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Abstract: The rapid growth in technologies for 3D sensors has made point cloud data increasingly
available in different applications such as autonomous driving, robotics, and virtual and augmented
reality. This raises a growing need for deep learning methods to process the data. Point clouds are
difficult to be used directly as inputs in several deep learning techniques. The difficulty is raised
by the unstructured and unordered nature of the point cloud data. So, machine learning models
built for images or videos cannot be used directly on point cloud data. Although the research in the
field of point clouds has gained high attention and different methods have been developed over the
decade, very few research works directly with point cloud data, and most of them convert the point
cloud data into 2D images or voxels by performing some pre-processing that causes information loss.
Methods that directly work on point clouds are in the early stage and this affects the performance and
accuracy of the models. Advanced techniques in classical convolutional neural networks, such as the
attention mechanism, need to be transferred to the methods directly working with point clouds. In
this research, an attention mechanism is proposed to be added to deep convolutional neural networks
that process point clouds directly. The attention module was proposed based on specific pooling
operations which are designed to be applied directly to point clouds to extract vital information
from the point clouds. Segmentation of the ShapeNet dataset was performed to evaluate the method.
The mean intersection over union (mIoU) score of the proposed framework was increased after
applying the attention method compared to a base state-of-the-art framework that does not have the
attention mechanism.

Keywords: deep learning; point cloud data; attention mechanism; 3D data

1. Introduction

Point cloud processing using deep learning methods has gained a lot of attention.
Point clouds are a set of data points in space to display 3D geometry. They have gained
popularity and wide usage in several domains. The rapid growth in 3D technologies and
3D sensors has made point cloud data increasingly available [1]. Additionally, the world
is in three dimensions, thus point clouds are a suitable format for representing the real
world in XYZ coordinates. The usage of point clouds extends to a variety of disciplines
and the 3D nature of point clouds makes them the appropriate format for autonomous
driving, robotics, virtual and augmented reality, heritage preservation, and many more
applications [2]. The availability of point cloud data has raised a need for advanced deep
learning methods to process 3D point clouds.

Deep learning techniques have been used to perform different kinds of processing on
image and video data [3–6]. Some deep learning techniques that have been applied to point
clouds include classification, detection and tracking, reconstruction, and segmentation [7].
For over 50 years, the segmentation of images has been the focus of several researchers.
The purpose of segmentation is to break an image into subregions with similar features,
and it has had a great impact on computer vision [7,8]. Point cloud segmentation has
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faced challenges due to the unstructured nature of the point cloud data and its highly
redundant and uneven nature [9]. Although various point cloud segmentation methods
exist, designing deep learning techniques for this purpose remains a challenging task.
Developing advanced methods in this field will improve the accuracy of computer vision
in 3D space for different applications.

Attention mechanisms have had a great impact on deep learning by improving the
accuracy of models and their performance [10]. Attention mechanisms help the models
concentrate on the most important features of input data [11]. There are several types of
attention mechanisms. One of the early applications of attention mechanisms in point cloud
data is the shuffle attention model [12]. A little research has been carried out on improving
the performance of point cloud convolutional neural networks (CNNs) with attention
mechanisms. Unlike pixel images, there have been few usages of attention mechanisms
directly applied to point cloud data [7]. The unstructured and unordered nature of point
cloud data causes each point to have specific importance, and using a processing approach
that evenly processes the points is not suitable.

Therefore, in this research, an attention mechanism is proposed for processing point
cloud data. The attention mechanism is directly applied to point cloud data without
mapping them to a continuous space. It learns the importance of points using training data
and places specific emphasis on each point. The proposed attention mechanism is added to
a network called ConvPoint [9]. The performance of the proposed method was compared
with the base method without the attention mechanism, i.e., ConvPoint [9]. Additionally,
the method was compared with other state-of-the-art methods.

The structure of this paper is as follows. Section 2 reviews the existing literature on
deep learning methods for point clouds and attention mechanisms. Section 3 explores the
proposed method and its components. Section 4 discusses experiments and results. Finally,
Section 5 concludes the paper.

2. Literature Review

For different applications, such as perception and localisation, which are key for
navigation in autonomous vehicles, visual data processing plays an important role [13].
Image data extracted from a camera are usually represented in 2D; however, the 2D data lack
the required geometric and volumetric information [13]. A point cloud is a representation
tool for 3D data. In this section, initially, deep learning methods for point clouds are
reviewed. Then, attention mechanisms in deep learning for images and point clouds
are discussed.

