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Abstract: Coupling faults that simultaneously occur during the operation of mechanical equipment
are widespread. These faults encompass a diverse range of high-order coupling relationships,
involving multiple base fault types. Based on the advantages of hypergraphs for higher-order
relationship descriptions, two coupling fault diagnosis architectures based on the hypergraph neural
network are proposed in this paper: 1. In the coupling fault diagnosis framework based on feature
generation, the base faults serve as the hypergraph nodes, and each hyperedge connects the base
faults. The generator, which consists of the hypergraph neural network, generates coupling faults as
negative samples to enforce regularization constraints for the discriminator training. 2. In the coupling
fault diagnosis framework based on feature extraction, each node represents a fault mode, and each
hyperedge connects nodes with common failure modes. The multi-head attention mechanism extracts
the features of base faults, and the common fault features in a hyperedge are aggregated via the
hypergraph neural network. The inner product correlation is used to diagnose the fault modes. The
results show that the diagnostic accuracy for coupling faults with the two frameworks reaches 88.6%
and 86.76%, respectively. Both frameworks can be used for the diagnosis and analysis of high-order
coupling faults.

Keywords: coupling fault diagnosis; feature generation; feature extraction; hypergraph networks

1. Introduction

Coupling faults are widespread in mechanical equipment. They are formed via the
coupling of multiple types of base faults. Coupling faults are not linear superpositions of
base faults, and complex fault characteristics emerge in the coupling process [1]. Therefore,
simple linear decoupling cannot accurately diagnose coupling faults, and a more accurate
nonlinear model needs to be established to describe the fault coupling process [2]. In this
study, two kinds of data-driven methods are used to obtain the fault characteristics of
multi-fault coupling, reveal the fault coupling process, and classify the coupling faults
based on the obtained coupling fault characteristics.

The fault characteristics of rotating machinery can be obtained using spectral
analysis [3]. Scholars have mostly used traditional frequency domain feature extraction
methods [4]. Ma et al. [5] proposed adaptive demodulation analysis to extract early bearing
fault features. Jiang et al. [6] used a short-time Fourier transform to obtain the bearing
amplitude and used adaptive weights to extract the weighted characteristic frequency.
Zhu et al. [7] determined the hyperparameters of the spectral amplitude modulation
(SAM) model by taking the maximum harmonic significance as an index. They divided
the frequency band and reconstructed the signal to suppress the noise component in the
fault characteristics. Frequency domain features analyze all frequency bands in the spec-
trum, and the energy of fault features is not concentrated. Several scholars have used
time–frequency domain feature extraction methods to extract the fault features of energy-
concentrated frequency bands [8]. Yue et al. [9] proposed multi-scale wavelet networks
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to extract multi-scale features from vibration signals and used meta-learning modules to
learn the distance distribution between data to achieve model generalization. This method
establishes a distance-based data space, but the definition of distance lacks explainability.
Tang et al. [10] used a time–frequency domain convolutional neural network to extract the
fault features of multiple energy concentrations and introduced an attention module to
extract weighted representative features. Jia et al. [11] proposed a Gramian-based noise
reduction strategy for noise suppression and feature extraction. Yoo et al. [12] carried out
convolutional neural network (CNN) image processing based on a spectrum diagram to
extract the fault features in an image. These methods extract the features of a single fault
from the spectrum, but there is no effective solution to extract the features of the coupled
fault. Based on the prior fault information [13], the extracted feature acquisition method
decouples the fault coupling process and fits the basic fault correlation weight, which
belongs to the Bayes school category.

