consequently, this technology is increasingly
being utilized in various domains, including autonomous driving [6], environmental moni-
toring [7], military reconnaissance [8], and ship fire detection [9]. Nevertheless, mainstream
detection algorithms are generally optimized and assessed using high-quality datasets such
as MS COCO [10] and PASCAL VOC [11]. The data captured by sensors under adverse
weather conditions frequently lead to degraded images characterized by poor visibility and
blurred target details, posing significant challenges for the detection model in extracting
target features. This constrains the model’s generalization and robustness, resulting in a
serious decline in detection performance under adverse weather conditions such as haze,
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rain, and snow. Therefore, enhancing the stability of object detection algorithms in these
severe environments has become an urgent issue that necessitates resolution.

To address this issue, the most intuitive solution is to employ image enhancement
techniques [12–20] as a preprocessing step to mitigate the effects of adverse weather fac-
tors. While these techniques generally improve the visual quality of images, the resulting
restored outputs may not be optimally tailored for machine perception. Consequently,
the performance of individually trained two-stage restoration-detection frameworks is
suboptimal. Furthermore, some researchers [21–23] have concurrently optimized restora-
tion and detection networks in a cascading manner to ensure that the restored outputs are
more conducive to the perception of the detection network. Although these methods do
enhance detection accuracy under inclement weather conditions, they inevitably introduce
additional model parameters, which compromises real-time object detection.

Recently, several studies [23–27] have focused on enhancing object detection in adverse
weather conditions through transfer learning, particularly employing domain adaptation
methods. These approaches primarily offset the domain gap [28,29] between the source
(clear images) and target domains (degraded images), facilitating improved learning from
clear to degraded images. While these methods can extract intrinsic features of input images
rather than relying solely on restored features, they often overlook the fact that degraded
factors complicate target feature extraction and lead to an over-reliance on source domain
information, which ultimately limits their performance. In contrast to the aforementioned
approaches, TogetherNet [6] integrates image restoration and object detection within a
multi-task joint learning framework. It employs a restoration decoder that shares features
encoded by the backbone of the detection network, along with a regression loss to optimize
this shared backbone. As a result, clear image features can be extracted even when inputting
degraded images, significantly enhancing object detection performance for such cases.
However, this method is specifically designed for certain adverse weather conditions and
has several limitations that affect the stability of the detection model: (1) the network lacks
awareness of varying weather conditions when processing different types of images; (2) the
entire joint learning framework is trained exclusively on degraded images, neglecting
more common normal weather scenarios. As presented in Figure 1, although the adverse
weather image object detector TogetherNet [6] significantly improves detection accuracy
for hazy images, its performance on clear images deteriorates compared to YOLOXs [30].
Therefore, further investigation is needed to design a detection model that can adapt to
diverse degraded images while maintaining performance on clear images.

YOLOXs TogetherNet DTRDNet (Ours)

Figure 1. Detection results on clean and hazy images of YOLOXs [30], TogetherNet [6] and our
DTRDNet. The three models are optimized for adverse weather image. The clean image is from
VOC [11] and the hazy image is from RTTS [31].
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In this study, we introduce DTRDNet by improving the restoration module and bridg-
ing image classification [32] based on TogetherNet [6], which is designed to improve
precision and robustness in object detection for images captured under diverse weather
conditions, including both clear and various degraded scenarios. Firstly, to avoid excessive
model complexity and the limitation of adapting to only one specific degradation type, we
construct a framework based on the joint learning paradigm similar to TogetherNet [6]. This
involves feeding various degraded images along with clear images into the detection model
during the training stage to better accommodate diverse weather conditions, allowing the
model to learn more recognizable target features from clear images. However, introducing
clear images during the training phase can interfere with the restoration module, and
extracting restored features from clear images may hinder their detection. To eliminate the
mutual interference between clear images and the restoration network, we embed a degra-
dation discriminator (DD) between the shared feature encoder and the restoration decoder.
This discriminator distinguishes between clear and degraded images using degradation
type labels, ensuring the restoration decoder only processes degraded images. Addition-
ally, removing unnecessary restoration training of clear images offers the added benefit of
reducing training computational costs. Building upon this approach, we further optimize
the restoration decoder to leverage more low-level features that enhance the extraction of
detailed image features, thereby improving the model’s ability to accurately position ob-
jects for detection. The combination of a DD and our optimized restoration decoder forms
our degradation discrimination image restoration decoder (DDIR). Finally, we construct a
degradation category predictor (DCP) to imbue the encoded features with awareness of
degradation types by generating predicted degradation categories for each input during
training. This enhancement improves the model’s detection stability under diverse weather
conditions and can provide additional environmental information as needed. As shown in
Figure 1, our method outperforms both the current detector YOLOXs [30] and the adverse
weather detector TogetherNet [6] in detecting both degraded and clear images.

Previous studies have predominantly focused on addressing specific adverse weather
conditions, which is insufficient for effectively handling multiple weather scenarios with a
single model. As a result, practical applications often require the deployment of multiple
models to accommodate diverse weather conditions, incurring substantial costs. Our
research aims to tackle the challenge of object detection under various complex weather
conditions through a unified network. The proposed approach significantly enhances the
accuracy and stability of the detector across different weather scenarios without incurring
additional inference costs.

On the whole, our study makes the following contributions:

• On the basis of TogetherNet, we further develop the multi-task joint learning paradigm
by bridging the tasks of detection, restoration, and classification to enhance the perfor-
mance and stability of the detector in different environments.

• The proposed DDIR effectively mitigates the influence of clear data on the restoration
model and improves the restoration decoder to bolster the model’s capacity to extract
detailed features. This facilitates the model to more effectively encode clear features
for both clean and degraded images.

• The introduced DCP endows the feature extraction network with degradation category
awareness, thereby enhancing the model’s stability under varying weather conditions.

2. Related Work
2.1. Object Detection

Object detection is one of the most important tasks in the computer vision field, widely
employed in domains such as ship detection [9,33], autonomous driving [34], and military
surveillance [8]. Recently, with the rapid advancements in deep learning, learning-based
detectors have emerged as the mainstream approach for both application and research.
These can be broadly categorized into region proposal-based methods and regression-based
methods. The regional proposal-based approach first generates the candidate proposal
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ARES by methods such as selective search and edge boxes, and then performs adjustments
using the subsequent detection model. The most representative proposal-based detector,
R-CNN [35], first generates proposal areas through a convolutional neural network and
then uses a support vector machine (SVM) to classify them. Inspired by the success of
R-CNN in object detection, a large number of variants based on this framework have
been developed, each aiming to enhance the original model’s performance and address its
limitations. These variants include Fast R-CNN [36], Faster R-CNN [37], Libra R-CNN [38],
Dynamic R-CNN [39], and Mask R-CNN [40], among others. While the regional proposal-
based approaches generally exhibit certain advantages in accuracy, they often come with
higher computational costs and perform worse in terms of detection speed because the
requirements for localization and classification are handled in two stages.