2.1. Deep Learning Methods for Point Clouds

A key challenge in point cloud processing is the inefficiency of traditional CNNs
in processing the original form of point cloud data [14]. The sparse, unstructured, and
unordered nature of point clouds makes the standard CNN architecture less effective. To
address these issues, refs. [15,16] proposed the pre-processing of point cloud data into
voxel representations or 2D images. Three-dimensional point clouds can be converted into
2D images using multi-view-based methods or into a 3D volumetric representation to be
processed by well-known 2D or 3D convolutional networks [7]. Although these methods
might ease the implementation, the loss of certain geometric information of the point cloud
data is the cost of this implementation. This significant gap represents a critical challenge in
the field and identifies a huge demand for approaches that can directly process point cloud
data without compromising its intrinsic characteristics. Our proposed method, which is a
point-based approach, addresses this limitation by leveraging the power of deep learning
to develop an architecture that preserves the original structure of the point cloud data, thus
maintaining important geometric and spatial information. The pointwise method does not
use any voxelization or other projection methods.

There are different types of pointwise methods. Pointwise MLP methods process
each point independently using shared multilayer perceptrons (MLPs). Then, the output
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features are aggregated (global aggregation) using an aggregation function. PointNet [17] is
a pioneering pointwise MLP method that uses max pooling for global feature aggregation.
It was improved by introducing a structure to extract global and local features to create
PointNet++ [14]. PointNet++ uses a max pooling method for local feature aggregation. The
dynamic graph CNN (DGCNN) [15] was proposed to aggregate local region information
using the feature of a centre point and the differences between the feature of the centre point
and the features of its k nearest neighbour points. DGCNN only considers the pair relation
for the centre point. PointWeb [16], a pointwise MLP method, was proposed to consider all
pairs of points in a local region using a module called adaptive feature adjustment (AFA).
One of the challenges of the pointwise MLP methods is their high computational cost.

Convolution-based methods for 3D point clouds are another group of deep neural net-
works that use specific convolution kernels to process 3D point clouds. Three-dimensional
discrete convolution methods are an important group of convolution-based methods, and
they use convolutional kernels on regular grids and the offset of each point to a centre point
to define weights for neighbouring points. For instance, Hua et al. [18] used uniform grids
to define convolutional kernels. They transformed 3D point clouds into uniform grids and
assigned the same weight to the points falling in the same cell or subdomain. The mean
value of the features of the points in a cell is multiplied by its corresponding kernel weight
and summed with the other weighted mean values on all other cells in the kernel domain
to calculate the output. In the spherical convolutional kernel proposed by Lei et al. [19],
multiple volumetric bins were created by partitioning a 3D spherical neighbouring region.
A learnable weighting matrix was assigned for each bin.

Three-dimensional continuous convolution methods are another group of convolution-
based methods for processing 3D point clouds. Despite the 3D discrete convolution
methods that consider discrete regions or domains, they used convolutional kernels on
a continuous space. The weights in the convolutional kernel for neighbouring points are
related to the continuous spatial distance from a centre point. For instance, RS-Conv [20]
uses an MLP to implement a convolution. The MLP is trained to map low-level relations
between input points such as Euclidean distance and the relative position to high-level
relations between points in the local subset. Then, the output of the MLP is used to calculate
the weighted sum over the given subset. ConvPoint [9] is another method that performs
convolution in two parts, namely the spatial and feature parts. The locations of the kernel
points are selected randomly from a unit sphere. The kernel points and the position of
input points are applied to an MLP to create kernel weights. The convolutional layer can be
used as a building block of complex networks. Different structures in the classical neural
networks can be used to design new network structures for point cloud processing. In
this project, an attention mechanism is used with a 3D continuous convolution method to
design a new network structure.

Wang et al. [8] addressed one of the critical limitations, the inability of discrete CNNs
to handle the unstructured nature of point cloud data, thus proposing a framework that
generalises discrete CNNs to deal with point clouds. While [8] made progress in adapting
CNNs to process point cloud data, the framework faces challenges in handling large-
scale, real-time point cloud data, which is critical for many practical applications. The
performance of this framework in scenarios with varying point densities or occlusions
remains unclear. Our work is expected to build upon this framework to reduce some
of the limitations and to improve point cloud processing in real-world applications and
dynamic environments.

