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Abstract: Kidney diseases are a group of conditions related to the functioning of kidneys, which are
in turn unable to properly filter waste and excessive fluids from the blood, resulting in the presence of
dangerous levels of electrolytes, fluids, and waste substances in the human body, possibly leading to
significant health effects. At the same time, the toxins amassing in the organism can lead to significant
changes in breath composition, resulting in halitosis with peculiar features like the popular ammonia
breath. Starting from this evidence, scientists have started to work on systems that can detect the
presence of kidney diseases using a minimally invasive approach, minimizing the burden to the
individuals, albeit providing clinicians with useful information about the disease’s presence or its
main related features. The electronic nose (e-nose) is one of such tools, and its applications in this
specific domain represent the core of the present review, performed on articles published in the last
20 years on humans to stay updated with the latest technological advancements, and conducted
under the PRISMA guidelines. This review focuses not only on the chemical and physical principles
of detection of such compounds (mainly ammonia), but also on the most popular data processing
approaches adopted by the research community (mainly those relying on Machine Learning), to
draw exhaustive conclusions about the state of the art and to figure out possible cues for future
developments in the field.

Keywords: artificial intelligence; breath analysis; electronic nose; e-nose; GC-MS; kidney disease;
pattern recognition; VOCs; volatile organic compounds; volatilomics

1. Introduction

Kidneys are vital human organs whose main tasks relate to the filtering of fluids and
waste out of the blood. A number of conditions are known to affect the kidneys, including
those that impact their ability to clean the blood passing through them, with consequences
for various entities at the organ level or even affecting other parts of the human body.
Such conditions can lead to chronic kidney disease (CKD) or kidney failure [1]. CKD is a
common condition, with an estimated prevalence of 13.4% globally [2], increasing with age
and more prevalent in specific communities and ethnic groups, like African Americans and
south Asians [3]. In their early stages, CKDs are mostly asymptomatic, whereas a handful
symptoms can develop later, including hematuria (blood in the urine), sickness, tiredness,
fatigue, shortened breath, and swollen joints, including hands, ankles, and feet. There are
manifold possible causes for CKD occurrence, but the condition is often a combination of
different health-related problems, including hypercholesterolemia, diabetes, hypertension,
renal infections, or long-term usage of specific medicines, including lithium-based or
non-steroidal anti-inflammatory drugs (NSAIDs). Actually, there is no cure to completely
solve CKD in humans; however, its early detection, normally performed by urine or blood
tests, can steer affected individuals towards the adoption of healthy lifestyles to delay
complications associated with the disease. In more advanced stages, the detection of CKD
occurrence can lead general practitioners and specialists to propose the patient tailored
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treatments, including medicine administration, dialysis, or, mostly in severe cases, kidney
transplantation (see Figure 1).
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Like other renal disorders, CKD, preventing blood from being properly cleaned,
leads to the accumulation of toxins in the human body, resulting in marked differences
in the chemical composition of body fluids, including blood, urine, and saliva. In fact,
the occurrence and progression of the disease is normally associated with significant
biochemical changes, and this is normally matched by important modifications to the
volatile organic compound (VOC) patterns associated with exhaled breath composition [4].
Such occurrence can be exploited to design and implement innovative tools for monitoring
the presence of CKD both at early stages—therefore, with diagnostic purposes—and also
when the disorder is already diagnosed, with the aim of monitoring its progression. Recent
technological advances in this regard are devoted to providing tools featuring minimal
invasiveness for patients, reducing their burden and, at the same time, providing an
affordable solution for healthcare providers. As such, electronic nose tools may represent
a useful solution thanks to their adaptability, unobtrusiveness, and increasingly high
performance, also taking advantages of the enhanced computational capabilities and results
of modern artificial intelligence (AI) models [5,6]. Their deployment in various applications
within the healthcare sector is already popular and is continuously gaining momentum;
however, a systematic review of their use in the specific field of breath monitoring of
individuals with CKD could represent a significant addition to current knowledge, possibly
enabling the identification of strengths and existing gaps from technological and medical
perspectives, therefore leading to useful cues for future developments in the field.