In contrast to the regional proposal-based approach, regression-based approaches
represented by the YOLO series [5,8,30,41–45], SSD [46], RetinaNet [47], and CenterNet [48],
among others, complete the prediction of target categories and localization in a single stage.
This type of detector usually utilizes a feature encoder to extract image features and
then decodes the features to predict the category and location information of targets. It
should be noted that regression-based detection algorithms typically preset anchor boxes
with different aspect ratios, which saves time and computational resources required to
generate proposal boxes compared to regional proposal-based detectors, thus achieving
faster detection speeds. In addition, the two optimizations of Focal Loss (FL) [47], used to
mitigate the problem of positive and negative sample imbalance during the training stage,
and Feature Pyramid Networks (FPN) [49], employed to address the issue of variation in
target sizes, greatly improve the detection performance of regression-based single-stage
detectors, making them better suited to satisfy the trade-off between performance and
speed. In summary, although the performance of regression-based single-stage object
detection algorithms is not as accurate as that of two-stage algorithms, they do not require
generating proposal boxes and can directly output information about object categories,
positions, and confidence in an end-to-end regression method. This provides these methods
with a significant advantage in real-time performance.

2.2. Object Detection in Adverse Weather Conditions

The advancement of learning-based object detection technology has led to its widespread
application across various scenarios. Nevertheless, conventional detection algorithms are
susceptible to weather degradation, which poses challenges when encountering adverse
environments. Although an increasing number of studies have concentrated on object
detection in low-quality images, research specifically addressing this area remains limited.

Early algorithms for object detection in low-quality images predominantly employ
image restoration techniques, including dehazing [12–14,50], deraining [14,16,21,51], and
desnowing [17,18], among others. These methods function as preprocessing steps designed
to restore degraded images before the execution of object detection. Intuitively, clearer
images obtained from restoration algorithms should enhance detection performance. How-
ever, empirical evidence suggests that even when the clarity of restored images closely
resembles that of real clear images, their detection performance may not improve. This
discrepancy could be attributed to a domain gap between the restored images and actual
clear images. Furthermore, some researchers have sought to integrate image restoration
and object detection networks to alleviate the adverse effects of degraded information.

Sindagi et al. [23] improve the object in rainy and foggy weather by an unsupervised
domain-adaptive framework based on priors. Liu et al. [24] develop an image-adaptive
network for object detection in adverse weather conditions, which integrates restoration
and detection models in an end-to-end framework that can learn appropriate parameters
to enhance images for detection in a weakly supervised manner. Wang et al. [6] employ a
unified joint learning paradigm to integrate image restoration and object detection, training
a shared feature encoder for the two tasks and jointly optimizing them through restoration
and detection losses, thereby enhancing detection performance under adverse weather
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conditions. Wang et al. [52] employ degradation modeling for feature transformation in
the object detection task. Furthermore, several methods [53–56] have been proposed to
address the issue of degradation distraction through a domain adaptation approach. For
instance, Zhang et al. [56] introduce a domain-adaptive YOLO framework to enhance the
capabilities of single-stage detectors for transfer across different domains.

Although some progress has been achieved in existing object detection algorithms
for adverse weather conditions, there are still some shortcomings. For instance, most
optimization methods for object detection in adverse weather conditions do not distinguish
the clear and various degraded images, resulting in approaches that are tailored exclusively
to specific degradations, which can even decrease the detection performance of clear images.
Therefore, we further investigate the existing challenges in object detection algorithms for
multiple weather conditions. Our objective is to develop a detection framework capable
of leveraging degraded information to distinguish between various degradation types,
thereby addressing multiple weather degradations simultaneously while maintaining
effective detection on clear images.

3. Methods

Degraded images caused by adverse weather, such as haze, rain, and snow, signif-
icantly decrease the performance of object detection and pose a considerable challenge
to the environmental perception capabilities of detectors. To enhance the robustness of
object detection models under various weather conditions, we propose DTRDNet based
on TogetherNet [6]. It first employs a multi-task joint learning paradigm to optimize both
detection and restoration tasks simultaneously for diverse weather images. Additionally,
we embed a degradation discriminator (DD) between the feature encoder and restoration
decoder to form the Degradation Discrimination Image Restoration Decoder (DDIR), aim-
ing to mitigate the interference of clear images on the restoration module by leveraging
degradation type information. On this basis, we propose a degradation category predictor
(DCP), which utilizes degradation information as supervision to enhance environmental
perception capability. The overview of the proposed framework is illustrated in Figure 2.
Next, we will specify our algorithm in detail.
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Figure 2. The framework of our proposed DTRDNet. There are three parts: (1) the object detection
network based on YOLOX that can be divided into the shared feature encoder (SFE) and the objection
detection decoder, (2) our proposed restoration decoder (DDIR), and (3) the degradation predictor
(DCP). The DD is our proposed degradation discriminator, and its input, “Degradation”, is the
practical degradation type of image. The DDIR and the DCP can be selectively removed in the
inference stage if that specific function is not needed. DTFE refers to Dynamic Transformer Feature
Enhancement module [6], and SC Conv represents self-calibrated convolutions [57]. “APool” is the
average pooling operation.
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3.1. Overall Architecture

As illustrated in Figure 2, our proposed DTRDNet integrates three tasks: object
detection, restoration, and classification. It primarily consists of three components: (1) an
object detection network that incorporates a shared feature encoder (SFE) and an object
detection decoder, (2) our proposed restoration decoder (DDIR), and (3) a degradation
predictor (DCP). For convenience, we first introduce the overall workflow of our algorithm.

Differing with current optimization algorithms for adverse weather image object de-
tection, we are devoted to utilizing restoration and degradation discrimination to improve
detection performance for degraded images while retaining performance on clear images.
For this reason, we mix the clear and degraded images together to optimize the network
parameter during the training stage. The input is first processed by the SFE to extract
multi-scale image features and learn degradation category information. Subsequently,
the encoded features are fed into the object detection decoder, the DDIR, and the DCP
to generate the detection results, restored clear images, and predicted degradation types.
Finally, we formulate detection, restoration and degradation classification loss functions
to jointly optimize the whole framework. This enables the SFE to distill knowledge from
restoration and degradation classification tasks to assist with the detection task. Specifically,
the DDIR enables the SFE to extract clear multi-scale features regardless of whether the
input is a clear or degraded image, thereby improving detection performance under both
clean and degraded weather conditions. The DIP endows the SFE with the capability to
discern degradation type information within images, thereby enhancing stability when
encountering various weather-induced degradations. Notably, during the inference phase,
it is feasible to selectively omit the DDIR and the DCP to mitigate computational complexity
without compromising object detection accuracy.