2.2. Attention Mechanisms in Deep Learning Methods for Images

Attention mechanisms have improved image segmentation significantly; however,
their applications in point cloud data have been limited. There have been promising
applications of attention mechanisms in 2D image processing. Approaches applied to 2D
images include spatial channel attention [10], shuffle attention [11], and the convolution
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block attention module [21]. These approaches have improved model performance by
effectively capturing channel dependencies and pixel-level relationships.

Using image-based attention mechanisms directly on 3D point cloud data has been
faced with challenges. Often, preprocessing or data conversion is required, leading to
potential data loss. Additionally, the unique spatial structure of the 3D point cloud data
may not be fully leveraged.

Our work aims to bridge this gap by developing attention mechanisms designed
to work on 3D point cloud data. This framework will address the challenges caused
by the unstructured nature of point cloud data while maintaining the advantages of
attention mechanisms.

2.3. Attention Mechanisms in Deep Learning for Point Clouds

Yang et al. [22] proposed the attention-based point network (AttPNet), a network that
utilises attention mechanisms to perform channel weighting and global feature masking
on feature areas. AttPNet has two branches, where one branch deduces global features
from point sets using convolutional layers to create a channel attention block focusing on
the key channels of the data. The other branch performs the calculation of an attention
mask for every point. Subsequently, the authors designed a point cloud dataset of electron
cryo-tomography (ECT) and used these data to show the AttPnet’s capacity of handling
fine-grained structures. The authors aimed to design a model that handles fine-grained
structures. The attention mechanisms use the MLP. Additionally, they only use the features,
and the exact position of the points was not applied to the MLP. In our research, a point
cloud convolutional layer that accepts the position of the input points in addition to the
input features is used to design an attention mechanism.

Hu et al. [23] introduced an attention-based module for extracting local features in
their semantic framework for point cloud data labelling. Although this design achieved a
modest output, it had limitations in fully utilising geometric calculations of neighbouring
points. Deng and Dong [24] designed a global attention network for point cloud seg-
mentation to address the problem of learning long-range dependencies from 3D point
clouds, which has been a challenging problem in the processing of 3D point clouds. The
global attention network, or GA-Net, comprises a global attention module that is point-
independent and another global attention module that is point-dependent for gathering
background information on 3D points. Both [25,26] made significant progress in utilising
geometric calculations of neighbouring points and learning long-range dependencies but
face limitations in balancing computational complexity with performance.

Several researchers focus on spatial encodings whilst ignoring the channel relation-
ships, making feature learning insufficient. Hence, the lightweight attention module (LAM)
was developed in [27] to improve the performance while adopting a new convolutional
function and introducing a channel-based attention mechanism. However, its integration
with existing networks may not fully exploit the unique properties of point cloud data.

One of the issues with working with point clouds is the inability to fully utilise
the geometric information of neighbouring points. This prompted Feng et al. [28] to
propose and design the local attention–edge convolution (LEA-Conv) layer. This layer is
an extension of the works proposed in [14,15,29]. The LAE-Conv model builds a graph of
neighbourhood points along several routes. Consequently, a search strategy was proposed
in [28] to use a multidirectional search to find all points in the neighbourhood across
16 directions systematically within a ball query to generalise the local geometric shape
over the space. Additionally, a pointwise spatial attention block was proposed to capture
information in the spatial dimension. The output features of the LEA-Conv layer were
applied to the spatial attention block to create outputs that capture the spatial dependency
of the points. The spatial attention block does not consider the correlation in the different
channels. In this research, a channel attention mechanism is proposed.

This review highlighted the importance of attention mechanisms on model perfor-
mance. A critical gap exists in designing attention mechanisms that work directly on the



Sensors 2024, 24, 6446 5 of 15

geometric information contained in 3D point cloud data. These attention mechanisms will
significantly improve the accuracy of existing 3D point CNNs.

3. Methodology and Framework

This section covers a brief description of ConvPoint [9], which is used as the base
of the proposed method after a discussion of the problem statement. The point cloud
convolutional layer in [9] is used as a base method in this research because it is a convolution
method that directly processes point clouds. It does not have an attention mechanism.
Moreover, its output is also point clouds. Therefore, its output has an acceptable format
that can be applied to the proposed attention mechanism in this paper, which is designed to
directly work on point cloud data. The proposed attention mechanism will be introduced
in Section 3.3. Lastly, the final network structure will be discussed.

