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Abstract: In this paper, we introduce a security approach for on-device learning Edge AIs designed
to detect abnormal conditions in factory machines. Since Edge AIs are easily accessible by an attacker
physically, there are security risks due to physical attacks. In particular, there is a concern that the
attacker may tamper with the training data of the on-device learning Edge AIs to degrade the task
accuracy. Few risk assessments have been reported. It is important to understand these security risks
before considering countermeasures. In this paper, we demonstrate a data poisoning attack against
an on-device learning Edge AI. Our attack target is an on-device learning anomaly detection system.
The system adopts MEMS accelerometers to measure the vibration of factory machines and detect
anomalies. The anomaly detector also adopts a concept drift detection algorithm and multiple models
to accommodate multiple normal patterns. For the attack, we used a method in which measurements
are tampered with by exposing the MEMS accelerometer to acoustic waves of a specific frequency.
The acceleration data falsified by this method were trained on an anomaly detector, and the result
was that the abnormal state could not be detected.

Keywords: MEMS accelerometer; acoustic injection attack; Edge AI; on-device learning; data poisoning
attack; concept drift

1. Introduction

The use of machine learning (ML) techniques has become widespread. Edge AIs, which
directly install ML models (e.g., neural networks) on devices [1], can achieve low latency
and privacy by performing inference and learning on the devices without outsourced
processing. A typical implementation of Edge AIs is on-device inference, where an ML
model is trained in a development (lab) environment and only performs inference on
the device in the installed (field) environment. However, the task accuracy of the model
can decrease when the lab and field environments differ due to characteristics involving
installation locations and environmental changes over time [2], i.e., “concept drift” [3].
On-device learning Edge AI has been proposed to address this challenge [4]. It is expected
to maintain inference accuracy over a long period of time by optimizing ML models in the
field environment after placement.

Edge AIs are at risk of physical attacks targeting the ML models because the devices are
directly installed in the operational environment [5]. In particular, on-device learning makes
it more difficult to manage the training process compared to on-device inference. This
makes data poisoning attacks a major threat. The data poisoning attack degrades inference
accuracy by injecting malicious data into the training process. Although countermeasures
against data poisoning attacks have been discussed [6–8], most have assumed Cloud AIs
and batch (non-real-time) learning environments. Therefore, applying them to on-device
learning is difficult because it assumes limited computational resources and low-latency
training. Establishing an anti-poisoning method specialized for on-device learning is
thus required.
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There have been few risk assessments of data poisoning attacks against on-device
learning. Before considering countermeasures, it is necessary to organize threat models and
evaluate realistic attack threats. We previously demonstrated the risk of a data poisoning
attack against an on-device learning anomaly detector [9]. In that demonstration, we
adopted ONLAD (ON-device sequential Learning semi-supervised Anomaly Detector) [4]
as an anomaly detection system that detects abnormal vibration observed by a MEMS
accelerometer on a rotating cooling fan. During the training process, a data poisoning
attack was performed by irradiating the MEMS accelerometer with acoustic waves in the
audible range to tamper with the sensor’s output. We showed that while a normally trained
anomaly detector could detect abnormal vibrations, a poisoned anomaly detector inferred
the abnormal vibrations as “normal”.

In this paper, we demonstrate the risk of a more practical anomaly detection system
based on ONLAD, which additionally includes concept drift detection [10] and multi-
instance [11]. In the previous report [9], ONLAD was assumed to have only one ML model,
but in this paper, we assume a multi-instance, which means it has multiple ML models
(instances). Even if the equipment has multiple normal patterns, multi-instance maintains
anomaly detection accuracy because instances learn normal patterns individually. In
addition, by combining a lightweight concept drift detection [10] suitable for edge devices,
the anomaly detection system can determine the number of instances. Attackers can carry
out data poisoning attacks on anomaly detection systems to create malicious instances by
tampering with sensor values. We show that the attack threatens the anomaly detection
system’s ability to determine abnormal vibrations. To summarize the above, this paper
reports that the new features [10,11] for a more practical anomaly detection system than
our previous report create a new attack surface for the data poisoning attacks.

The main contributions of this paper are as follows.

• We present a data poisoning attack scenario for an on-device learning anomaly detec-
tion system with concept drift detection and multiple detection instances.

• We conducted experiments based on the attack scenario outlined above to evaluate
the threat. We tampered with the observed data by irradiating the accelerometer with
acoustic waves and had the anomaly detection system create an instance using this as
training data. We showed that this instance would determine abnormal vibrations as
“normal”, making it impossible for the anomaly detection system to determine that
abnormal vibrations were abnormal.