The data-driven fault feature generation method can avoid the difficulty of spectrum
extraction caused by the lack of working condition information [14]. Zhang et al. [15]
generated fault features adaptively via convolutional neural networks and used support
vector machine (SVM) classifiers to classify the fault types. Karnavas et al. [16] proposed
using two attention mechanisms to extract global and local features, respectively, and fuse
these two types of features. Sivapriya et al. [17] used multi-scale and different resolution
convolution check fault information to extract and fuse it into global fault features for fault
diagnosis. Yang et al. [18] reconstructed fault features via IMFs extracted from variational
mode decomposition (VMD) and used SVMs for fault classification given the unbalanced
and strong noise characteristics of bearing signals. Huo et al. [19] carried out the adaptive
extraction of time–frequency domain features and combined harmonic detection with noise
signals to continue reconstructing the features. Zhao et al. [20] reduced the dimensionality
of features using depth-separable convolutional blocks and used the global feature aware-
ness module to perform adaptive weighting processing similar to the attention mechanism
for the feature signal channels to obtain the fault features. Yang et al. [21] reconstructed
coupling fault features using an autoencoder to achieve feature dimension reduction and
non-equilibrium data strengthening. Jang et al. [22] combined an adversarial network
based on an autoencoder to generate the original data stream. Most of these generative
methods reconstruct the original data, but the reconstructed data lack interpretability.
Yu et al. [23] proposed a zero-sample fault diagnosis method. The digital twin method was
used to generate fault data based on the health state model. The data space generated with
this method was uncontrollable and could not achieve accurate fault classification. The
generative feature acquisition method reconstructs the critical fault information from the
existing fault information and estimates the overall probability by observing many samples;
this belongs to the frequency school.

Both extraction and generative methods obtain the fault characteristics of independent
bearing faults [24]. Non-Euclidean data-oriented fault diagnosis methods should be used
for complex coupling faults that are widespread in bearings [25,26]. A graph neural
network constructs the topological structure of the data via the nodes and the edges
connecting the nodes, which can realize the correlation description of non-Euclidean data.
A traditional graph neural network describes the relationship between node pairs [27].
Some scholars have used graph neural networks to extract fault features and perform fault
diagnosis. Li et al. [28] established a graph convolutional network (GCN) with multiple
receptive fields to conduct adaptive correlation analysis on vibration data after FFT and
took data with different receptive fields as the fault characteristics. Wang et al. [29] used
a bidirectional graph neural network to carry out correlation analysis of the graph data
extracted from a residual network at the instance and distribution levels. This classified
independent faults, but the network needs to be further optimized for correlation analysis
between coupled faults. Wang et al. [30] added dynamic vertices to a graph neural network
and realized coupling fault diagnosis by establishing a pair relationship topology between
faults and dynamic vertices.
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It is difficult for graph neural networks to achieve high-level expressions of the re-
lationships between objects [31]. Feng et al. [32] proposed a hypergraph neural network
(HGNN) to solve this problem. Bai et al. [33] introduced convolution and attention mecha-
nisms into hypergraph neural networks, further improving the ability of representation
learning in hypergraph networks. Hypergraph neural networks are mainly used in rec-
ommendation systems and multi-modal data feature extraction and have been widely
used in image processing. Shi et al. [34] built unlabeled data into hypergraphs, mined the
data’s higher-order information, and combined an autoencoder to realize representation
learning and fault classification. In this method, the hypergraph structure is taken as an
autoencoder layer, and the fault features are generated from the data-driven perspective,
which lacks interpretability. Su et al. [35] extracted the higher-order relationship between
the same type of faults and different types of faults via the hypergraph structure. These
methods are applied to independent fault diagnosis. In the field of coupled fault diagnosis,
the high-order relation representation ability of hypergraph neural networks meets the
requirement of complex coupled fault feature acquisition. In this paper, two fault diagnosis
architectures based on hypergraph neural networks are proposed: a coupled fault diagnosis
architecture based on feature generation and another based on feature extraction. The
method is verified with coupling fault injection experimental data.

The main insights and contributions of this study are summarized as follows:

(a) A rotary mechanical coupling fault injection test is designed. Eight types of faults
including coupling faults and independent faults are injected, and the experimental
data are collected.

(b) A coupled fault diagnosis architecture based on feature extraction is proposed. A
hypergraph generative adversarial network (HGGAN) is established and vibration
data generation and coupling fault diagnosis are realized by applying hypergraph
theory to the generative adversarial network (GAN) model.

(c) A coupled fault diagnosis architecture based on feature generation is proposed. The
coupling fault characteristics are extracted via a multi-head inner product hypergraph
attention network (IPHGAT), and coupling fault diagnosis and analysis are realized.