3.2. Object Detection Network

Although the aforementioned deficiencies require further attention, it is unequivocal
that TogetherNet [6] represents a significant advancement in the detection of adverse
weather conditions. In particular, its baseline network, YOLOXs, serves as a prominent
regression-based detector, and the enhancements associated with DTFE and SC Conv
have demonstrated considerable efficacy in object detection. Consequently, we retain its
detection architecture, which comprises a backbone network and a detection head. The
backbone operates as an SFE module to encode multi-scale image features for subsequent
decoding modules, while the detection head functions as the object detection decoder
within our framework.

3.2.1. Shared Feature Encoder

Given a clear or degraded input image X ∈ R3×640×640, the focus first divides the
image into four patches and concatenates them to diminish spatial dimensions, thereby
contributing to reduced computational costs. Then, a series of cascaded convolutions
and CSP (Cross Stage Partial Network) are utilized to extract multi-scale features. In this
process, SPP and DTFE are employed to enhance the feature representation capability
of the entire encoder. There are four scale features extracted by the SFE, which can be
mathematically expressed as follows:

f×4, f×8, f×16, f×32 = ESFE(X), (1)

where ESFE(·) denotes the encoding process of the SFE, and f×4, f×8, f×16, and f×32 rep-
resent encoded image features at different scales, with subscript ×n indicating the size
difference relative to the input image. Specifically, f×4 ∈ R64×160×160, f×8 ∈ R128×80×80,
f×16 ∈ R256×40×40, and f×32 ∈ R512×20×20. These multi-scale features will be utilized by the
object detection decoder (DDIR) and the DCP to generate results for object detection, image
restoration, and degradation category prediction. Consequently, for object detection tasks,
the optimized SFE following backpropagation ensures that these features contain informa-
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tion from clear images and awareness of degradation categories. This significantly enhances
feature extraction capabilities and improves generalization across diverse environments.

3.2.2. Object Detection Decoder

As previously mentioned, we employ the head of TogetherNet [6] as our object detec-
tion decoder. It includes a neck and detect head that have been enhanced by self-calibrated
convolutions (SC Conv) [57]. The neck consists of a widely used feature pyramid network
(FPN) [49] and a path aggregation network (PANet) [58] structure, which integrate high-
level semantic features with low-level texture features to generate spatially scaled features
for targets of varying sizes. Specifically, the FPN upsamples the high-level feature after
adjusting its channel number using a 1 × 1 convolution, and then concatenates it with the
corresponding scale’s feature from the SFE. This operation is repeated twice to produce
two fused features with different scales. The formulary description is as follows:

f FPN
×32 = Conv1,1( f×32), (2)

f FPN
×16 = Conv1,1(CSP(Cat[Up( f FPN

×32 ), f×16]c)), (3)

f FPN
×8 = CSP(Cat[SC(Up( f FPN

×16 )), f×8)]c), (4)

where Convk,s(·) denotes convolution with a kernel size of k × k and a stride of s. The
operation Up(·) signifies double upsampling. The notation Cat[·, ·]c represents the concate-
nation operation along the channel dimension. CSP(·) and SC(·) denote the functions of
CSP and SC modules, respectively. Followed by the PANet, it convolves the feature map
f FPN
×8 to generate two smaller-sized features, f PAN

×16 and f PAN
×32 , as formulated below:

f PAN
×16 = CSP(Cat[SC(Conv3,2( f FPN

×8 )), f FPN
×16 ]c); (5)

f PAN
×32 = CSP(Cat[SC(Conv3,2( f PAN

×16 )), f FPN
×32 ]c). (6)

In the aforementioned FPN and PANet, self-calibrated convolutions and CSP are employed
to expand the receptive field and further enhance features, which are subsequently decou-
pled for improved object detection. Ultimately, we utilize three detection heads to separate
the features f FPN

×8 , f PAN
×16 , and f PAN

×32 in order to output the detection results.

3.3. Restoration Network

The most current restoration-based adverse weather object detection algorithms fo-
cus solely on restoring clear images from single degraded inputs, which inadequately
addresses the detection requirements across various scenarios when employing a single
model. Furthermore, the utilization of multiple detection models tailored for various
environments considerably complicates the deployment process. To enhance detection
performance across diverse degraded images while ensuring effectiveness for clear images,
we propose incorporating degradation type information to effectively differentiate between
clear and degraded images. Subsequently, we optimize the image restoration decoder to es-
tablish the DDIR. It is designed to exclusively restore degraded images, thereby eliminating
interference from clear images in the restoration process.

Figure 3 depicts the comprehensive restoration process of our DTRDNet. We integrate
our proposed DD between the SFE and the restoration decoder to determine whether
an input is a degraded image. For a batch of inputs, regardless of their classification as
degraded or clear images, the SFE first extracts image features, while the DD utilizes
degradation type labels to assess the degradation status of each image. If an image is
identified as a degraded image, its multi-scale features extracted by the SFE are forwarded
to the restoration decoder to generate a restored output. Otherwise, if the input is a clear
image, we do not process the corresponding features with the restoration decoder; instead,
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we utilize the clear input image as the output result. All restored degraded images and
clear images are concatenated to generate the final restoration output. It should be noted
that, to maintain the original order of corresponding images within a batch for calculating
restoration loss, each image in the same batch is processed one by one during this procedure,
which also helps alleviate the training burden. Specifically, as depicted in Figure 2, for a
degraded image, our DDIR utilizes its multi-scale features f×4, f×8, f×16, and f×32 extracted
by the SFE to generate restored images. The high-level feature f×32 is restored to match
input size through five cascading upsampling and convolution operations. In this process,
lower-level features f×16, f×8, and f×4 are progressively integrated. The process can be
expressed as follows:

f R
×16 = Conv3,2(Up( f D

×32)), (7)

f R
×8 = Conv3,2(Up(Cat[ f R

×16, f×16]c)), (8)

f R
×4 = Conv3,2(Up(Cat[ f R

×8, f×8]c)), (9)

RD = Conv3,2(Up(Conv3,2(Up( f R
×4)))), (10)

where f D
×32 refers to the f×32 of degraded images, f R denotes the feature produced by the

DDIR, and RD ∈ R3×H×W stands for the output of restoration decoder, with H and W
denoting the spatial dimensions of input images. For inputs in a batch without degrada-
tion, we concatenate it with restored output RD of the degraded images to form the final
restoration results as follows:

R = Cat[RD, XC]b, (11)

where XC refers to the clear image contained in inputs, R represents the final restoration
result, and Cat[·, ·]b denotes the operation of concatenation in the order of input batch.

Restoration
Decoder

Input

Degradation

( )B,3,H,W
( )dB ,3,H,W

( )cB ,3,H,W

Feature
Encoder

( )B,3,H,W

Degradation Discriminator

Restoration
Images

Multi-scale Feature Multi-scale Feature

Figure 3. The restoration process of our DTRDNet. It can be seen as an encode–decode structure with
the proposed degradation discriminator (DD) between encoder and decoder. The feature encoder
adopts the SFE. Restoration decoder and DD make up our DDIR. Bd and Bc refer to the number of
degraded and clear images of a batch of input.