3.1. Problem Statement

In this research, a method is proposed to enhance the performance of ConvPoint [9]
with a spatial attention module that is inspired by the convolutional block attention module
(CBAM) [21]. ConvPoint is an oversimplification of a discrete convolutional neural net-
work [9]. The CBAM is an attention module for the usual convolutional neural networks
used for normal data such as images [21]. The structure of point cloud data is different
from the usual data produced by a classical convolutional layer and consequently, it needs
a new attention mechanism. In this research, we design a channel attention mechanism to
boost the performance of ConvPoint [9].

Suppose a convolutional layer works directly on point clouds. The layer has a kernel
function and an input in the form of point clouds. In the convolutional layer for point clouds,
the following kernel K and input P that have compatible dimensionality are used: K ={
(ci,wi),ci ∈ R3,wi ∈ Rn, i ∈ J1, |K|K

}
and P = {(p,x)} =

{
(pi,xi

)
,pi ∈ R3,xi ∈ Rn, i ∈ J1, |P|K

}
,

where |K| is the number of elements in the kernel and |P| shows the size of the input set,
i.e., the number of points that are in the input set P. The convolutional layer for point
clouds accepts point cloud data composed of several input points and corresponding
features, i.e., P = {(p, x)}, where x is an n-dimensional feature from the input feature space
corresponding to an input point, i.e., p in the 3D space. The convolutional layer uses the
kernel K to create an output composed of the place of the output points, i.e., q, and their
features (y), i.e., Q = {(q, y)} =

{
(qi, y i

)
, qi ∈ R3, yi ∈ Rn, i ∈ J1, |Q| K

}
.

3.2. Continuous Convolutions for Point Cloud Processing (ConvPoint)

A continuous convolutional layer was proposed in [9] by adjusting the discrete con-
volutional layer used for the common 2D image datasets to process point cloud data. The
following two operations are performed in ConvPoint [9] to map the input P to the output
Q: 1—point selection, and 2—convolution on point sets.

(a) Point selection.

Each point q in the output set, Q = {(q, y)}, is selected randomly from input points
that are in P = {(p, x)} using the random method in [9]. A score is allocated to each input
point and whenever a point is selected randomly, its score is increased by 100. Additionally,
the scores of its neighbour points are increased by 1. Increasing the scores of a selected
point and its neighbour points reduces their chance of being selected in the next selection
procedure. This method is used to give a chance to all points to be selected and to reduce
the probability of selecting repeated points. The selection procedure is continued until the
required output points are selected.

(b) Convolution on point sets.
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After selecting the output points, for each output point q, the k-d tree method [9] is
used to find local neighbour points in P = {(p, x)} to create a subset of points for each q.
Then, point convolution is applied to the subset of points using (1).

y = β +
1
|P|

|P|

∑
j=1

|k|

∑
i=1

wixj f
(

pj − c
)

(1)

where β is a bias parameter, 1
|P| is used to reflect the input set size to have robustness

against input size variation, and f (.) is a geometrical weighting function to distribute the
input P = {(p, x)} onto the kernel K = {(c, w)}. It accepts the relative distance between
each input point p and all the kernel elements {c}, i.e., pj − c, to create a weight in R
corresponding to an input point as shown in (2).

f : R3 ×
(
R3

)|K|
→ R (2)

A simple neural network, i.e., the multilayer perceptron (MLP), is trained to act as
f (.). The MLP is used to build the general function f (.), as this approach is easier than
building the general function from scratch. For each kernel in the convolution operation,
spatial and feature parts were processed independently. The parameters were optimised
using gradient descent during training.

The locations of the kernel elements {c} are initialised by randomly selecting them
from the unit sphere. Training parameters of the convolutional layer, i.e., {c} and {w}, and
the training parameters of the MLP are optimised using the gradient descent method.

3.3. The Proposed Attention Mechanism for Point Cloud Continuous Convolutional Layer

In this research, the attention module proposed in [21] for the common convolutional
layer inspired us to design an attention mechanism for the point cloud convolutional
neural network described in Section 3.2. A channel attention mechanism for the continuous
convolutional layer for point clouds (ConvPoint) is proposed in this research. The proposed
attention mechanism is designed to perform different operations such as average pooling
and max pooling operations on point cloud data extracted from a ConvPoint layer.

In the proposed attention mechanism, an input feature map is converted into a channel
attention map using the proposed method. The process of channel attention is given by (3).