2. The Electronic Nose
2.1. The Historical Perspective: From the Ancient Age to the Modern Era

The tools nowadays known under the name of electronic nose (e-nose) represent a
technological translation of the paradigm related to the biological sense of smell. Notably,
the sense of smell is one of the five senses human beings use to perceive reality. It was
already considered pretty important in ancient times, where the relationship between
different kinds of body odors and pathological conditions was observed; however, due
to the fact that human beings have evolved throughout the centuries towards a decrease
in olfactory sensitivity, until some decades ago, together with the sense of taste, it was
considered a neglected sense by clinicians and biomedical scientists [7], until its relationship
with cognitive and neurological disorders was discovered (see [8] for an example). At
that point, biomedical research on the importance and functioning of the sense of smell
accelerated, also enabling important milestones across the fields of medicine and physiology,
due to the discovery of mechanisms like the functioning of olfactory receptor cells, which
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turned out to be useful not only from a merely clinical perspective, but also in a different
domain, namely, technological advancements.

Within this virtuous pathway of knowledge, in early 1980s, Persaud and Dodd, in the
United Kingdom, conceived and realized the first “modern” e-nose tool. This precursor of
actual e-nose systems included a sensing part, composed of three metal oxide sensors, and
an intelligent portion, according to the knowledge of that time, and was initially capable of
discriminating and identifying a remarkable set of odorants (up to 20) under controlled
experimental conditions [9]. In the following years, various groups started working in
the field, taking advantage of new sensing materials and algorithms for data processing
and interpretation, with Gardner and Bartlett finally producing the term “electronic nose”,
or e-nose, to link the approach to the biological counterpart related to the functioning
of the sense of smell [10]. This has become better realized as, thanks to technological
developments occurring year by year, the sensing part and the intelligent part of the system,
composed of data processing and data interpretation, have been scaled up, each of them
contributing to the full operativity of such a system. In such a framework, modern e-
nose tools are made up of some key components, including a sensing part, represented
by a fully functioning sensor array, of different sizes and characteristics, with different
sensors usually presenting different selectivities for the various chemical compounds
representing the target of analysis, and a technological part (usually a computer, or a
similar, miniaturized device) for data storage and processing. Such a structure represents a
straightforward parallelism with the biological sense of smell, where sensors are matched
by olfactory receptors, placed at the olfactory mucosal level, and the computer represents
the intermediate (olfactory bulb, matched by clustering methods) and upper (olfactory
cortex, whose technological counterpart is represented by data interpretation models) parts
of the extremely complex olfactory pathway using a merely reductionistic approach (see
Figure 2) [11]. However, it should be still kept in mind that, despite significant technological
advancements in the field, the performance gap between the biological and technological
sense of smell is still largely present, due to space and technology constraints; however,
leveraging on new techniques and methodologies, including those based on AI, would
make this gap always less pronounced, until the systems could even match each other in
terms of performances [12].
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After a while, the first commercial devices, at first represented by the sensing part as a
standalone solution, then going towards complete e-nose tools, started to appear on the
market as soon as the early 1990s, mainly thanks to the AlphaMOS devices, followed by
other competitors, somewhat promoting diversification, also in terms of the technology
adopted for their development, some of which has arrived fairly recently. As such, as
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technological solutions appeared, a plethora of use cases started to enter the research
and development market, including those for human breath analysis for the diagnosis of
pathological conditions [13], the assessment of food quality [14], environmental monitor-
ing concerning the presence of certain pollutants in air or water [15], as well as specific
applications dealing with security and defense [16,17], highlighting the potential of e-nose
systems in various fields of application.

2.2. The e-Nose Sensing Part: Principle of Operation

As outlined above, odor receptors, embedded within the olfactory mucosa, are
matched, in their technological counterpart, by arrays of sensors, which are usually very
sensitive, although poorly specific, to the volatile compounds of interest. Such devices
should be capable of detecting very subtle traces of chemicals present in ambient air, sim-
ilarly to what is performed by olfactory receptor cells in humans and animals [18], in
turn delivering their signals throughout the olfactory pathway up to the olfactory bulb
for “odotopic” characterization. The development of this part of e-nose systems should
be performed taking into account some typical technological constraints due to power
consumption, management of the whole system, and proper dimensioning of the related
parts, which makes it impossible to fully replicate a natural sense of smell, composed
of millions of olfactory receptor cells, which are mapped through arrays of sensors that
typically number in the tens, if not even less. Such a constraint highlights the importance
of the intelligent part of the e-nose system even more; pattern recognition algorithms
and artificial intelligence (AI)-based models should guarantee high performance even in
presence of a relatively limited number of signals and stimuli.

Throughout the decades and up to the present, the different technologies employed to
realize the sensing part of the e-nose system include MOS sensors, which are probably the
most widely used; metal–oxide–semiconductor field-effect transistor sensors, commonly
known as MOSFET sensors; optic fiber sensors; solid electrolyte sensors; conductive organic
polymers; and mass-sensitive sensors, each one of which features important positive
characteristics and significant drawbacks (see Table 1 for a quick overview), which have
determined their fortunes throughout the years, depending on the specific case study they
have been applied to.