3.4. Degradation Category Predictor

We incorporate degradation type information into the DDIR to bypass the process of
restoring clear images, thereby mitigating its impact on model parameter updating. The
primary objective remains extracting clear image features from degraded images. However,
in reality, the features of a specific target vary under different weather conditions. This
insight motivates us to recognize that for training a detection model adapting to various
weather conditions, the model must possess weather awareness capabilities. Consequently,
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we employ degradation type information as labels to train a degradation category classifier
capable of predicting the weather in input images, referred to as DCP.

As exhibited in Figure 2, the DCP leverages the features of the SFE to predict the
degradation category, aiming to avoid increased model complexity and learn degradation
category awareness of the SFE to facilitate object detection in diverse weather conditions.
The DCP incorporates a simple classifier that consists of a convolution layer with a 1 × 1
kernel size for adjusting the number of feature channels, a spatial pooling layer (Pool) for
extracting global features for classification, and a fully connected layer (FC) for generating
prediction results. The predicted degradation category (OD) of the DCP can be formulated
as follows:

OD = FC(Pool(Conv1,1( f×32))). (12)

3.5. Loss Function

To jointly train the entire framework for object detection, image restoration, and
degradation classification, we introduce three distinct loss functions corresponding to the
output of each decoder. Specific details are provided below.

Object Detection Loss: We evaluate the disparity between the object detection results
and their corresponding labels to compute the detection loss, which consists of three
components: (1) Lbox for the positional variance between predicted and actual bounding
boxes, (2) Lcls for target category prediction, and (3) Lobj for bounding box confidence. This
can be expressed as follows:

LDet = λLbox + Lcls + Lobj, (13)

where the weight λ for Lbox is set to 5. The losses Lbox and Lcls are computed using IOU
loss and cross-entropy function, respectively. The loss function Lobj adopts focus loss [47]
to address the issue of imbalanced positive and negative samples in object detection tasks.

Image Restoration Loss: To acquire information for image restoration, we compute
the mean square error (MSE) between the input and restoration result as our restoration
loss LRes. It is important to note that, since both clear images and restored degraded images
may be present in the final restoration result, the MSE of the corresponding clear image
in the input X and restoration result R is zero. Therefore, the restoration loss LRes can be
represented as follows:

LRes =
1
N

N

∑
i=1

∥X − R∥2 =
1

ND

ND

∑
i=1

∥∥∥XD
C − RD

∥∥∥
2
, (14)

where N is the batch size of input. ND refers to the number of degraded images in a batch.
RD and XD

C represent the restored degraded image and its corresponding clear image
target, respectively.

Degradation Classification Loss: To make the network possess degradation category
awareness, we introduce the cross-entropy function as the degradation classification loss
Ldc to assess whether the predicted results of DIP are consistent with the actual label,
expressed as

Ldc = −
K

∑
i=1

yi log(OD
i ), yi =

{
1 i = t
0 otherwise,

(15)

where K is set to 4, representing the degradation conditions of images, including clean,
hazy, rainy, and snowy. t refers to the true label of degradation type.

Based on the above definition, the complete loss of our DTRDNet is formulated as

L = αLDet + βLRes + γLdc, (16)
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where α, β, and γ are the balance coefficients for object detection loss, restoration loss,
and degradation classification loss, respectively. We follow the set of TogetherNet [6] with
α = 0.2 and β = 0.8. The γ is set to 0.01. Based on the principle of back propagation,
the parameters of the three decoders will be updated according to their respective loss
functions to produce the desired output. The SFE will be optimized using three simulta-
neous loss functions, allowing it to extract and encode information for object detection,
image restoration, and degradation classification. The optimization for image restoration
ensures that the SFE can extract clear image features, even from degraded input images.
Similarly, the regression for predicting degradation categories endows the shared feature
with awareness of different degradation types. Both clear image features and degradation
category awareness contribute to the performance and robustness of the detector under
various weather conditions.

4. Experiment and Results

This section presents a comprehensive analysis of our experiments. We commence by
detailing the experimental setup, which includes datasets and implementation specifics.
Subsequently, we provide both quantitative and qualitative evaluations of our proposed
DTRDNet, comparing its performance against other state-of-the-art object detection
algorithms. Finally, we conduct an ablation experiment to validate the efficacy of
our improvements.

4.1. Datasets

Train and Test Dataset. (1) VOC-FOG. This is a synthesized hazy dataset derived from
the VOC dataset [11] proposed by TogetherNet [6], comprising a total of 11,707 hazy images
across five object categories (namely, car, bus, motorbike, and person), with 9578 images
designated for training (VOC-FOG-train) and 2129 for testing (VOC-FOG-test).

Train and Test Dataset. (2) VOC-Clean. We select the images utilized to synthesize
the VOC-FOG dataset to constitute a clear image dataset, ensuring that it encompasses the
same object categories and number of images as VOC-FOG. The training set, comprising
9578 images (VOC-Clean-train), is integrated with the degraded image training set for
model training. The performance of the detector on clear images is assessed using its
testing set (VOC-Clean-test), which consists of 2129 images.

Train and Test Dataset. (3) VOC-Rain. Similar to VOC-FOG, we employed the rain
streak synthesis method of RainDS [59] to synthesize rainy images using the images from
VOC-Clean. Furthermore, in order to more accurately simulate the effects of rainy days on
imaging results, we synthesized various types of rain streaks with different orientations and
intensities. The synthesized rainy images are divided into a training set (VOC-Rain-train)
comprising 9578 images and a testing set (VOC-Rain-test) comprising 2129 images.

Train and Test Dataset. (4) VOC-Snow. We generate snowy images by combining high-
quality images from the VOC-Clean dataset with snow masks from the CSD dataset [60].
The snow masks are applied to the high-quality images using a random weight ranging
from 0.5 to 1.0, simulating varying intensities of snow. Subsequently, we create a snowy
dataset (VOC-Snow) comprising 9578 training images (VOC-Snow-train) and 2129 testing
images (VOC-Snow-test). Similarly, both the training and testing sets consist of five classes:
car, bus, motorbike, bicycle, and person.

Real Scenario Test Dataset. (1) RTTS [31]. Due to the difficulty of capturing paired
hazy-clean images in real-world scenarios, RTTS was proposed to evaluate the performance
of dehazing algorithms from a task-driven perspective. This is a comprehensive dataset
for object detection in real-world hazy scenes, containing 4322 hazy images annotated
with five object categories (car, bus, motorbike, and person) corresponding to those in the
training set.

Real Scenario Test Datasets. (2) Foggy Driving dataset [61]. This dataset provides
a practical repository of fog-affected scene images tailor-made for applications in object
detection and semantic segmentation, and contains a total of 101 authentic fog-affected
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scene images annotated with 466 vehicle instances (including car, bus, train, truck, bicycle,
and motorcycle) and 269 human instances. It is noteworthy that the dataset includes eight
different categories of annotated instances, with only five of these categories selected for
testing to maintain consistency with the training set.