F′ = Mc(P)
⊗

P (3)

where P = {(p, x)} is the input to the attention block, which is produced from its previous
ConvPoint layer,

⊗
denotes multiplication of the elements, and Mc(.) is a channel attention

mechanism. As the input of ConvPoint is composed of two parts, i.e., p and x, in this paper,
a mechanism was proposed to deal with the two parts of the attention mechanism.

First, pooling operations, i.e., max pooling and average pooling, were applied to the
features X =

[
x1x2 . . . x|p|

]
, where xi ∈ Rn for i ∈ J1, |P| K, Xmax ∈ Rn, and Xmean ∈ Rn are

created after the max pooling and average pooling on the features related to the |P| input
points. Then, the results are concatenated as shown in Figure 1 using (4).

Xc = C(X max, Xmean) (4)

where C(.) is the concatenation function combining the two inputs with a size of (1, n) to
create a concatenated output with a size of (2, n).
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pooling, average pooling, the ConvPoint layer, and sigmoid operations, respectively. The C stands
for concatenation.

In the next step, we propose to perform pooling on the points in the input points, i.e.,
Pts =

[
p1p2 . . . p|P|

]
, where pi ∈ R3 for i ∈ J1, |P| K to create two points in the 3D space

corresponding to the two features extracted from max and average pooling. The results
for the two operations on Pts are Ptsmax ∈ R3 and Ptsmean ∈ R3. The two vectors are
concatenated using (5).

Ptsc = C(Pts max, Ptsmean) (5)

Ptsc has an appropriate size of (2, 3) to be combined with Xc to create an input Pc to
be applied to a ConvPoint layer, as shown in Figure 1. After passing the pairs of Ptsc and
Xc to the Conv layer, the output will be passed to a σ function using (6).

Mc(P) = σ(ConvPoint(Ptsc, Xc)) (6)

The output of the attention block, i.e., Mc(P), is obtained by multiplying by the original
input P using the element-wise multiplication in (3) and the results F′ will be added to the
original input.

3.4. The Network Structure

The network used in this project has a structure similar to U-Net, used in [9] for seg-
mentation. The original network without the attention mechanism is given in Figure 2. The
network is composed of two main parts, an encoder and a decoder. There are six ConvPoint
layers in the encoder. Each ConvPoint layer is a part of six blocks, demonstrated in Figure 2,
given by a number from (1) to (6). The output of each ConvPoint layer comprises point
cloud data and it has two parts, i.e., the position of the points Ptsi and the corresponding
features, i.e., Xi. The proposed attention module is applied to the network in different parts
to find the best locations for the attention mechanism. For instance, it is applied after the
final layer in the encoder just before entering the decoder, i.e., Pts6 and X6. The results
were demonstrated in Section 4. The point cloud convolutional neural network with the
proposed attention is called PointCloud-At.

Since input point clouds are given in different sizes, 2500 points are selected randomly,
and the label of every point in the input is determined as output for segmentation. Cross-
entropy loss is calculated for each point and the scores at the shape level are calculated
accordingly. The scores for the network are the instance average intersection over union
(mIoU) [9].
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4. Experiments and Results

Different experiments were carried out on the ShapeNet dataset [30] to thoroughly
evaluate the proposed channel attention mechanism on point cloud data. These and the
results are discussed in this section. The dataset is also described in Section 4.1.

4.1. Dataset

The proposed attention mechanism is evaluated on the ShapeNet dataset [30], which
contains point clouds. Different experiments were run to evaluate the attention mechanisms
from different perspectives of the ShapeNet dataset [30]. The ShapeNet dataset is a rich
annotated 3D representation of shapes. It provides semantic annotations. The ShapeNet
dataset contains 16,680 models that belong to 16 shape categories. These categories are split
into training and testing sets, with each category annotated with two- to six-part labels.
Thus, it has around fifty (50) classes [9].

4.2. Experiments

To evaluate the proposed attention module, we modified the attention module by
positioning it in several areas in the network, including the skip connections. The results
were compared with the results of the base method described in Section 4.3.

In the first experiment for the proposed method, the proposed attention mechanism is
applied between the encoder and decoder of the network, which is a U-net. The proposed
attention module shown in Figure 1 is applied on the final layer of the encoder, i.e., Pts6
and X6. The matrix shape of the output of each operation is shown in Figure 1. After
completing these operations, the training was run for 10 epochs. There is an improvement
in the mean intersection over union (mIoU) score compared to the score of the original
network without the proposed attention module.