Table 1. Advantages and drawbacks of the most popular e-nose sensing approaches (MOSFET:
metal–oxide–semiconductor field-effect transistor; MOS: metal–oxide sensor).

Technology Pros Cons

MOS Low-cost, effectiveness, portability, reliability
Sensitivity to environmental conditions
(temperature, humidity), baseline drifts,

somewhat limited lifespan

MOSFET High efficiency in power transform implementation,
easy fabrication and integration, miniaturization Heat generation, easy to be damaged

Optic fiber sensors
High sensitivity and accuracy, immunity to

electromagnetic interference, small size and light
weight, multiplexing capability

More expensive than alternatives, quite
fragile, need maintenance

Solid electrolyte sensors Safety, thermal stability, wide electrochemical
window, good cycle performance High interface impedance, air sensitivity

Conductive organic polymers High conductivity, excellent electrical stimulus,
biocompatibility and biodegradability Suboptimal durability

Mass-sensitive sensors Stable sensing materials, simple and affordable
fabrication, rapidity of measurement

Sensitive to external disturbance, poor
selectivity

Novel Sensing Devices Eventually Applied to e-Nose Systems

As stated, the technological revolution we are currently experiencing has also ex-
tended to the field of sensors applicable to e-nose tools, as well as of related fabrication
materials and principles. Therein, one of the most important milestones in the microfabri-
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cation domain is represented by developments occurring in the field of nanotechnology,
including 2D materials like graphene, molybdenum disulfide (MoS2), layered molybdenum
trioxide (MoO3) and stannic oxide (SnO2), and perovskite and phosphorene nanosheets,
allowing for significant improvements in technology related to gas sensing [19–24]. Such
materials are particularly suitable for e-nose applications due to their excellent efficiency
and rapidity in energy transfer, biomolecule adsorption, and other interesting properties.
Zero-dimensional options, including fullerenes, quantum dots, or nanoparticles, feature
extremely high reaction speed, although their sensing capability can be negatively im-
pacted by their tendency to aggregation due to weak electrostatic forces—including van
der Waals interactions—they are submitted to, thus requiring their combination with other
materials to overcome such limitations [25–27]. On the other hand, the main advantages of
one-dimensional nanomaterials, such as nanowires, nanorods, nanotubes, and nanofibers,
include the capability of carrying very high currents with reduced heating consequences,
even if they are slower in terms of response and recovery times with respect to the existing
alternatives [28,29]. Finally, three-dimensional materials, including hierarchical nanos-
tructures, exhibit very fast responses and quick recovery times, with excellent mechanical
properties with respect to the alternatives [30].

All the solutions presented above find their applicability within the scenario of e-
nose systems, mainly concerning—for the domain investigated in the present review—the
identification of VOCs in the framework of breath analysis, with 2D materials probably
representing the most frequently used alternative in this specific domain [31].

2.3. The e-Nose Intelligent Part: Most Popular Models and Their Main Characteristics

The upper portion of the olfactory pathway runs from the olfactory bulb up to the
olfactory cortex, which is in charge of translating the signals produced by the olfactory
receptor cells into information, which leads to the identification and full characterization of
the odorous compounds binding with the receptors and generating the signal. This part is
technologically translated by pre-processing the signal produced by the sensor arrays, the
setup and training of models and algorithms relying on AI, and similar principles. Overall,
among the number of models available nowadays, it is deemed tricky develop specific
solutions, which are more suitable for e-nose applications. However, usual choices for such
a framework include Principal Component Analysis (PCA) [32], Support Vector Machine
(SVM) [33], Artificial Neural Networks (ANNs) [34], and Linear Discriminant Analysis
(LDA) [35], among others.

2.3.1. Principal Component Analysis

Principal Component Analysis, commonly known as PCA, is a method usually applied
to reduce the dimensionality (and the complexity) of some datasets, which are often
characterized by huge quantity of data and significant intrinsic complexity. PCA takes as
input a large set of variables and transforms it into a smaller dataset still containing most
of the information stored in the original dataset. The main challenge that PCA faces relates
to the optimal management of the trade-off between dimensionality (and complexity)
reduction and accuracy (and informativity) maintenance. Thus, its main idea is quite
simple, that is, to reduce the number of variables to be analyzed within a dataset as much
as possible without losing the original information in this transformation.