4.2. Implementation Details

The implementation of this paper is conducted on the Ubuntu operating system using
an NVIDIA 3090 GPU and the PyTorch framework. During training, we employ stochastic
gradient descent (SGD) as the optimizer to update the model parameters. The initial
learning rate is set to 1 × 10−2, with a momentum of 0.937 and a weight decay of 5 × 10−4.
Additionally, we utilize a cosine annealing strategy [62] to reduce the learning rate for
improved convergence. It is important to emphasize that the inclusion of various categories
of degraded images will lead to a multiplicative increase in data volume. The utilization
of a wider range of degradation types for training will result in an increase in the times
of parameter updates. Consequently, to ensure fairness, different quantities of training
datasets will be associated with diverse epoch settings in subsequent experiments. In
terms of input, the spatial dimensions of all images are resized to 640 × 640 during both
training and testing stages, with a fixed batch size of eight. Additionally, since mosaic data
augmentation can disrupt the degradation type of the input and complicate the training
of the restoration network, we close mosaic augmentation during the training phase. In
contrast to universal detection algorithms, our proposed method employs clear images
to supervise the training of the restoration branch. Consequently, we apply identical
data enhancement to the input image and its corresponding clear image, including hue
saturation value (HSV), random scaling, translation, and flipping. The augmented clear
images are used as targets for restoration loss.

To comprehensively assess the performance of our algorithm across various weather
conditions, including clear and adverse scenarios such as haze, rain, and snow, we conduct
separate implementations for single degradation weather and diverse weather conditions.
We then compare these results with those obtained from other advanced adverse weather
image detection models.

4.3. Implementation Results

We assess the detection performance of our DTRDNet using the widely adopted mean
average precision (mAP) metric across multiple target categories, with an intersection over
union (IOU) set to 0.5. The comprehensive investigation are conducted under both single
and multiple degradation conditions, with the results summarized in the table below. In
the tables presented in this paper, the best results are highlighted in bold, while the second-
best results are are indicated by underlining. The following section presents comparative
experiments of our proposed method in these scenarios, with our ablation experiments
provided at the end.

4.3.1. Hazy Scene Object Detection

To assess the performance of the proposed DTRDNet in hazy conditions, we conducted
a comparative analysis with other state-of-the-art object detection algorithms designed for
adverse weather scenarios. Generally, these comparative methods can be categorized into
three parts. (i) The first part includes the common “object detection (OD)” YOLOXs models
as baselines, which are trained on degraded images (VOC-FOG-train) and clear images
(VOC-Clean-train), respectively, denoted as YOLOXs and YOLOXs*. (ii) The second part is
the “IR + OD” approach, which prepossess the hazy images by the dehazing algorithms
to produce clear images, and then detects the clear images using the YOLOXs [30] model
trained on VOC-Clean-train. Five mainstream image dehazing algorithms are selected
for this purpose, incorporating DCP [12], AODNet [63], FFANet [50], AECRNet [13], and
RestorNet [14]. We combine these methods with YOLOXs* [30] to form “IR + OD” type
algorithms, named DCP-YOLOXs*, AODNet-YOLOXs*, FFANet-YOLOXs*, AECRNet-
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YOLOXs*, and RestorNet-YOLOXs*, respectively. It is worth noting that all the dehazing
algorithms are trained on the OTS dataset from the RESIDE [31] dataset to ensure data
consistency with RTTS [31]. (iii) The third part refers to the “Object Detection in Adverse
Weather (ODAW)” algorithms that do not require the use of restoration algorithms or other
preprocessing steps, including DS-Net [64], IA-YOLO [24], and TogetherNet [6]. To ensure
a fair comparison, we retrained the aforementioned “ODAW” algorithms using the VOC-
FOG-training dataset. As our framework requires information on different degradation
types, we combine the VOC-Clean-train and VOC-FOG-train datasets to form our training
set for hazy image object detection. We train the model for 50 epochs to mitigate overfitting
that may arise from doubling our training images, while other methods are trained for
100 epochs. Subsequent experiments also adjust the number of training epochs based on
the combination of datasets.

Object Detection Results on Synthetic Hazy Image Dataset. We first employ the
synthetic dataset VOC-FOG-test to validate the performance of the proposed DTRDNet
and the comparative algorithms. The results are presented in Table 1. It is evident that our
proposed DTRDNet achieves a mAP of 79.86%, which is 1.72% higher than the recently
advanced TogetherNet [6] dedicated to foggy object detection, with all categories achieving
either the highest or second-highest average accuracy. Overall, our algorithm demonstrates
superior detection performance and narrows the accuracy gap across different object classes.

Table 1. Object detection results on the VOC-FOG-test dataset [6] of synthetic hazy images. The
type of algorithms are denoted by OD (“Object Detection”), IR + OD (“Image Restoration + Object
Detection”), and ODAW (“Object Detection in Adverse Weather”). “*” means the model is trained
on the degradation-free images, while the methods without “*” mean they are trained on degraded
images. The best results are bolded, and the sub-optimal results are indicated by underlining.

Method Type
Class (AP (%))

mAP (%)
Person Bicycle Car Motorbike Bus

YOLOXs [30] OD 67.67 83.28 77.75 68.91 81.70 75.86

YOLOXs* [30] OD 73.09 57.22 69.55 59.83 77.34 67.41

DCP-YOLOXs* [12] IR + OD 81.84 70.38 78.63 73.48 84.68 77.80

AODNet-YOLOXs* [63] IR + OD 67.40 49.19 60.51 55.59 62.07 58.95

AECRNet-YOLOXs* [13] IR + OD 80.47 67.82 76.97 72.46 82.73 76.09

RestorNet-YOLOXs* [14] IR + OD 78.71 67.15 72.56 71.68 82.36 74.49

DS-Net [64] ODAW 72.44 60.47 81.27 53.85 61.43 65.89

IA-YOLO [24] ODAW 70.98 61.98 70.98 57.93 61.98 64.77

TogetherNet [6] ODAW 84.11 69.26 79.59 72.12 85.62 78.14

DTRDNet (Ours) ODAW 84.34 72.96 80.87 74.83 84.34 79.86

Object Detection Results on Real Scene Hazy Image Dataset. To demonstrate the
effectiveness of our approach in real-world hazy conditions, we further conduct compara-
tive experiments on the Foggy Driving dataset [61] and the RTTS dataset [31]. As shown in
Tables 2 and 3, our method achieved the highest accuracy on both datasets. Specifically,
for the Foggy Driving dataset [61], we observed an increase of 2.77% in mAP compared
to YOLOXs and a 5.75% improvement over TogetherNet [6]. For the RTTS dataset, our
algorithms also demonstrated significant improvements. Compared to YOLOXs [30] and
TogetherNet [6], there are increases of 5.64% and 6.06% in mAP metrics, respectively.
This significant improvement on the test set of real scenarios proves that our method can
effectively mitigate overfitting.
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Table 2. Object detection results on the Foggy Driving dataset [61] of real-world hazy images. “*”
means the model is trained on the degradation-free images. The best results are bolded, and the
sub-optimal results are indicated by underlining.