The rest of this paper is organized as follows: Section 2 introduces the preliminary
knowledge, including the graph attention network, the hypergraph attention network,
and the generative adversarial network. Section 3 introduces the two fault diagnosis
frameworks based on a hypergraph attention network. The coupled fault injection ex-
periment and data-preprocessing methods are introduced in Section 4. The two coupled
fault diagnosis frameworks are conducted in Section 5. Finally, conclusions are drawn in
Section 6.

2. Preliminary Knowledge
2.1. Graph Attention Network

In graph G = (V , E), E is the set of edges, and V is the set of nodes. In the GCN, one
step of graph convolution is defined as follows [36]:

Xl+1 = σ
(

D̃− 1
2 AD̃− 1

2 XlW l
)

(1)

where A is the adjacency matrix, D̃ is the degree matrix with a self-loop, and W is the
linear transformation weight matrix. The graph attention network (GAT) adds the attention
mechanism into the graph convolutional network and uses the dynamic adjacency matrix
to perform the adaptive values of the edge vector according to the node data characteristics.
The calculation method is as follows [37]:

Aij =
exp

(
LeakyReLU

(
aT[hiW∥hjW

]))
∑k∈Ni

exp(LeakyReLU(aT [hiW∥hkW]))
(2)



Sensors 2024, 24, 6391 4 of 16

The GAT only describes the dynamic edges between pairwise nodes. Higher-order
representation methods are needed for modeling processing for the multiple interactions in
coupling faults.

2.2. Hypergraph Attention Network

The hypergraph convolutional network (HGCN) connects multiple nodes via hy-
peredges, which extract higher-order relationships between the nodes. The inter-layer
information transmission mode is as follows:

Xl+1 = D−1/2
v AHD−1

e AT D−1/2
v XlW l (3)

where A is the adjacency matrix, Dv is the node degree matrix, De is the hyperedge degree
matrix, H is the weight diagonal matrix of the hyperedge, and W is the linear transformation
weight matrix. The hypergraph attention network (HGAT) computes the values in the
adjacency matrix A, and the correlations between nodes are quantitatively described. The
computation of the attention mechanism in the hypergraph structure is defined as follows:

Aij =
exp

(
LeakyReLU(aT [xiW∥ejW])

)
∑

k∈Ni

exp(LeakyReLU(aT [xiW∥ekW]))
(4)

where Ni is the neighborhood set of xi, [, ∥, ] is the concatenation operation, and a is
the weight vector. The similarity of the two vectors can be acquired after concatenation
calculation.

The attention score in the GAT describes the correlation between a pair of nodes,
while the attention score in the HGAT is the correlation between nodes and hyperedges.
Therefore, applying an attention mechanism in hypergraphs requires nodes and hyperedges
to be in the same homogeneous domain.

2.3. Generative Adversarial Network

The adversarial generation network models the data probability distribution via the
game between the generator model G(z) and discriminator model D(x) [38]. The input
of the generator is a random vector z, and the loss function of the generator model is as
follows:

LossG =
1

M f ake

M f ake

∑
i=1

log(1 − D(G(z(i)))) (5)

where M f ake is the number of fake data samples. The input of the discriminator is x, and
the loss function is as follows:

LossD = − 1
S

Mreal

∑
i=1

yi
real log(D(xi))− 1

S

M f ake

∑
i=1

(1 − yi
f ake) log(1 − D(G(zi))) (6)

where S = Mreal + M f ake is the total number of false samples and true samples, and Mreal
is the number of true samples. The first half of the loss function requires the discriminator
to be true to the real data, and the second half requires the discriminator to be false to the
false data.

3. Algorithm Flow

Coupling faults are formed by coupling multiple types of base faults [39], which
interact with each other. Therefore, the fault characteristics of coupling faults are not simple
linear superpositions of base faults but nonlinear complex coupling. In this study, the
vibration characteristics of coupled faults are not decomposed from the complex physical
mechanism, but the advantages of the hypergraph neural network in processing higher-
order relationships are used to model the coupling faults.
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3.1. Algorithm Flow of HGGAN

From the perspective of holism, the coupling faults of mechanical equipment comprise
many kinds of faults, which show unified fault characteristics. Assuming that the fault
signals of coupled faults are generated by the implicit nonlinear coupling between the
fault signals of the base faults, this study uses a hypergraph neural network to model the
nonlinear generation process and form the coupled fault diagnosis model, HGGAN. In
this model, the graph node set V is composed of M, many base faults, i.e., |V| = M. Each
base fault and coupling fault constitute N, many hyperedges, i.e., |E | = N, where M ≤ N,
which is reduced to equality if, and only if, all nodes are base faults.