Like any other model, PCA also comes with advantages that have helped the model
in its fortunes across the years, and drawbacks, which in turn have hampered its further
exploitation. Advantages include the possibility to visualize data through dimensionality
reduction, the possibility to remove multicollinearity and noise from data, and the reduction
in model parameters and training time. On the other hand, it still requires fairly significant
run times, and it presents important problems concerning feature interpretability, as well
as a significant loss of information during transformation, especially in specific use cases.
Furthermore, it only makes use of linear dimensionality reduction, and it is still quite
heavily affected by data outliers.
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The usage of PCA in the framework of e-nose tools is quite frequent, and many authors
have demonstrated its applicability in this specific use case scenario, leveraging its light
weight and extreme simplicity (see [36–38] for some examples).

2.3.2. Support Vector Machine

Support Vector Machines, popularly known as SVMs [39], include a set of supervised
learning methods, commonly used for classification and regression purposes, as well as for
the detection of outliers within a dataset. SVMs are capable of performing linear as well as
non-linear classification using the kernel trick, in turn allowing for the representation of
data through pairwise similarity comparisons between the original data points by applying
a kernel function, transforming such data into coordinates within higher dimensional
feature space. SVMs feature a number of advantages, including their excellent effectiveness
in high-dimensional spaces, as well as in cases where the number of dimensions is higher
than the number of samples. They are very memory-efficient, as they use a subset of
training points in the decision function, and they are also quite versatile, with different
kernel functions that can be implemented regarding decision functions. On the other
hand, the main drawbacks of SVMs include their inability to directly provide probability
estimates, in turn being calculated through a tricky, expensive approach, and their tendency
to overfit when the choice for kernel functions and regularization term is not optimal.

Concerning e-nose solutions, SVMs have been used in several research articles in the
field, taking advantage of their powerful capabilities, which made them the best choice
in many use cases before the onset of Deep Learning models in the past decade. E-nose
tools using an SVM reported optimal performance in various scenarios, including the
classification of cardiovascular conditions [40], the detection of a number of different
diseases through urinary volatile analysis [41], and the identification of contaminants in
indoor air [42].

2.3.3. Artificial Neural Networks

Artificial Neural Networks, also known as ANNs or Neural Networks, include a
technological approach based on the functioning of the human brain and the nervous
system, as they simulate the electrical activity of the brain portions, in particular of the
neurons. As such, processing elements are connected to each other, and arranged into
layers, with the output of one layer representing the input of the subsequent layer and so
on. Then, information is passed from one layer to another, with some connections being
strengthened and others being weakened depending on weights assigned from time to
time, similarly to what occurs within the human brain’s synapses.

The use of ANNs should be considered taking into account the several benefits and
limitations they deliver. Among them, they show an excellent ability to work in parallel,
enabling large quantity of data to be processed simultaneously; furthermore, they are quite
tolerant to noisy data and can be easily updated in case new data are included in the dataset.
Finally, they perform quite well in the presence of very specific and complex problems.
However, ANNs do come with significant limitations, too. The limited interpretability of
the outputs, especially when trying to analyze the intermediate layers, is one of the main
issues they present. Then, the computational process is often quite burdensome, especially
in the presence of multiple iterations; therefore, it is deemed poorly applicable to specific
use cases where computational load can be considered a constraint.

Among the main usages of ANNs in the framework of e-nose systems, the most widely
used models include Multilayer Perceptron (MLP), employed for VOC assessment [43],
food-related studies [44], environmental monitoring [45], and security tasks [46]; Extreme
Learning Machines (ELMs), finding use in VOC assessment [47] and environmental use
cases [48]; Convolutional Neural Networks (CNNs), also employed in food assessment [47]
and VOC determination [49]; as well as other models, like Long-Short Term Memory
(LSTM) [50].
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2.3.4. Linear Discriminant Analysis

Linear Discriminant Analysis, abbreviated as LDA, is a very popular discriminant
technique, as it is capable of optimizing the variance between and within classes by trans-
forming the original variables through linear combinations to ultimately ensure an effective
separation of classes, in order to recode original datasets into spaces of lower dimensions,
highlighting the distinction of classes and decreasing the overall computational complexity.
Differently from PCA, LDA represents a supervised model, as it employs a training dataset
to build up a model for assessing new data against the model established. Even for this
approach, we can enumerate a number of advantages and limitations—among the first
ones, its simplicity and portability, even taking into account its fairly good performance. On
the other hand, it requires important assumptions on the features, including their normal
distribution, and it turns out to not always be good for a limited number of categorical
variables or in the presence of small datasets.

Concerning e-nose systems, LDA was successfully employed—for example, in the
food industry [51,52], as well as for healthcare purposes—in breath analysis [53].