Method Type
Class (AP (%))

mAP (%)
Person Bicycle Car Motorbike Bus

YOLOXs [30] OD 24.37 22.33 55.57 14.29 37.34 30.78

YOLOXs* [30] OD 21.48 18.84 54.67 1.59 30.33 25.38

DCP-YOLOXs* [12] IR + OD 21.57 17.85 55.30 3.57 39.92 27.64

AODNet-YOLOXs* [63] IR + OD 20.66 20.92 54.03 4.76 24.78 25.03

AECRNet-YOLOXs* [13] IR + OD 23.00 19.96 54.83 2.38 35.81 27.20

RestorNet-YOLOXs* [14] IR + OD 23.24 18.81 53.71 2.38 35.70 26.77

DS-Net [64] ODAW 26.74 20.54 58.16 7.14 36.11 29.74

IA-YOLO [24] ODAW 16.20 11.76 41.43 4.76 17.55 18.34

TogetherNet [6] ODAW 25.70 18.79 57.72 7.14 29.65 27.80

DTRDNet (Ours) ODAW 26.21 30.28 58.58 14.29 37.37 33.55

Table 3. Object detection results on the RTTS [31] of real-world hazy images. “*” means the model is
trained on the degradation-free images. The best results are bolded, and the sub-optimal results are
indicated by underlining.

Method Type
Class (AP (%))

mAP (%)
Person Bicycle Car Motorbike Bus

YOLOXs [30] OD 81.78 56.70 70.23 49.48 31.57 57.95

YOLOXs* [30] OD 80.28 50.75 68.23 41.89 28.89 54.01

DCP-YOLOXs* [12] IR + OD 81.16 51.34 71.13 47.20 31.09 56.38

AODNet-YOLOXs* [63] IR + OD 78.16 44.49 65.54 38.88 25.57 50.53

AECRNet-YOLOXs* [13] IR + OD 80.85 52.75 68.60 46.29 30.43 55.78

RestorNet-YOLOXs* [14] IR + OD 77.48 51.43 60.92 43.12 29.16 52.42

DS-Net [64] ODAW 68.81 18.02 46.13 15.15 15.44 32.71

IA-YOLO [24] ODAW 67.25 35.28 41.14 20.97 13.64 35.66

TogetherNet [6] ODAW 81.14 54.12 72.39 47.02 32.99 57.53

DTRDNet (Ours) ODAW 83.22 57.86 76.71 61.17 38.97 63.59

Subsequently, we performed a joint analysis based on the findings presented in
Tables 1–3. It is evident from Table 1 that models trained on clear images exhibit limited
adaptability to degraded images when comparing YOLOXs and YOLOXs*. Furthermore,
the “IR + OD” algorithms demonstrate some improvement in detection performance for
YOLOXs* under general haze conditions. However, the results depicted in Tables 2 and 3
indicate that the efficacy of “IR + OD” algorithms is notably constrained when applied
to real-world hazy images. This limitation may be attributed to a domain gap between
synthetic hazy datasets used for dehazing model training and real-world hazy images,
resulting in limited or adverse effects of the “IR + OD” method on actual hazy weather
detection performance. In contrast, our algorithm outperforms the “OD”, “IR + OD”,
and “ODAW” methods under single haze degradation conditions, demonstrating superior
detection performance across both synthetic and real-world hazy scenes. Notably, our
approach exhibits particularly obvious improvements in authentic foggy images, indicating
our method has excellent generalization in real scenarios.

In addition to the above quantitative analysis, we also present the visual detection
results of comparative algorithms on the VOC-FOG-test [11], Foggy Driving [61], and



Sensors 2024, 24, 6330 14 of 23

RTTS [31] datasets in Figure 4. The detection results show that our method can correctly
detect more targets with higher confidence, further testifying to the superiority of the
proposed algorithm in both synthetic hazy images and real scene hazy images compared to
the comparative algorithms.

YOLOXs DCP-YOLOXs* RestorNet-YOLOXs* TogetherNet DTRDNet (Ours)

Figure 4. Visualization of object detection results of hazy images on both synthetic and real-world
datasets. We show the images from the VOC-FOG-test [6], RTTS [31], and Foggy Driving datasets [61],
respectively, from first to third row.

4.3.2. Rainy Scene Object Detection

To evaluate the performance of the proposed DTRDNet in rainy image object detection,
we conduct a comparative experiment using synthetic rainy images. Similarly to hazy
scene object detection, we combine VOC-Clean-train and VOC-Rain-train as the training
set to optimize our proposed model over 50 epochs for rainy object detection, while the
comparative algorithms are trained on VOC-Rain-train for 100 epochs. We select YOLOXs
trained on hazy images and YOLOXs* trained on clear images as the object detection
(OD) methods. For IR + OD, we employ the restoration algorithms AirNet [51] and
RestorNet [14] to preprocess the rainy images before object detection, titled the AirNet-
YOLOXs* and RestorNet-YOLOXs*. For ODAW comparison, TogetherNet [6] is utilized
for comparison. The results of these aforementioned object detection algorithms on rainy
images are presented in Table 4.

As shown in Table 4, our approach demonstrates superior performance across all object
categories, with the exception of “Bus”, where it also achieves near-optimal accuracy. Our
method outperforms the advanced TogetherNet [6], increasing mAP by 1.38%, indicating a
comprehensive enhancement in model accuracy. Notably, for “Bicycle” and “Motorbike”,
which exhibited lower accuracy compared to other object classes, our algorithm improves
their AP by 2.69% and 3.4%, respectively, resulting in more balanced detection performance
across different categories. Additionally, Figure 5 presents visual detection results in rainy
conditions, demonstrating that our proposed method can accurately detect more targets
with higher confidence. These results confirm the effectiveness and superiority of our
proposed approach for object detection in rainy conditions.
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Table 4. Object detection results on the VOC-Rain-test of synthetic rainy images. “*” means the model
is trained on the degradation-free images. The best results are bolded, and the sub-optimal results
are indicated by underlining.

Method Type
Class (AP (%))

mAP (%)
Person Bicycle Car Motorbike Bus

YOLOXs [30] OD 80.98 65.88 74.54 70.83 84.35 75.32

YOLOXs* [30] OD 75.94 63.00 66.92 65.32 73.10 68.86

AirNet-YOLOXs* [51] IR + OD 80.06 67.81 70.75 69.87 82.77 74.25

RestorNet-YOLOXs* [14] IR + OD 80.44 68.29 71.68 70.16 82.54 74.62

TogetherNet [6] ODAW 83.53 69.83 77.88 74.26 86.41 78.38

DTRDNet (Ours) ODAW 83.87 72.52 78.59 77.66 86.15 79.76

YOLOXs AirNet-YOLOXs* RestorNet-YOLOXs* TogetherNet DTRDNet (Ours)

Figure 5. Visualization of object detection results of rainy images on VOC-Rain-test.