A coupled fault diagnosis architecture based on feature generation is designed in this
study based on the ability of the GAN to generate a probability distribution of the data.
The generator consists of the HGCN, and the discriminator is composed of a multi-layer
perceptron (MLP). The algorithm flow is shown in Figure 1.
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In the HGGAN model proposed in this paper, the generator’s loss function is rewritten:

LossG =
1
S

S

∑
i=1

M

∑
j=1

log(1 − D(G(xi
j))) (7)

The loss of the generator is the classification error of the fault data coupled with the
base fault, where S is the total number of samples. Compared with the traditional GAN,
the input of the generator changes from a random vector z to the fault feature x of the base
fault in the graph data xj, j ∈ 1, · · · , M, which improves the model’s stability compared
with random data [40]. Both true and false samples come from the same graph data sample,
so the numbers of true samples and false samples are equal.

The loss function of the discriminator is rewritten as follows:

LossD = − 1
S

S

∑
i=1

yi
M+1 log(D(xi

M+1))−
α

S

S

∑
i=1

M

∑
j=1

(1 − yi
j) log(1 − D(G(xi

j))) (8)

The rewritten discriminator loss function is still composed of two parts. In the first
part, the input xM+1 of the discriminator is the dynamic vertex in the graph data, that is,
the fault feature of the coupling fault to be diagnosed, and its label yM+1 is the fault type
corresponding to the coupling fault xM+1. The second part is the regularization term to
prevent the model from overfitting, where the hyperparameter α is set as 0.1 in this article.
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The HGGAN established in this paper generates coupling fault features from the
perspective of data generation. A hypergraph convolution network is used as the generator,
which avoids the uncertainty caused by random vectors in a traditional GAN and provides
the network structure with interpretability.

3.2. Algorithm Flow of IPHGAT

From the perspective of reductionism, the coupling faults of mechanical equipment
comprise multiple base faults. The signals of coupling faults can be decomposed into those
belonging to the base faults. In this framework, a coupling fault diagnosis model based on
IPHGAT is established. All the fault modes, including base faults and coupling faults, are
taken as graph nodes, and |V| = M. Hyperedges are the fault characteristics of all fault
modes after aggregation, and |E | = N. The number of nodes and hyperedges are equal,
i.e., M = N. Therefore, this study applies an attention mechanism to further analyze and
process the fault information. The correlation between each base fault and each type of
fault is obtained via the attention mechanism.

In the multi-head attention mechanism, the number of heads is defined as the number
of independent base failures, and the multi-head attention scores are calculated as follows:

Ak
ij =

exp
(

LeakyReLU(akT
[xiWk∥ejWk])

)
∑

n∈Ni

exp
(

LeakyReLU(akT [xiWk∥enWk])
) (9)

where x is the node vector, and e is the hyperedge vector. The trainable parameter ak is the
direction of the attention calculation corresponding to the k-th head. The output of the l-th
layer network is calculated according to the multi-head attention extraction features:

xl+1
j = σ

∥m
k=1

1∣∣Nj
∣∣ ∑

i∈Nj

αl,k
ij W l xl

i

 (10)

In the hypergraph attention mechanism proposed in this paper, the updated coupled
fault node vector is used to update the hyperedge vector, i.e., el+1

j = xl
j.

The network structure is shown in Figure 2. The algorithm flow of the IPHGAT model
is as follows.

Step 1: The constructed hypergraph data X = [X(0), X(1)] ∈ R(M+1)×Q are inputted,
where Q is the data feature dimension, and X includes the M base fault node data
X(0) ∈ RM×Q and the fault X(1) ∈ RQ to be predicted located at a dynamic vertex. The
corresponding labels are Y(0) = [1, · · · , M], Y(1) ∈ R. The X(0) passes through the first
layer of m − head HGAT, generates m features for each hyperedge, splices the m features
of each hyperedge into a whole as the features of the hypergraph, and performs feature
standardization to obtain X(0)

1 .