In the next step, we applied the attention module on (Pts6, X6) and (Pts5, X5), i.e., the
outputs of blocks 6 and 5 in Figure 2. The improvement in this was higher compared to
the previous experiment, hence making it a better technique. Results are shown in the
following sections. The best model was found, and it was trained for 200 epochs to be
compared with the base method that was trained for the same number of epochs.

4.3. The Results of the Base Method

Initially, the base network in [9] was evaluated before applying the proposed atten-
tion module. The base method, i.e., ConvPoint, has shown a competitive performance
compared to state-of-the-art methods [9] when it trains for 200 epochs. The framework is
ranked amongst the best five frameworks (ranked number four) for both mean class inter-
section over union and mean intersection over union (mcIoU and mIoU) on the ShapeNet
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dataset [9]. We initially trained the base method for ten epochs using the initial set, and the
final mean intersection over union (mIoU) for all shapes was 80.3% (Table 1).

Table 1. The performance of the proposed method when the attention mechanism is added in
different positions of the base network, which is compared with the base method, i.e., ConvPoint [9].
The training was performed for 10 epochs for all the methods.

Network/Attention Number of Epochs mIoU Score

Base method 10 80.3%
(Pts6 , X6) 10 80.5%
(Pts5 , X5) 10 80.4%
(Pts4 , X4) 10 80.39%

(Pts6, X6) and (Pts5, X5) 10 81.45%
(Ptse5 , Xe5) 10 80.30%

4.4. The Results of the Proposed Method

The proposed point cloud convolutional neural network with attention, called the
PointCloud-At method, was trained for ten epochs like the base method for a fair compari-
son. A low number of training epochs was used to reduce computation time while testing
different situations to find appropriate hyperparameters/structures.

In the first experiment, we applied attention to (Pts6, X6) and a score of 80.5% for
the mIoU on all shapes was achieved. Secondly, we applied the attention mechanism to
(Pts5, X5), which gave a mIoU of 80.4%. In the next experiment, the proposed attention
module was applied to (Pts4, X4), and a mIoU score of 80.39% was achieved. Although
different experiments showed improvement in the results compared to the base model,
different combinations are tested to obtain a better score. Hence, the attention module is
applied to the following outputs of the ConvPoint layers: (Pts6, X6) and (Pts5, X5). The
mean intersection over union (mIoU) score of 81.45% was achieved, which is a better
improvement compared to the previous cases. The results are given in Table 1.

In the next experiment, the attention mechanism was applied to the escape connection
that connects the output of the fifth ConvPoint layer in the encoder to the corresponding
layer in the decoder (Figure 2), i.e., (Ptse5, Xe5). A mean intersection over union score
of 80.30% was obtained, which is close to the score of the base method, as shown in
the last row of Table 1. The simulation results in Table 1 show that attention modules
applied to (Pts6, X6) and(Pts5, X5) simultaneously could reach the best results. In the next
experiments, the proposed method with the best results was trained for 200 epochs and
compared to the base method trained for the same number of epochs (Table 2). Additionally,
we explored using median pooling instead of max pooling, and the results are reported in
the last row of Table 2.

Table 2. Comparison of the proposed method with the base method when they are trained for
200 epochs. The attention mechanism was applied to (Pts6, X6) and (Pts5, X5).

Network/Attention Number of Epochs mIoU Score

Base method 200 83%
Proposed method 200 84.2%

Proposed method using median pooling 200 84.2%

In our research, we initially used max pooling in our attention mechanism; this is
a common practise in many deep learning and attention mechanism architectures. We
thought that different pooling operations might capture different aspects of the point cloud;
hence, we explored median pooling. Unlike max pooling, which selects the maximum
value, median pooling measures and selects the middle value. Using both max and median
pooling resulted in the same score, showing that they both can perform on the same level in
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this case, providing flexibility on which operation to use. Obtaining the same score further
indicates the robustness of our attention mechanism and its stability.

4.5. Comparison with State-of-the-Art Frameworks

Having carefully studied the quantitative results of various frameworks, as reported
in [31], ConvPoint [9] has shown a comparative performance compared to the state-of-
the-art methods. In this paper, an attention mechanism was proposed to improve the
performance of ConvPoint [9]. The comparison of the proposed method with the other
state-of-the-art methods is shown in Table 3. The results in Table 3 show that the proposed
method in this research equates to several frameworks in some cases or outperforms them
in other cases.