4.3.3. Snowy Scenes Object Detection

For snowy image object detection, we adopt the approach used for hazy and rainy
images by leveraging the VOC-Snow-train and VOC-Clean-train datasets to train the pro-
posed algorithms for 50 epochs, and VOC-Snow-train to train comparative algorithms
for 100 epochs, followed by testing on VOC-Snow-test. The baseline method (OD) com-
prises YOLOXs and YOLOXs*, trained separately with snowy and clear images. In the
IR + OD method, TKL [17] and LMQFormer [18] are chosen as image restoration methods
for preprocessing snowy images, resulting in TKL-YOLOXs* and LMQFormer-YOLOXs*.
For the ODAW method, TogetherNet is selected for comparison [6]. The specific outcomes
are detailed in Table 5 and Figure 6.

According to Table 5, our DTRDNet demonstrates superior performance in the mAP
metric and AP for each category compared to other methods. Specifically, the mAP shows a
2.36% increase compared to TogetherNet [6], with notable improvements in the “Motorbike”
category, which exhibits a 4.56% increase in AP. Moreover, Figure 6 presents visual results of
object detection on snowy images using comparative methods, further validating the effec-
tiveness of our proposed approach. Our method excels at detecting multiple targets within
complex scenes containing mixed categories and achieves higher accuracy in snow images.

4.3.4. Various Weather Scenes Object Detection

Herein above, extensive experiments have been conducted to assess the performance
of the proposed DTRDNet under three adverse weather conditions: haze, rain, and snow.
To further evaluate the object detection capabilities of our method across various weather
conditions, we perform the experiments using a mixed dataset comprising VOC-Clean, VOC-
FOG, VOC-Rain, and VOC-Snow. Specifically, the universal models are trained on the training
set of the mixed dataset using our proposed method and comparison methods. The models
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are then tested on the testing dataset with different degradation to evaluate their performance
across multiple weather conditions. Given that the “IR + OD” type is not suitable for images
depicting multiple weather scenes, we exclusively employed the “OD” and “ODAW” methods
for comparison. Similarly to single degradation weather image object detection, YOLOXs* was
trained on clear images for 100 epochs, while YOLOXs was trained on a mixed degradation
dataset. As for “ODAW”, TogetherNet [6] is chosen for comparison. It should be noted that
due to an expanded dataset in this part of the experiment, we set the training epochs to 25
for models trained on a mixed dataset. Table 6 and Figure 7 present quantitative and visual
detection results across four different weather conditions.

Table 5. Object detection results on the VOC-Snow-test of synthetic snowy images. “*” means the
model is trained on the degradation-free images. The best results are bolded, and the sub-optimal
results are indicated by underlining.

Method Type
Class (AP (%))

mAP (%)
Person Bicycle Car Motorbike Bus

YOLOXs [30] OD 81.16 66.64 75.43 70.87 83.28 75.48

YOLOXs* [30] OD 78.40 64.88 70.80 56.90 81.15 70.43

TKL-YOLOXs* [51] IR + OD 81.02 70.14 75.53 70.33 84.42 76.29

LMQFormer-YOLOXs* [14] IR + OD 81.36 70.44 77.57 71.61 84.35 77.07

TogetherNet [6] ODAW 82.20 69.70 77.72 71.39 85.30 77.26

DTRDNet (Ours) ODAW 83.97 72.15 79.57 75.95 86.46 79.62

YOLOXs AirNet-YOLOXs* RestorNet-YOLOXs* TogetherNet DTRDNet (Ours)

Figure 6. Visualization of object detection results of snow images on VOC-Snow-test dataset.

Table 6. Object detection results under multiple weather conditions. We show the detection results of
clean, hazy, rainy, and snowy images tested on VOC-Clean-test, VOC-FOG-test, VOC-Rain-test, and
VOC-Snow-test, respectively. “†” refers to the model trained on VOC-FOG-train, VOC-Rain-train,
and VOC-Snow-train. “*” means the model is trained on the degradation-free images. The best
results are bolded, and the sub-optimal results are indicated by underlining.

Method Type
Datasets (mAP (%))

Average
Clean FOG Rain Snow

YOLOXs [30] OD 75.77 74.50 75.50 74.24 75.00

YOLOXs* [30] OD 79.09 68.86 67.41 70.43 71.45

TogetherNet [6] ODAW 78.86 76.74 76.78 77.03 77.35

DTRDNet(Ours) † ODAW 80.16 79.34 78.83 78.81 79.28

DTRDNet (Ours) ODAW 80.38 79.37 78.96 78.80 79.38
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It is evident from Table 6 that the proposed method achieves superior results in object
detection across various weather conditions. In comparison to TogetherNet, our method
demonstrates an increase of 1.52%, 2.63%, 2.18%, and 1.77% in mAP for clean, foggy, rainy,
and snowy images, respectively, resulting in an average mAP improvement of 2.03% across
all four weather scenarios. Furthermore, our approach outperforms YOLOXs* in clear
image object detection as well, highlighting its effectiveness in optimizing adverse weather
image object detection while enhancing performance on clear images. On this basis, we
further analyze the impact of introducing clear images on our method by training our model
in VOC-FOG-train, VOC-Rain-train, and VOC-Snow-train, with the training epoch set to 33.
The two experimental results of our DTRDNet show that the introduction of clear images
has little effect on hazy and snowy images, which increases mAP by 0.03% in VOC-FOG-test
and decreases by 0.01% in VOC-Snow-test. For VOC-Clean-test and VOC-Rain-test, there is
an mAP boost of 0.22% and 0.13%, respectively, indicating that incorporating clear images
into the training of our DTRDNet enhances detection performance for both clear and
degraded images. This improvement arises because our method can better learn precise
target features from clear images and eliminate interference between the clear image and
the restoration module.

The visual results presented in Figure 7 illustrate the capability of our algorithm to
detect multiple categories of targets under different weather conditions. In summary, our
DTRDNet effectively accomplishes object detection across diverse weather conditions with
a single trained model, thereby proposing a novel solution to tackle the challenges inherent
in real-world object detection across diverse weather conditions.

4.3.5. Ablation Studies

The above experimental results demonstrate the superiority of our method in single
and multiple degraded scene object detection. Furthermore, we conducted extensive
ablation experiments to evaluate the effectiveness of our optimizations over DTRDNet,
analyzing each of the improvements under real degradation conditions and synthetic
multiple degraded scenes.