2. Preliminaries
2.1. Autoencoder-Based Anomaly Detector

The anomaly detection task distinguishes between data sampled from a distribution
that is considered to be “normal” or “abnormal”. In many cases, a larger number of normal
samples are available, but few or no abnormal samples are available. Therefore, a typical
anomaly detector learns only the distribution of normal data and considers data that
deviates from that distribution as abnormal. Methods based on the nearest neighbor [12],
one-class classifier [13], and neural networks [14] have all been used for such detection.

In this paper, we focus on a neural network-based anomaly detector [14] that adopts
an autoencoder [15], as shown in Figure 1. The autoencoder is roughly divided into an
encoder part, which encodes the input into an intermediate vector, and a decoder part,
which reconstructs the input from the intermediate vector. The intermediate vector is often
smaller than the input. During the training phase of the autoencoder, the weight parameters
are adjusted so that the difference between the input and output data becomes small.

An autoencoder for anomaly detection is typically trained with normal data [16,17]
and can reconstruct normal data well in the inference phase. In contrast, when abnormal
measurement data (abnormal data) are used as the input, the autoencoder cannot recon-
struct it correctly because it has not been trained on the abnormal data. The difference
between the input and output data is small for normal and large for abnormal data. We
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can distinguish abnormal data by setting a threshold; namely, the input is inferred to be
normal if the difference is smaller than the threshold and abnormal if it is larger.
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𝒆𝒓𝒓𝒐𝒓

Figure 1. Autoencoder-based anomaly detector.

2.2. Concept Drift

Concept drift is a phenomenon in which the distribution of data changes over time
from the training [18]. Concept drift due to changes in the surrounding environment is
expected at sites where Edge AI devices are deployed [19]. In anomaly detection tasks,
if normal data distribution deviates from the initial (trained) distribution due to concept
drift, there is a concern that normal data may be distinguished as abnormal, thereby
degrading accuracy.

2.3. Extreme Learning Machine

The extreme learning machine (ELM) [20] shown in Figure 2 is a feed-forward neural
network consisting of an input layer, hidden layer, and output layer. It is characterized by
faster weight optimization (training) than general neural networks trained using gradient
descent. Let α be the joint weights between the input and hidden layers, β be the joint
weights between the hidden and output layers, b be the bias of the hidden layer, and G be
the activation function applied to the output of the hidden layer. Then, the output data y
from the input data x is expressed as

y = G(x · α + b) · β. (1)

In ELM training, only β is updated among the three parameters α, β, and b, while the
others are fixed at their initial values. These initial values for weights are often set similarly
to those set by the initialization process of weights in neural networks. The ELM speeds
up the computation by only updating the weights for β and deterministically calculating
the optimal values. Let H = G(x · α + b) be the output of the hidden layer and t be the
ground-truth label. The optimal weight β̂ obtained by training is calculated as

β̂ = H†t, (2)

where H† is the pseudo-inverse matrix of H.
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Figure 2. Overview of ELM.

2.4. Acoustic Injection Attacks on MEMS Accelerometers

MEMS accelerometers are used to measure a machine’s vibration in operation and
predict machine failures [21,22]. An anomaly detector can detect abnormal vibration due
to a malfunctioning component by learning the vibration of normal operation. Reports
have shown that the capacitive MEMS accelerometer outputs can be falsified by irradiating
acoustic waves with a specific frequency [23–25]. Since an embedded system blindly
trusts the sensor outputs, malicious measurements can cause a system failure. Nashimoto
et al. demonstrated that tilt sensor outputs with Kalman filter-based sensor fusion can
be tampered with by combining multiple measurement tampering attacks, including
acoustic injection.

3. Neural Network-Based On-Device Learning Anomaly Detector

In this paper, we adopt the on-device learning anomaly detector [11], which is a
version of ONLAD [4] extended by Sunaga et al., as an evaluation target. This anomaly
detector combines multi-instances for multiple concepts and a centroid-based drift detection
method [10].

3.1. ONLAD

Typical multi-layer autoencoders and their training algorithms, such as the gradient
descent method and backpropagation, are computationally intensive and require a large
number of computing resources. ELM is also categorized as a batch-based algorithm. There-
fore, ELMs are unsuitable for Edge AI with limited computational resources. Tsukada et al.
proposed ONLAD [4], an anomaly detector that adopts online sequential ELM (OS-ELM)
[26], as an autoencoder. OS-ELM is an ELM with a fast sequential learning algorithm.
When the anomaly detector is trained with the i-th input data xi by OS-ELM, it computes
βi, which minimizes the difference between inputs and ground truth (error), as

error =

∥∥∥∥∥∥∥
H0

...
Hi

βi −

t0
...
ti


∥∥∥∥∥∥∥, (3)

where Hi is the output of the hidden layer for the i-th input data xi, i.e., Hi = G(xi · α + b).
The optimal weight βi is then calculated as