Step 2: X(0)
1 is inputted into the second layer of m − head HGAT to obtain X(0)

2 , and

then input X(0)
2 into the fully connected network and Softmax layer to obtain the fault

feature Ŷ(0) ∈ Rm×m corresponding to each hyperedge. The cross-entropy of Ŷ(0) and Y(0)

is regarded as the loss function L1.
Step 3: X(1) is inputted into the three-layer MLP to obtain the fault feature Ŷ(1) ∈ Rm

of the node to be predicted. The cross-entropy of Ŷ(1) and Y(1) is set as the loss function L2.
Step 4: The inner product between the vector Ŷ(1) and Ŷ(0) corresponding to each

hyperedge is calculated as C = [c1, · · · , cM], the label Ŷ of the hyperedge corresponding
to the vector with the largest inner product value is taken, and the model accuracy rate is
obtained by judging whether Ŷ and Ŷ(1) are equal.

The loss function of the model consists of two parts, L = L1 + L2, where
L1 = CrossEntropy(Y(0), Ŷ(0)) and L2 = CrossEntropy(Y(1), Ŷ(1)). The value of the corre-
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sponding fault mode’s hyperedge vector tends to increase via the model training process,
thus driving the inner product to increase.
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hyperedge is calculated as 1[ , , ]MC c c=  , the label Ŷ  of the hyperedge corresponding 
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4. Data Acquisition and Preprocessing

In the experiments in this study, 8 faults were injected into the UCPH205 bearing.
The test bench is shown in Figure 3. The samples included 1 normal bearing, 4 outer-
race fault bearings, 4 inner-race fault bearings, 4 ball fault bearings, 1 outer-race + inner-
race fault bearing, 1 outer-race + ball fault bearing, 1 inner-race + ball fault bearing,
1 outer-race + inner-race + ball fault bearing, and 1 outer-race + inner-race + ball fault
bearing, as shown in Figure 4. The fault injection experiment was carried out at 2400 rpm
for each bearing. A sample rate of 20 kHz was used to collect the experimental data, and
the fault size of the outer race, the inner race, and the ball was 0.3 mm.
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Figure 4. Coupling fault injection bearing.

Each bearing ran for 60 s at different speeds. The data for each second were taken as a
sample, containing a total of 1020 samples. In this study, the X-axis vibration signal was
selected for fault diagnosis and analysis. Firstly, the Fourier transform was performed on
the data to obtain the spectra of the vibration data. The fault spectra of the base faults are
shown in Figure 5.
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ball faults each constitute an independent hyperedge, in three primary colors; the pair–
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Table 1. Incidence matrix of HGGAN. 
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Figure 5. Spectra of base fault bearings.

The red dashed line is the fundamental frequency. Its frequency—double that of the
fault characteristic frequency value—was calculated theoretically based on the bearing size,
in which the fundamental frequencies of the outer-race, inner-race, and ball faults were
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142.93 Hz, 217.07 Hz, and 186.27 Hz, respectively. The figure shows that the fault frequency
of the bearing-injected fault had a high consistency with its theoretical value.

The spectra of the coupled fault data are shown in Figure 6. The vibration spectrum of
a coupled fault is not a linear superposition of the base fault spectrum but contains complex
coupling relations, which requires a higher-order relationship model to obtain the coupling
fault features.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 17 
 

 

   
(a) Outer race (b) Inner race (c) Ball 

Figure 5. Spectra of base fault bearings. 

The red dashed line is the fundamental frequency. Its frequency—double that of the 
fault characteristic frequency value—was calculated theoretically based on the bearing 
size, in which the fundamental frequencies of the outer-race, inner-race, and ball faults 
were 142.93 Hz, 217.07 Hz, and 186.27 Hz, respectively. The figure shows that the fault 
frequency of the bearing-injected fault had a high consistency with its theoretical value. 

The spectra of the coupled fault data are shown in Figure 6. The vibration spectrum 
of a coupled fault is not a linear superposition of the base fault spectrum but contains 
complex coupling relations, which requires a higher-order relationship model to obtain 
the coupling fault features. 