Effect of different components in real degraded scene. To assess the impact of each
improvements in practical application scenarios, we selected the real hazy dataset RTTS [31]
as a representative. As depicted in Table 7, we first reproduce the adverse weather image
object detector TogetherNet [6], which yielded a mAP of 57.53%. Subsequently, by mixing
the training set with clean images from VOC-Clean-train, we optimized TogetherNet and
observed an increase in mAP by 1.34%, indicating that incorporating clear images into the
training set contributes to object detection under real adverse weather conditions. This may
be attributed to the model can better learn target features from clear images while adapting
to degraded environment within mixed data. Furthermore, introducing a DD effectively
mitigates interference from clear images on the restoration branch in TogetherNet, resulting
in a notable 3.11% increase in mAP. Building upon this improvement, we further improve
the restoration decoder to form our DDIR, which boosts mAP by 0.71%. Lastly, integrating
the DCP gives an additional 0.9% boost in mAP. The number of epochs is set to 100 for
training bare TogetherNet and to 50 for subsequent stages due to mixing clean and hazy
images within the training set.

Effect of different components in synthetic multiple degradation condition. To
assess the effectiveness of our enhancements in various weather image object detection, we
also perform ablation using the multiple weather dataset comprising VOC-Clean, VOC-
FOG, VOC-Rain, and VOC-Snow. As shown in Table 8, compared to the baseline YOLOXs,
TogetherNet [6] demonstrates an obvious improvement of 2.37% in the mAP metric. Build-
ing upon this progress, we first integrate the DD to ensure that the restoration decoder
exclusively processes degraded images. This approach eliminates mutual interference
between clear images and the restoration decoder, resulting in an additional 1.55% increase
in mAP performance. Furthermore, the improved restoration decoder to construct the
DDIR facilitates clearer image feature extraction from degraded images, leading to a further
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0.28% increase in the mAP metric. Finally, incorporating a DCP to learn degradation cate-
gory awareness boosts mAP by 0.19%, indicating that models equipped with degradation
type awareness can achieve higher precision for object detection under various weather
conditions. Moreover, as our model is capable of extracting degradation type information
from images, it can also output results from the DCP to assess environmental information
from images if needed, which achieves a top1 precision of 99.27% for predicting the degra-
dation category among the four weather conditions. In terms of model complexity, all our
improvements can be removed during the inference stage without imposing any additional
burden when conducting only object detection tasks. If environmental information is
desired alongside object detection, this would only require an additional computational
cost of 0.27 G.

YOLOXs TogetherNet DTRDNet (Ours)

Figure 7. Visualization results of object detection in various weather conditions, including clean,
hazy, rainy, and snowy scenes from top to bottom.
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Table 7. The ablation experiments on real hazy dataset RTTS. “Mix” refers to the model trained on
the mixed dataset of VOC-FOG-train and VOC-Clean-train. “DD” and “Res” express degradation
discriminator and our improved image restoration decoder, respectively. “DD” and “Res” combine
to form DDIR. “DCP” stands for degradation category predictor.

Model Mix DD Res DCP mAP (%)

TogetherNet [6] % % % % 57.53
TogetherNet + Mix ! % % % 58.87

TogetherNet + Mix + DD ! ! % % 61.98
TogetherNet + Mix + DDIR ! ! ! % 62.69

TogetherNet + Mix + DDIR + DCP ! ! ! ! 63.59

Table 8. The ablation experiments on the multiple degradation dataset mixed by VOC-Clean, VOC-
FOG, VOC-Rain, and VOC-Snow. “Top1” refers to the precision of degradation classifying. “⋆”
indicates the FLOPs for conducting detection and degradation type classification synchronously.

Model DD Res DCP mAP (%) Top1 FLOPs (G)

YOLOXs [30] % % % 74.85 _ 13.38
TogetherNet [6] % % % 77.22 _ 17.29

TogetherNet + DD ! % % 78.77 _ 17.29
TogetherNet + DDIR ! ! % 79.05 _ 17.29

TogetherNet + DDIR + DCP ! ! ! 79.24 99.27 17.29/17.56 ⋆

5. Limitations

Although the proposed methodology leverages degradation type information to en-
hance detection performance across diverse weather conditions, there are still certain
limitations that warrant further improvement. First, the scarcity of clear-degraded image
pairs necessitates the use of synthetically degraded images for model training. While
this strategy is practical, it may potentially reduce the model’s ability to adapt to real-
world adverse weather scenarios. Specifically, as illustrated in Figure 8, certain targets
become virtually imperceptible under extreme weather conditions, significantly compli-
cating detection and leading to missed detections. Secondly, our approach incorporates
degradation information specific to different weather types, but does not account for the
varying intensities of degradation within identical weather conditions. Consequently, the
proposed method falls short in assessing the severity of these conditions. This limitation is
exemplified by the fluctuating detection performance illustrated in Figure 9.

Figure 8. The failed case in extreme weather. The yellow boxes indicate targets that are undetected.
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(a)

(b)

Figure 9. The detection performance difference caused by the varying of a certain degradation in
snow and rain weather conditions. (a) and (b) refer to snow and rain images, respectively.

6. Conclusions

TogetherNet [6] integrates restoration and detection tasks to enhance the detection
performance of single degraded image object detection. Building upon this, our research
introduces DTRDNet, which aims to address the object detection challenge under multi-
ple complex weather conditions using a unified model. We train the model on a mixed
dataset encompassing multiple weather conditions to enhance its adaptability to various
weather conditions. Under these circumstances, the image restoration module designed for
degraded images does not contribute to detecting clear images, and the clean images also
disrupt the restoration decoder during training. Consequently, we propose a degradation
discrimination image restoration decoder (DDIR) to improve the restoration branch of
TogetherNet [6], introducing a degradation discriminator (DD) that leverages degradation
type labels to mitigate interference between undegraded images and the restoration de-
coder, while further optimizing it to extract more detailed image features from degraded
images. However, direct application of degradation information is insufficient; hence, we
introduce a degradation category predictor (DCP) and develop a joint learning framework
by integrating degradation classification with image restoration and object detection to
make the feature encoder learn degradation type awareness. This approach obviously
enhances object detection performance under various weather conditions. The experiment
results indicate that when employing a single model for the object detection across various
degraded images, our approach significantly surpass TogetherNet [6]. In the VOC-Clean,
VOC-FOG, VOC-Rain, and VOC-Snow datasets, we observe improvements of 1.52%, 2.63%,
2.18%, and 1.77% in the mAP metric, respectively. In real hazy weather conditions, mAP in-
creases by 6.06% and 5.75% on the RTTS [31] and Foggy Driving datasets [61], respectively,
indicating that our method demonstrates greater applicability in actual adverse weather
scenarios. Additionally, our model is capable of providing precise predictions of image
degradation types at a minimal computational cost, if needed.

Our future work will focus on addressing the challenge of paired image training in
unsupervised domain adaptation and evaluating the degree of degradation by incorporat-
ing text–image encoders. Additionally, we aim to enhance the performance of high-level
visual tasks in real-world scenarios to better meet practical needs.
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