Pi = Pi−1 − Pi−1Hi
T(I + HiPi−1Hi

T)−1HiPi−1, (4)

βi = βi−1 + Pi Hi
T(ti − Hiβi−1), (5)

where the initial values P0 and β0 are defined as

P0 = (H0
T H0)

−1, (6)
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β0 = P0H0
Tt0. (7)

OS-ELM can compute the optimal weight parameter β for new training data without
requiring access to past training data. Therefore, OS-ELM can perform sequential learning
faster and with less memory than normal ELM and neural networks with gradient descent-
based learning algorithms. This enables on-device learning for autoencoder-based anomaly
detection, even on edge devices with limited computational resources. When OS-ELM is
used as an autoencoder for anomaly detection, the ground truth t above is the input data x.

3.2. Multi-Instance

Although ELM can be implemented in a lightweight manner, its representation ca-
pacity is limited because the optimization target is only β. Therefore, there is a concern
that ELMs cannot be trained well when there are multiple normal patterns (e.g., when the
equipment to be monitored has multiple modes of operation). An approach using multiple
small ELMs (instances) has been proposed [11,27] to learn multiple normal patterns.

With this approach, we can expect one instance to learn one normal pattern. The
number of instances is the same as the number of normal patterns. All ELMs in the
instances share an observed input and perform inference. The anomaly detection system
expects the input to belong to a distribution of the instance that achieves the smallest error
among all the instances. The instance with the smallest error is used for detection.

There are multiple approaches for determining the number of instances and training
them. For example, a user can specify the number of instances and manually train each
instance at the time the anomaly detector is installed. A new instance can also be trained
automatically (or manually started) when concept drift is detected.

3.3. Concept Drift Detection

There are various approaches for concept drift detection [28–31]. However, due
to batch processing and other assumptions, most of these approaches are difficult to
implement in real-time on an edge device. Therefore, we adopt the concept drift detection
method proposed by Yamada et al. [10], which is designed for edge devices. It detects the
concept drift by monitoring the centroid of the input data.

Figure 3 shows an overview of the concept drift detection, which is performed as
follows. First, the centroid of training data Ctrain is sequentially acquired during training
(Figure 3a) by

Ctrain =
Ctrain × Ntrain + xtrain

Ntrain + 1
, (8)

where Ntrain is the number of samples trained (number of centroid updates), and xtrain is
the latest training data.

After the training, the centroid of the test data, Ctest, is calculated sequentially (Figure 3b), as

Ctest =
Ctest × Ntest + xtest

Ntest + 1
, (9)

where xtest is the latest input data during inference, and Ntest is the number of updates to
the centroid. The Ntest is incremented for each update. Thus, the trained and test centroids
can be calculated with a small memory.

The drift rate is defined as the distance θ between the training centroid Ctrain and the
test centroid Ctest. It is normalized so that the distance between the trained centroid and
the last piece of training data is 1.0. When concept drift occurs for the test data, the distance
between the trained centroid and the test centroid gradually increases (Figure 3c). Concept
drift is detected when θ exceeds a predefined threshold θdri f t. Users can set the threshold
θdri f t to an appropriate value depending on the task. Once the concept drift is detected, the
anomaly detector can follow environmental changes by re-training instances or launching
new instances (Figure 3d). The drift rate is calculated for each instance when the anomaly
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detection system is operated with multiple instances. When a new input is given, the drift
rate to be updated is that of the instance that shows the smallest error with the input data.

𝜽𝒅𝒓𝒊𝒇𝒕
𝜽 = 1.0

(a) (b)

(d)(c) Test data

Train data
Trained centroid

Test centroid
Make new instance

Figure 3. Overview of concept drift detection algorithm. (a) Trained centroids are sequentially
calculated during training. (b) Test centroids are sequentially calculated during inference. (c) When
concept drift occurs, the test centroid moves away from the train centroid. (d) When the test centroid
exceeds the threshold, a concept drift is detected and a new instance is created. The new instance
computes its own train centroid from the latest data (training data).

An example of the expected drift rate is shown in Figure 4. Here, the drift rate is
within the range [0, ∞] but is set to −1 as a constant when calculating the initial value of
the centroid. The drift rate is 1.0 just after training, and thereafter, when no drift occurs, it
is around 1.0. On the other hand, when drift occurs, the drift rate increases significantly
and exceeds the threshold value θdri f t, which is detected as concept drift.
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Figure 4. Expected drift rate behavior. (a) Concept drift does not occur; (b) Concept drift occurs.