    

(a) Outer race + inner race (b) Outer race + ball (c) Inner race + ball 
(d) Outer race +  
inner race + ball 

Figure 6. Spectra of coupling fault bearings. 

5. Coupling Fault Diagnosis 
5.1. Coupling Fault Diagnosis Based on Feature Generation 

In the HGGAN architecture, the four base faults are defined as four graph nodes, and 
the eight hyperedges represent eight types of coupling faults. As shown in Figure 7, the 
normal state constitutes an independent hyperedge; the inner-race, the outer-race, and the 
ball faults each constitute an independent hyperedge, in three primary colors; the pair–
pair couplings constitute three hyperedges; and the three-fault coupling constitutes hy-
peredge 7E , comprising a total of eight hyperedges. The incidence matrix is shown in 
Table 1. 

Table 1. Incidence matrix of HGGAN. 

Fault Types 0E  1E  2E  3E  4E  5E  6E  7E  
Normal 1 0 0 0 0 0 0 0 
Outer race 0 1 0 0 1 1 0 1 
Inner race 0 0 1 0 1 0 1 1 
Ball 0 0 0 1 0 1 1 1 

Figure 6. Spectra of coupling fault bearings.

5. Coupling Fault Diagnosis
5.1. Coupling Fault Diagnosis Based on Feature Generation

In the HGGAN architecture, the four base faults are defined as four graph nodes, and
the eight hyperedges represent eight types of coupling faults. As shown in Figure 7, the
normal state constitutes an independent hyperedge; the inner-race, the outer-race, and the
ball faults each constitute an independent hyperedge, in three primary colors; the pair–pair
couplings constitute three hyperedges; and the three-fault coupling constitutes hyperedge
E7, comprising a total of eight hyperedges. The incidence matrix is shown in Table 1.
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Table 1. Incidence matrix of HGGAN.

Fault Types E0 E1 E2 E3 E4 E5 E6 E7

Normal 1 0 0 0 0 0 0 0
Outer race 0 1 0 0 1 1 0 1
Inner race 0 0 1 0 1 0 1 1
Ball 0 0 0 1 0 1 1 1

The dataset was constructed based on the hypergraph topology, in which the training
set contained 816 hypergraph samples, and the test set contained 204 hypergraph samples.
The SGD optimizer was used for model training, the SGD momentum was set to 0.9, the
step dynamic learning rate was adopted, the initial learning rate was 0.01, and the decay
rate was 0.1. The training results are shown in Figure 8.
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Figure 8. Accuracies of discriminator and generator during training process of HGGAN.

The accuracies of the discriminator and generator were 88.6% and 87.5%, respectively.
The discriminator and generator played games with each other in the training process to
jointly optimize the model’s accuracy.

The generator aggregated the three types of base faults via the hypergraph network
to obtain a total of 23 = 8 types of faults. The experimental data and the data generated
by the generator were reduced to two dimensions by the TSNE, and their distributions
are shown in Figure 9. As shown in Figure 9a, the experimental data were separated after
preprocessing in the feature space, but the coupling effect of the fault was not displayed
in the feature space. The output data features of the generator are shown in Figure 9b,
where the third-order coupling fault represented by the gray data points is approximately
located in the fault center, and the second-order fault is located between the two base faults
that compose it. Although there was a clear dividing line between the data generated by
the generator and the original data, similar faults were approximately located in the same
area in the two-dimensional plane, as shown in Figure 9c. The reason is that the generator
loss function is the cross-entropy of the network output and the real label, which only has
requirements for the size relationship of the output value and has low requirements for the
consistency of data values so that the model has good generalization. Therefore, the data
generated by the generator can realize more accurate fault diagnosis.
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The discriminator obtained by the HGGAN model was compared with the MLP
without adding a generator and the MLP-GAN model in which the MLP was both the
generator and discriminator. Moreover, it was compared with the model with a residual
in the discriminator. The diagnostic accuracies are shown in Table 2. The HGGAN had
advantages over the other models in terms of accuracy.
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Table 2. Coupled fault diagnosis accuracies under feature generation framework.