In this research, an attention mechanism was proposed to be added to existing CNNs
for point clouds. The proposed attention mechanism was integrated into a recent method
called ConvPoint [9], enhancing the method’s ability to focus on points containing im-
portant information. Consequently, the proposed method increased the mIoU score of
ConvPoint [9] from 83.2 to 84.2.

Seventeen SotA methods are compared with the proposed method in Table 3. The
proposed method has an accuracy higher than 15 SotA methods. While the base method,
i.e., ConvPoint [9], has a mIoU score lower than SubSparseCN [32] and SPLATNet [33],
applying the proposed attention method increased the accuracy of the proposed method to
a value higher than the accuracies of SubSparseCN [32] and SPLATNet [33] that shows the
effectiveness of the proposed method. The result in Table 3 shows the importance of the
attention mechanism in deep neural networks and that applying the attention mechanism
method to the other SotA methods can improve their accuracy.

Table 3. Comparison of the proposed method, i.e., PointCloud-At, with state-of-the-art methods.

Network mIoU Score

PointCloud-At 84.2
SyncSpecCNN [34] 82.0

Pd-Network [35] 82.7
3DmFV-Net [36] 81.0

PointNet [17] 80.4
PointNet++ [14] 81.9

SubSparseCN [32] 83.3
SPLATNet [33] 83.7

SpiderCNN [37] 81.7
SO-Net [25] 81.0
PCNN [38] 81.8
KCNet [26] 82.2
RSNet [39] 81.4

DGCNN [15] 82.3
SGPN [40] 82.8

PointCNN [41] 84.6
KPConv [42] 85.1

ConvPoint [9] 83.2

Although KPConv [42] achieves the highest accuracy, it has a higher computational
cost compared to the proposed method. The model size of KPConv was reported in [42].
The report shows that KPConv has 14.2 M parameters. However, the number of parameters
in the proposed model is 1.3 M, which is much lower than the number of parameters
in KPConv. The result shows that the number of parameters in the proposed model is
about 11 times less than that of KPConv. The lower number of parameters in the proposed
method makes it suitable for edge devices with limited computational resources and
memory. Additionally, the low number of parameters reduces energy consumption. The
results are shown in Table 4.
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Table 4. Comparison of the number of parameters of the proposed method with KPConv [42], the
method that achieves the highest accuracy.

Network Number of Parameters

PointCloud-At 1.3 M
KPConv [42] 14.2 M

The proposed method uses a simple and efficient convolutional layer tailored for point
clouds, and it is lightweight. It uses one kernel weight for each kernel point. However,
KPConv [42] has a complex kernel filter, and each kernel point has a set of weights. Conse-
quently, KPConv has a higher number of parameters compared to the proposed method.

5. A Discussion of the Applications of Point Cloud Processing

There is a growing demand for point cloud data processing in various applications
that depend on 3D sensor data. Point cloud processing is a powerful tool with a wide
range of applications across different scenarios in autonomous driving, robotics, virtual
and augmented reality, medical imaging, digital surface modelling, automated building
extraction, urban planning and visualisation, geographic information systems (GISs), and
3D modelling. The classification of dense point cloud data has been critical in creating
detailed 3D models that have improved urban planning and development, medical imaging,
autonomous driving, and many other fields.

Kurdi et al. [43] have used light detection and ranging (LiDAR) sensors for remote
sensing applications. They demonstrated the potential of point cloud processing in urban
planning. The authors proposed a method for automatic building point cloud filtering. The
method divides building point clouds into different zones and extracts high tree crowns
obstructing building structures. This application highlights the importance of processing
point clouds extracted from 3D sensors for solving complex issues faced in urban planning,
environmental management, and disaster management.

Maltezos et al. [44] explored point cloud processing in identifying several urban
features. This work focused on improving the performance of building classification and
extraction from densely populated areas, highlighting the technology’s ability to handle
complex urban environments. Furthermore, ref. [45] discussed how the automation of
extracting buildings from LiDAR data streamlines the creation of digital surface models
(DSMs). Their work emphasises that such automation is vital for a range of applications,
from smart city development to cartographic analysis, and it shows the wide impact of
point cloud processing in urban planning and geospatial intelligence.

These applications collectively highlight the importance of point cloud processing in
modern life. For instance, by providing detailed and accurate 3D representations of complex
environments, this technology supports more informed decision-making in infrastructure
management and urban planning, paving the way for smarter and more efficient cities in
the future.