3.4. Behavior of Anomaly Detector

In this paper, we assume an anomaly detector is designed to operate in two phases:
training and inference. The training phase is a period for training instances in the anomaly
detector. A user manually launches the training phase after the device deployment and
operates equipment to be monitored in various modes. During the training phase, the
anomaly detector performs training, and a new instance is automatically set when the
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concept drift (new normal behavior) is detected. The equipment is expected to operate
normally during this phase. The inference phase is a period for detecting abnormal behavior
and is launched after the training phase. Trained instances are utilized to detect anomalies.

An example of the behavior of the anomaly detector is shown in Figure 5, where
we assume there are two types of normal behavior of the equipment: normal state 1 and
normal state 2. First, a user launches the training phase, and normal state 1 is observed
and a first instance is trained. After that, normal state 2 is observed. Since normal state 2
behaves differently from normal state 1, a concept drift is detected, and a new instance is
trained. Note that all the user has to do is start the training phase of the anomaly detector
and operate the equipment with two normal modes for a certain period; it is not necessary
to monitor or lead the training process of the anomaly detector. The user switches to the
inference phase, and samples with normal state 1 are observed. The observed samples are
fed into the autoencoder for each instance, and the instance with a lower error is selected
and compared to the threshold value θerror, which is set to detect an anomaly. Now, the
observed samples are from normal state 1, so the error from the instance trained with
normal state 1 is chosen, and the prediction result is “normal”. Similarly, next, the samples
from normal state 2 are observed, and the anomaly detector predicts “normal”. Finally,
the samples from the abnormal state are observed. Since neither of the instances has
learned the abnormal state, they output the higher error. The smallest error is higher than
the ones in the normal state, and of course, it is larger than the threshold θerror, and the
anomaly detector predicts them as “abnormal”. The threshold θerror is defined at the first
instance that is trained. Typically, the threshold is assumed to be set outside the normal
data distribution with a margin. The error is calculated as error by the root mean square
error (RMSE) between the input data x and the output of the autoencoder.

Normal state 1 Normal state 2 Abnormal stateNormal state 1 Normal state 2

Training phase Inference phase

Prediction: 
Normal

Prediction: 
Normal

Prediction: 
Abnormal

Detect concept drift

Select smaller error

Train Train new instance

Time

Instance 1 Instance 2
𝑒𝑟𝑟𝑜𝑟	1

𝑒𝑟𝑟𝑜𝑟	2

𝑒𝑟𝑟𝑜𝑟	1

𝑒𝑟𝑟𝑜𝑟	2

𝑒𝑟𝑟𝑜𝑟	1

𝑒𝑟𝑟𝑜𝑟	2

𝜃!""#" > 𝑒𝑟𝑟𝑜𝑟	1

𝑒𝑟𝑟𝑜𝑟	1 𝑒𝑟𝑟𝑜𝑟	2

𝜃!""#" > 𝑒𝑟𝑟𝑜𝑟	2 𝜃!""#" < 𝑒𝑟𝑟𝑜𝑟	1

𝑒𝑟𝑟𝑜𝑟	1

Sensor data

Figure 5. Behavior of multi-instance on-device learning anomaly detector.

4. Threat Model
4.1. Attack Scenario

In this paper, we define anomaly detector, victim and attacker as follows.

• Anomaly detector is installed on a factory machine. The anomaly detector measures
the vibrations of the machine with a MEMS accelerometer and detects anomalies.
Unlike our previous report [9], the anomaly detector in this paper newly adopts a
concept drift detection and multi-instance. The addition of these two functions enables
the anomaly detector to accommodate multiple normal patterns.

• Victim (user of the anomaly detector) aims to detect abnormal behavior of equipment
to be monitored by using an on-device learning anomaly detector. The anomaly
detector is installed in the target equipment, and the prediction results, “normal” or
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“abnormal”, are checked. An accelerometer in the detector observes the vibration of
the equipment during its operation. The victim does not check the data acquired by
the accelerometer and the anomaly detector’s training status.

• Attacker aims to hide an abnormal behavior of the target equipment from the anomaly
detector through a data poisoning attack. To achieve this, the attacker uses an acoustic
injection attack to tamper with the accelerometer’s observation. The attacker carefully
imitates the abnormal vibrations and trains the anomaly detector on it. The victim is
unable to notice this because the acoustic injection attack is not an invasive attack and
the acoustic wave cannot be heard by humans when it is in the ultrasonic range.