Model Accuracy of Generator Accuracy of Discriminator

MLP / 86.27%
MLP-GAN 75% 86.27%
Residual HGAN 87.5% 86.27%
HGGAN 87.5% 88.6%

Compared with the MLP, the HGGAN’s discriminator had the same structure as the
MLP. The HGGAN’s loss function was optimized by adding the generator to HGCN to
generate negative samples and optimize the MLP model parameters, so its fault diagnosis
accuracy was improved. Compared with the MLP-GAN, the HGGAN used the HGCN
as a generator to extract higher-order relationships more effectively and generate more
accurate fault feature data. The shortcut was added to the discriminator to introduce the
residual block. The residual block blurred the extracted features because of the shallow
network depth, resulting in a lower discriminator accuracy. There was no improvement in
the generator performance compared with the HGGAN proposed in this article.

5.2. Coupling Fault Diagnosis Based on Feature Extraction

This study considered four base faults in the IPHGAT architecture—normal, outer-race,
inner-race, and ball faults—and four coupled faults—outer-race + inner-race, outer-race +
ball, inner-race + ball, and outer-race + inner-race + ball faults—as the graph nodes and
established eight hyperedges corresponding to all fault types. The hypergraph topology is
shown in Figure 10.
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Figure 10. Coupled fault topology in IPHGAT.

The correlation matrix of the hypergraph topology was obtained according to the fault
coupling relationship, as shown in Table 3.

Table 3. Comparison of diagnostic accuracy for coupling faults.

Fault Type E0 E1 E2 E3 E4 E5 E6 E7

Normal 1 0 0 0 0 0 0 0
Outer race 1 1 0 0 0 0 0 0
Inner race 1 0 1 0 0 0 0 0
Ball 1 0 0 1 0 0 0 0
Outer race + inner race 1 1 1 0 1 0 0 0
Outer race + ball 1 1 0 1 0 1 0 0
Inner race + ball 1 0 1 1 0 0 1 0
Outer race + inner race + ball 1 1 1 1 1 1 1 1
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The hypergraph data X = [X(0), X(1)] ∈ R9×3000 were built for training. The SGD
optimizer was used for model training, the SGD momentum was set to 0.9, a step dynamic
learning rate was adopted, the initial learning rate was 0.01, and the attenuation rate was
0.1. Since the number of base faults involved in this study was four, the number of heads in
the multi-head IPHGAT was set to four.

In the training process, the classification accuracy Acc(0) of the base fault X(0), the
accuracy Acc(1) of the dynamic vertex fault X(1) to be predicted, and the correlation
accuracy Acc of the inner product were calculated. As shown in Figure 11, Acc(0) and Acc(1)

reached 99.88% and 88.60%, respectively, and the internal product correlation accuracy rate
Acc reached 86.76%, so the IPHGAT can effectively classify coupling faults.
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Figure 11. Diagnostic accuracy for base faults, faults in dynamic vertex, and inner product during
training process of IPGAT.

Table 4 compares the coupled fault diagnostic accuracies of the three methods. The
accuracy reached 78.43% by adding a residual network to the model, failing to improve
the accuracy. The HGCN was used to extract coupled fault features, and the accuracy of
its training set reached 88.6%, consistent with that of the IPHGAT with the MLP proposed
in this paper. However, only global fault features were extracted due to its lack of local
feature extraction capability. Furthermore, its generalization was poor, reaching only 83.82%
accuracy on the test set.

Table 4. Coupled fault diagnostic accuracy under feature extraction framework.

Model Training Set Accuracy Test Set Accuracy

IPHGAT (residual) 83.7% 78.43%
IPHGCN 88.6% 83.82%
IPHGAT (MLP) 88.6% 86.76%

The IPHGAT contained two layers of four-head hypergraph attention networks, which
were used for the feature extraction of four types of basic faults. Each sample included eight
types of faults, and the eight elements in the output Ŷ(0) ∈ R8×8 of the Softmax layer corre-
sponded to eight types of fault modes. The first four elements Ŷ(0)

i = {ŷi,1, ŷi,2, ŷi,3, ŷi,4}
were the correlation between the four base faults and the fault mode corresponding to the
row vector xi. The four base fault correlation elements corresponding to the eight types of
faults in each sample were extracted, and the coupling mode of the faults was analyzed.