6. Conclusions, Limitations, and Future Work

This research proposed a deep point convolutional neural network for point cloud data
using an attention mechanism. The study used an attention mechanism designed for point
clouds to improve the performance of the network. The attention mechanism works using
a channel attention module. The channel attention module was proposed specifically for
point cloud data with inspiration from the CBAM [21] which is for ordinary convolutional
layers acting on regular matrices (2D images). The proposed method overcomes the
difficulties in processing scattered point cloud data compared to usual image or voxel data,
which have regular shapes. In the proposed attention method, average pooling and max
pooling are performed on the points in 3D space to focus on the informative parts of the
data. Through several experiments and evaluations, we have shown that our proposed
method enhances the performance of the base framework.
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In this research, we designed a channel attention mechanism to boost the performance
of ConvPoint [9]. The proposed method uses a max pooling operation on both the features
and the positions of its input points in the 3D space. Additionally, it uses average pooling
on the features and the position of its input points. The two operations create two points
in the 3D space with their corresponding features. Then, the two points are applied to a
ConvPoint [9] layer to create the outputs of the attention block. The ConvPoint [9] layer is
a convolutional layer that is designed to operate on point clouds. Therefore, the proposed
attention mechanism not only has a specific pooling operation on the input points (features
and location of the inputs) but also contains a ConvPoint [9] layer that extracts appropriate
outputs for the attention mechanism to be multiplied by the original input. Note that the
proposed attention mechanism has learning parameters in the ConvPoint [9] layer, and
they are adjusted during training to create a reliable attention mechanism using the training
data. The proposed attention module is applied to the U-Net in different parts. These
unique properties make this method different from other attention mechanisms, such as
the method proposed in [28].

In [28], a convolutional layer called LAE-Conv layer was proposed to apply to point
clouds. Whereas the ConvPoint [9] layer was used in our approach as a base method, in [28],
a pointwise spatial attention module was proposed to capture the global dependencies.
They used MLP layers in the attention block. Only features of the points are applied to
the MLP and the positions of the points were not used. However, in our method, a new
channel attention mechanism was proposed to put appropriate weights on the channel
of the input point clouds. Additionally, it uses a ConvPoint [9] layer (instead of an MLP)
inside the attention block that considers the position of the input points in addition to their
features. The proposed attention block is designed in such a way that can be used with
different convolutional layers to determine an output that corresponds to the importance
of each channel.

In this project, ConvPoint [9] was used as the base method. ConvPoint [9] is an
end-to-end deep neural network for classification and segmentation. To the best of our
knowledge, there was not a report of sensible failure in the base network. Our proposed
attention mechanism was added to this base model, and we did not see any sensible failure
case. Understanding the failure case is important, especially in generative models, such
as generative adversarial networks (GANs), where two networks compete [46]. If the
proposed method is used as a generator of a GAN in future work, then the failure cases
need to be analysed.

Adding the proposed attention method to a base method improved its performance
compared to the base method. The proposed method was compared with other state-of-the-
art (SotA) methods. While the proposed framework does not significantly outperform all
existing SotA methodologies, it does achieve a competitive result, matching and surpassing
many established frameworks; this shows that the proposed method is valid and contributes
meaningfully to the field. It shows clear improvement over the base method, indicating that
the attention mechanism does enhance performance. It is designed to be easily integrated
into existing point cloud CNNs, allows easy adoption in various architectures, and works
directly on the point cloud.

The proposed attention mechanism uses max and average pooling operations, and the
pooling operations enhance feature aggregation. The max pooling captures the most promi-
nent features, which helps the network focus on the critical areas of the data. The average
pooling reduces noise and improves generalisation, making the proposed approach better
than existing ones. With the proposed method, the key aspects of the data are captured.

Whilst the proposed attention model used average pooling and max pooling along
the channel axis to extract what the informative and vital inputs are, it did not explore the
spatial axis to extract where the key elements are. Hence, it guides the framework to which
channel to look in; however, it does not direct the network to where the vital elements are in
space. Adopting a spatial attention module to enhance the framework is worth considering
in future work. This will help the framework to focus on where in the space is important in
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the input point cloud features. Additionally, as the proposed attention method is designed
to directly work with point cloud data, it can be applied to other different deep neural
networks that are working directly with point cloud data.
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