As explained in Section 3.4, adopting two new functions (concept drift detection and
multi-instance) makes the anomaly detector more practical than the one in our previous
report. On the other hand, we report that these functions unintentionally cause the risk of
security threats. There is a threat of attacks that can make the anomaly detector unable to
detect specific abnormal vibrations. The attacker tampers with the measurement values of
the anomaly detector during the training phase and trains instances with malicious data. At
this time, the victim cannot check the training status of the anomaly detector and is, therefore,
unable to notice the existence of instances that have been trained with malicious data.

4.2. Attack Procedure

First, we describe an anomaly detector’s behavior without attacks, as shown in Figure 6.
The victim installs the anomaly detector on the equipment to be monitored and sets it to
the training phase. The victim runs the equipment in a normal state and lets the anomaly
detector train an instance (normal instance) on the normal state. To simplify the scenario,
we assume only one normal state in this paper. After completing the training phase, the
victim moves the anomaly detector to the inference phase. Since the error of the normal
instance on the normal state is small, the equipment’s normal operation can be predicted as
“normal”. The error from the normal instance on the abnormal state becomes large. When
the error exceeds the threshold, the anomaly detector predicts “abnormal”.

Normal state 1 Abnormal stateNormal state 1

Training phase Inference phase

Prediction: 
Normal

Prediction: 
Abnormal

Train

Time

Normal

𝜃!""#" < 𝑒𝑟𝑟𝑜𝑟𝜃!""#" > 𝑒𝑟𝑟𝑜𝑟

𝑒𝑟𝑟𝑜𝑟 𝑒𝑟𝑟𝑜𝑟

Sensor data

Figure 6. Behavior of anomaly detector without attack.

Next, Figure 7 shows our attack procedure. An attacker performs an acoustic injection
attack and mimics an abnormal vibration during the training phase. The equipment
operates in the normal state throughout the training phase, but the anomaly detector’s
observation is tampered with during the attack. The anomaly detector detects concept
drift through the attack, and a new instance (poisoned instance) is trained on the attacked
(poisoned) state. Here, the anomaly detector trains two instances internally: normal and
poisoned. In the inference phase, the anomaly detector predicts the normal state as “normal”
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because the error from the normal instance is smaller than the threshold. Similarly, the
anomaly detector predicts the abnormal state as “normal” because the error from the
poisoned instance is smaller than the threshold (note that the poisoned instance was trained
under the attack, which carefully mimicked the abnormal vibrations). This indicates that
the attacker has succeeded in hiding the abnormal state from the victim. In this way, the
attacker exploits the drift detection function and creates the malicious (poisoned) instance.
This is a new threat caused by adopting these features.

Normal
Normal state 1 Abnormal stateNormal state 1

Training phase Inference phase

Prediction: 
Normal

Prediction: 
Normal

Detect concept drift

Train Train new instance

Time

Poisoned state
Poisoned

Select smaller error

𝑒𝑟𝑟𝑜𝑟	1

𝑒𝑟𝑟𝑜𝑟	2

𝜃!""#" > 𝑒𝑟𝑟𝑜𝑟	2

𝑒𝑟𝑟𝑜𝑟	1

𝑒𝑟𝑟𝑜𝑟	2

𝜃!""#" > 𝑒𝑟𝑟𝑜𝑟	1

𝑒𝑟𝑟𝑜𝑟	2𝑒𝑟𝑟𝑜𝑟	1

Sensor data

Figure 7. Behavior of anomaly detector with data poisoning attack.

5. Experimental Setup

The experimental equipment we used is listed in Table 1. Figure 8 shows a photograph
of the experimental setup, and Figure 9 shows its block diagram. Figure 8b shows a close-up
view of the target equipment (cooling fan), with the accelerometer installed on top. For
the cooling fan, two identical products were glued vertically so that vibrations could be
transmitted to each other. This is because individual differences often exist even among
the same products in the MEMS accelerometer. We constructed an experimental setup to
observe both vibrations with one sensor. We attached a weight to one of the wings on the
top fan. Since this caused abnormal vibration for the top fan, we considered the bottom fan
normal and the top fan abnormal. Here, the state in which only the normal fan is rotating is
defined as a “normal state”. The state in which only the abnormal fan is rotating is defined
as an “abnormal state”. The aim of the anomaly detector is to correctly detect this vibration
as abnormal.