The model parameter optimization aimed to improve the fault classification accuracy
during the model training. ŷi,i is generally the maximum value in Ŷ(0) and is at a higher
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order of magnitude than other elements, so this study carried out normalization processing
on ŷi,1, ŷi,2, ŷi,3, ŷi,4 as follows:

yi,j =
ŷi,j − min(Ŷ(0)

i )

max(Ŷ(0)
i )− min(Ŷ(0)

i )
(11)

Since the model achieved accurate feature extraction of the four types of independent
base faults, a correlation analysis between the base faults and coupled faults was carried
out, as shown in Figure 12. As shown in Figure 12a–c, the base faults for the second-order
coupling faults were effectively identified, and the correlations between the coupling faults
and the unrelated base faults were suppressed. In the base fault correlation analysis of
the third-order coupling faults, all three types of base faults showed correlations with the
coupled faults, and the correlation between the normal state and coupled faults approached
zero, as shown in Figure 12d.
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Since the model achieved accurate feature extraction of the four types of independent 
base faults, a correlation analysis between the base faults and coupled faults was carried 
out, as shown in Figure 12. As shown in Figure 12a–c, the base faults for the second-order 
coupling faults were effectively identified, and the correlations between the coupling 
faults and the unrelated base faults were suppressed. In the base fault correlation analysis 
of the third-order coupling faults, all three types of base faults showed correlations with 
the coupled faults, and the correlation between the normal state and coupled faults ap-
proached zero, as shown in Figure 12d. 
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Figure 12. Base fault correlations.

The inner product correlation between the dynamic vertex faults and eight types of
fault data was C = [c1, · · · , c8] ∈ R8. The inner product correlation c1, c2, c3, c4 of the
coupled fault and base fault characteristics was removed for the analysis in Figure 13.
The vertical axis is the coupling fault to be predicted, and the horizontal axis is the base
fault that makes up the coupling fault. The accuracy of the base fault components of the
coupled faults was more than 91.67%. The coupling analysis was consistent with the fault
injection model.

The IPHGAT model based on the reductionist feature extraction framework extracts
the fault component representing the base fault from the coupling fault and analyzes the
fault mode based on the correlation of the fault component, which enhances the model’s
interpretability and is significant for the coupling fault diagnosis of rotating machinery in
industrial production environments.
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6. Discussion and Conclusions

In this study, based on the research on the coupling fault diagnosis of rotating ma-
chinery, a coupling fault diagnosis method, HGGAN, based on a fault feature generation
framework, and another method, IPHGAT, based on a fault feature extraction framework,
were proposed from the perspectives of holism and reductionism theory by utilizing the
advantages of a hypergraph neural network for higher-order relation analysis. The HG-
GAN used an MLP as a discriminator and utilized an HGCN as a generator to generate
coupling fault data. The generated and real data had a unified data space, and the diagnos-
tic accuracy of the HGGAN for coupling faults reached 88.6%. IPHGAT used a multi-head
hypergraph neural network to extract the fault features of coupling faults, and an MLP
was used to extract the dimensionality reduction features of predictive data. The internal
product correlation between the fault features and coupling faults in the dynamic vertex
was calculated, and the fault diagnosis of coupling faults was realized. The diagnostic
accuracy rate reached 86.76%. The two kinds of methods have their own advantages
in application. The HGGAN takes the generator error as the regularization term of the
discriminator, which improves its diagnostic accuracy, which is slightly higher than that
of IPHGAT. IPHGAT can evaluate the correlation between coupling faults and base faults
based on the local characteristics of the base faults; thus, IPHGAT has higher interpretability
than the HGGAN model.

The coupling fault diagnosis framework proposed in this paper can accurately diag-
nose coupling faults under high-order relations and analyze the coupling characteristics of
the fault characteristics, which is significant for monitoring and analyzing the health state
of rotating machinery in production environments. This study qualitatively analyzed the
types of base faults that constituted the coupling faults in the interpretability analysis of
the model. However, it did not verify the quantitative relationship between the correlation
of the base faults and coupling faults extracted by the model and the degree of faults. In
the next stage of coupled fault diagnosis research, multi-degree coupled fault injection tests
should be carried out to further fit the quantitative relationship of the fault correlation with
several fault samples.
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