We adopted a MEMS three-axis accelerometer (ADXL345) as the victim accelerometer.
It observes vibrations generated by normal and abnormal cooling fans. The accelerometer
is connected to a controller (Raspberry Pi Pico in Section 6 and Raspberry Pi4 Model B in
Section 7) via an Inter-Integrated Circuit (I2C) bus. The controller collected measurement
values and stored them in the PC. The sampling rate of the measurement is 100 Hz. In
this experiment, we use the x-axis acceleration among the three axes of the accelerom-
eter for anomaly detection. We used different controllers in the two experiments (in
Sections 6 and 7), but their settings were the same when collecting measurement values.
The observed acceleration is converted into a frequency spectrum by fast Fourier trans-
form (FFT) in an 800-point sampling window and input to the anomaly detector. FFT and
anomaly detection processing were performed on the PC.

The attacker injects acoustic waves from the upper speaker into the accelerometer. A
function generator is connected to the speaker to generate a sine wave at a specific output
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voltage and frequency. In Section 6, we additionally use an audio amplifier to amplify the
signal to the ultrasonic speaker.

Table 1. Experimental equipment.

Equipment Model Number Manufacturer

Function generator (in Section 6) MFG-2260MRA TEXIO TECHNOLOGY Corp. (Yokohama, Japan)
Function generator (in Section 7) FG-281 JVCKENWOOD Corp. (Yokohama, Japan)
Audio amplifier PMA-600NE D&M Holdings Inc. (Kawasaki, Japan)
Full-range speaker P800K Foster Electric Co. (Akishima, Japan)
Ultrasonic transmitter CUSA-T601-150-2400-TH CUI Devices (Lake Oswego, OR, US)
Accelerometer ADXL345 Analog Devices, Inc. (Wilmington, MA, US)
Controller (in Section 6) Raspberry Pi Pico Raspberry Pi Foundation (Cambridge, England)
Controller (in Section 7) Raspberry Pi 4 Model B Raspberry Pi Foundation (Cambridge, England)
Cooling fan CFZ-120F Ainex Co. (Higashifushimi, Japan)
Power supply P4K-80L Matsusada Precision Inc. (Kusatsu, Japan)

Function generatorPower supply

Speaker

Cooling fanController

Speaker

Accelerometer

Cooling fan
Top: abnormal
Bottom: normal

Cooling fan
Top: Abnormal
Bottom: Normal

(a) (b)

Figure 8. Experimental setup. (a) Overall setup; (b) Cooling fan and speaker.

Function
generator ControllerAccelerometer

Speaker

Cooling fan
Top: Abnormal

Power supply Bottom: Normal

Audio
amplifier

Figure 9. Block diagram of experimental setup.

Table 2 lists the hyperparameters of the ELM model. These parameters were de-
termined by searching multiple patterns, enabling the correct separation of normal and
abnormal conditions and obtaining a real-time performance.

Table 2. ELM model configuration.

Parameter Value

No. of input/output layer nodes 800
No. of hidden layer nodes 10
Activation Sigmoid
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6. Acoustic Injection Attack against MEMS Accelerometer

We evaluated the effect of acoustic/ultrasonic wave injection on the measured values
of the MEMS accelerometer ADXL345. This preliminary investigation shows that an
attacker can mimic abnormal vibrations (explored further in Section 7).

We recorded 1000 samples under the following attack conditions.

• Experiment to evaluate the effect of the frequency of acoustic waves: A function
generator generates signals while sweeping the frequency. The signal is input to
a speaker, and the generated acoustic waves are irradiated into an accelerometer.
First, a full-range speaker is used to evaluate the effect of injecting audible acoustic
waves (2700–3200 Hz). Next, we evaluate the effect of injecting ultrasonic waves
(25,300–25,800 Hz) using an ultrasonic speaker. The output voltage of the function
generator was set to the maximum allowable voltage of each speaker (P800K: 10 V,
CUSA-T601-150-2400-TH: 30 V).

• Experiment to evaluate the effect of sound pressure: The function generator generates
signals while sweeping the output voltage. The signal is input to the speaker, and
the generated acoustic wave is injected into the accelerometer. The frequency of the
injected acoustic waves is set to 3000 Hz with the full-range speaker. The signal voltage
input to the speaker is increased from 2 V to 10 V.

Figure 10 shows the frequency spectrum of the data acquired from the accelerometer
when both the cooling fans are stopped, where the horizontal axis indicates frequency and
the vertical axis indicates amplitude. When we checked 100 samples acquired under the
same conditions, the amplitude was below 0.015 at points other than 0 Hz. This suggests
that the accelerometer is affected by acoustic waves when the amplitude exceeds 0.015
under the attack.

Figure 10. Observed frequency spectrum while both cooling fans are stopped.

For the first experiment, Figures 11 and 12 show heat maps summarizing the second
peak in the frequency spectrum under irradiating audible acoustic waves (2700–3200 Hz)
and under irradiating ultrasonic waves (25,300–25,800 Hz), respectively. The horizontal
axis is the frequency of the injected acoustic wave, the vertical axis is the frequency of
the second peak occurring by the attack, and the color map represents the amplitude of
the peak. The second peak occurs at a frequency corresponding to the frequency of the
irradiating acoustic waves.
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Figure 11. Relationship between irradiated acoustic wave frequency (in audible range), observed
peak frequency, and amplitude.

Figure 12. Relationship between irradiated acoustic wave frequency (in ultrasonic range), observed
peak frequency, and amplitude.

For the second experiment, Figure 13 shows the observed frequency spectrum when
the input voltage of the speaker (sound pressure) is increased. Here, the horizontal axis
indicates frequency and the vertical axis indicates amplitude. The second highest peak
occurred at around 11 Hz by the attack (the first was at 0 Hz). As the signal voltage input
to the speaker increases, the peak amplitude increases. The peak’s frequency of occurrence
hardly changes, even when the sound pressure changes.
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Figure 13. Effects of sound pressure for observed peak amplitude (frequency of acoustic waves:
3000 Hz).

These results demonstrate that the attacker can choose the frequency and amplitude
of the peak by adjusting the frequency and amplitude of the irradiating acoustic waves.

7. Data Poisoning Attack against Anomaly Detector

In this section, we describe the result of a data poisoning attack on a multi-instance
anomaly detector. Our attack is evaluated using scenarios described in Figures 6 and 7.
This section is separated into three parts. First, we show the acceleration data collected
in normal and abnormal conditions. We introduce an attacker’s setup to mimic abnormal
acceleration by the acoustic injection attack and show the collected acceleration data. Next,
we show the behavior of the multi-instance anomaly detector under the no-attack scenario
(Figure 6). Finally, we show the behavior under the attack scenario (Figure 7).

7.1. Frequency Spectrums of Accelerometers in Each Fan State

Figure 14 shows a sample of collected acceleration data as a frequency spectrum. First,
we acquired acceleration data in the normal (Figure 14a) and abnormal (Figure 14b) states
described in Section 5. The difference between the frequency spectrum of these states is an
abnormal acceleration peak at 2.88 Hz due to the vibration caused by the weight attached
to the abnormal fan’s blade.

As described in Section 4 (especially in Figure 7), an attacker’s objective is to make the
anomaly detector have a new instance trained with acceleration similar to the abnormal
state. This instance is expected to output low error in the abnormal state. The attacker
irradiates acoustic waves to the cooling fan in the normal state (Figure 14a) during the
training phase and mimics the abnormal state (Figure 14b).

The results in Section 6 show that the attacker can reproduce the abnormal acceleration
peak by adjusting the frequency and sound pressure of the irradiating acoustic waves. We
set the output frequency to 2806.6 Hz and the voltage to 9.91 V on the function generator
and acquired acceleration data under the attack (the results in Section 6 show that the
accelerometer is more sensitive to the acoustic waves in the audible range than the ultrasonic
range; therefore, we set the function generator’s output frequency in the audible range, but
of course, this attack can also be performed using the ultrasonic range to hide from the
victim). Figure 14c shows the frequency spectrum of the attacked (poisoned) acceleration
data, and it is similar to the acceleration in the abnormal state.
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Figure 14. Samples of observed data. (a) Normal state; (b) Abnormal state; (c) Poisoned state.

7.2. Behavior of Anomaly Detector in No-Attack Scenario

We show the anomaly detector’s behavior in Figure 15, which was evaluated under
the no-attack scenario shown in Figure 6. The figure shows the anomaly detector’s behavior
and states of experimental environments. The two graphs on the top show the anomaly
detector’s error value and drift rate. The threshold θerror is defined at the first instance that
is trained. Typically, the threshold is assumed to be set outside the normal data distribution
with a margin; we manually decided on a provisional threshold (θerror = 4.25 × 10−10)
for the sake of convenience in our verification process. In actual operation, the threshold
should be decided automatically based on rules selected by the developer. The “fan state”
shows the state of the observation target equipment; the normal state is only the normal
fan rotation, and the abnormal state is only the abnormal fan rotation. The “speaker state”
shows the state of the attacker’s speaker; it does not activate in this experiment because
it is evaluated under the no-attack scenario. The “primary instance” shows an instance
that outputs the smallest error among all the instances. The primary instance’s error is
compared with the threshold θerror to distinguish whether the equipment’s state is normal
or abnormal, and the detection result is shown in the “inference result”.

The anomaly detector’s behavior is different in the training and inference phase. In
the training phase, normal data are expected to be observed, and the anomaly detector
trains a normal instance, where the normal instance means the instance is trained with
observed acceleration data in the normal state. Earlier in the inference phase, normal data
are observed. The prediction error of the normal instance is lower than the threshold θerror,
and the anomaly detector outputs the decision as “normal”. After that, abnormal data are
observed. The prediction error of the normal instance is higher than the threshold θerror,
and the anomaly detector outputs the decision as “abnormal”. This behavior shows the
anomaly detector correctly detects the target equipment’s “abnormal” state.
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Figure 15. Error and drift rate without data poisoning attack.

7.3. Behavior of Anomaly Detector in Data Poisoning Attack Scenario

We show the anomaly detector’s behavior in Figure 16, which was evaluated under
the poisoning attack scenario shown in Figure 7. The figure shows the anomaly detector’s
behavior in the same way as Figure 6. The error threshold is set as θerror = 4.25× 10−10—the
same as the previous experiment. The manufacturer sets a threshold value for drift detection
θdri f t by considering the target task; we set θdri f t = 2.0.

In the training phase, normal data are expected to be observed, and the anomaly
detector trains a normal instance. After that, the attacker activates the attack speaker, and
the anomaly detector observes acceleration from the poisoned state. The drift rate gradually
increases after the observed acceleration data changes to the poisoned state. A concept
drift is detected at the drift rate higher than the threshold θdri f t. After the concept drift is
detected, the anomaly detector makes a new instance (poison instance), trained with the
acceleration data observed in the poisoned state. The attacker turns off the speaker after
the poison instance is trained. The anomaly detector has normal and poison instances after
the training phase. Earlier in the inference phase, normal data are observed. The prediction
error of the normal instance is lower than the poison instance, which is also lower than the
threshold θerror, and the anomaly detector outputs the decision as “normal”. After that,
abnormal data are observed. The prediction error of the poison instance is lower than the
normal instance, and it is also lower than the threshold θerror. The anomaly detector outputs
the decision as “normal”. This behavior shows the anomaly detector does not detect the
target equipment’s “abnormal” state.

NormalFan state Abnormal
OFFSpeaker state

Primary instance
Inference result

Normal Poison
Normal

ON OFF
NormalPoison

TimeTraining phase Inference phase

𝜃!""#"

𝜃$"%&'
Detect concept drift 

Abnormal detection missed

Figure 16. Error and drift rate with data poisoning attack.
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8. Conclusions

In this paper, we conducted a security risk assessment of on-device learning Edge
AIs. We selected the ONLAD-based anomaly detector for the evaluation target. The ELM,
a lightweight training algorithm for NNs adopted in the ONLAD, enables the training
of autoencoders on resource-limited edge devices. In addition, the ONLAD adopted the
concept drift detection and multi-instance prediction for targeting more practical anomaly
detectors. We conducted a data poisoning attack against the anomaly detector using an
acoustic wave injection attack on a MEMS accelerometer.

We performed an experiment to tamper with observed acceleration by injecting audible
acoustic and ultrasonic waves into a MEMS accelerometer. In this experiment, we showed
that an attacker can generate a peak in a specific frequency and amplitude on the frequency
spectrum. Based on these results, we reproduced data observed from the abnormal state
by injecting acoustic waves into the normal state. An anomaly detector that is trained
with ideal normal data could detect normal and abnormal states correctly. On the other
hand, an anomaly detector that is trained with attack data detects the abnormal state as
“normal”. In other words, this attack prevents the anomaly detector from detecting the
specific anomaly intended by the attacker. This result demonstrated the threat of data
poisoning attacks against on-device learning Edge AIs. Our experiments considered the
case with a single normal state, but of course, the anomaly detector will work even when
there are multiple normal states. In addition, the attack discussed in this paper is effective
regardless of the number of normal states. The attacker only needs a malicious instance in
addition to normal instances.

We demonstrated a data poisoning attack with one of the typical cases of abnormal
data. In the future, we plan to demonstrate this attack on other abnormal detection
setups [32–34] to show this threat applies in various cases.

The threat of data poisoning attacks by tampering with input data is not limited to
accelerometers; indeed, it is expected to apply to all systems that use sensors. Similar
attacks threaten systems that blindly trust sensor data, like the anomaly detection system
we targeted. Considering the anomaly detector for factory machines, it is a concern
that the early detection of anomalies in machines may be hindered, which may degrade
maintainability and productivity. This attack threatens only on-device learning Edge AIs
because it assumes the attacker can create poison instances by exploiting on-device learning
functions; it can be targeted in NN models other than ELM. Since users and developers
cannot always control the training data in on-device learning Edge AIs, developing effective
countermeasures against such attacks is required.
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