2.3.5. k-Nearest Neighbors

k-Nearest Neighbors, popularly known as kNN, is a very popular, non-parametric
supervised learning method, used both for classification and regression purposes, where
inputs are represented by the k closest training examples in a dataset, whereas the outputs
are class memberships for classification and property values for the object in regression
kNN systems. Such models are straightforward and easy to train, although their significant
sensitivity to the local structure of the data represents one of their main limitations.

2.3.6. Random Forest

Random Forest is a popular Machine Learning method suitable for both classification
and regression tasks, operating by building up a number of decision trees at the training
phase. In classification tasks, its output is represented by the class selected by the most
trees, whereas in regression tasks, the output is represented by the mean prediction of
the individual trees. Despite being viewed as a black box, it provides several advantages,
among which is relative stability with respect to overfitting.

To enhance the readability of this section, the main models and their advantages and
drawbacks are summarized in Table 2.

Table 2. Advantages and drawbacks of the most popular intelligent models applied to e-nose systems
(ANNs: Artificial Neural Networks; kNN: k-Nearest Neighbors; LDA: Linear Discriminant Analysis;
PCA: Principal Component Analysis; RF: Random Forest; SVM: Support Vector Machine).

Model (s) Pros Cons

PCA Easy data visualization; multicollinearity and noise
removal; reduced training time and model parameters

Significant run-times; limited features interpretability;
significant loss of information during data processing;

affected by outliers

SVM Effective in high dimensional spaces; good memory
efficiency; good versatility

Unable to provide direct probability estimates; tendency
to overfit

ANN
Parallel operation; tolerance to noisy data; easily

updated with new data; good performances in complex
problems

Limited output interpretability; burden of
computational process

LDA Simple; portable; good performance Normal features distribution required; not optimal with
small dataset or few categories; tendency to overfit

kNN Lack of training period: simple to implement Not optimal with large dataset and with high
dimensional data; sensitivity to noisy and missing data

RF
High accuracy; robustness to noise; handling missing
values and numerical and categorical data; somewhat

stable to overfitting

Poorly interpretable; high computational costs and
memory usage
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2.3.7. Novel AI Models to Be Applied to e-Nose Systems

Beyond the typical AI models, mainly based upon Machine Learning algorithms, as
abovementioned, recent e-nose tools have started using approaches that represent the cur-
rent state of the art when it comes to the use of AI, relying on Deep Learning (DL) principles.
In this regard, Convolutional Neural Networks (CNNs) are commonly used, with fairly
good performance—yet this depends on the specific use case—compared to applications
where Machine Learning counterparts are commonplace [54,55]. Other approaches, like
those using more complex models, including the adaptive convolutional kernel channel
attention network (AKCA-Net), have been employed [56], presenting excellent perfor-
mance, yet being superior to other models, like CNNs or Efficient Channel Attention (ECA),
among others, however with significant burden when it comes to the computational costs
that should be taken into account when selecting the most suitable solution for a given
application. To partially cope with that, some researches have also used Transfer Learning
(TL) approaches, with the aim of reducing the computational costs associated with the full
training of a complex DL model, merging together the significant advantages of DL with a
reduced need to perform the whole learning chain for the system, thus overall saving time,
resources, and also diminishing the associated carbon footprint [57–59].

2.4. Validation: A Crucial Step for e-Nose Systems

In general terms, when e-nose systems are developed and applied to a given use
case scenario, both in environmental monitoring and in health conditions detection, it is
of utmost importance to foresee a validation process of the instrument and of the whole
analysis pipeline in order to avoid false discoveries by the tool and misinterpretation of the
results by the operator. As such, during the sampling process, sensor malfunctions could
occur, either reporting incorrect values or stopping their functioning for a short amount
of time, in turn possibly representing a significant criticism of the whole process. For this
reason, it is necessary to adopt solutions that are fast, computationally efficient, and reliable,
thus enabling eventual action, including the possibility to resample and recalibrate the
models or to check the eventual failure of one or more sensors within the e-nose tool.

This occurrence could be applied to all the use cases where e-nose systems are em-
ployed, including environmental monitoring [60], the food industry, as well as healthcare,
where it is possible that the criticisms eventually occurring are even more subtle and,
therefore, to be faced in a timely manner.

Among the most relevant works to date, Mirshahi and colleagues proposed an algo-
rithm that could fit the problem well, with fairly good performance, also when it comes to
the real time validation, with low computational burden and easy implementation, there-
fore reducing possible issues related to the eventual delay in recognizing sensor failure
and related issues [61]. However, it is worth noting that validation, together with standard-
ization, still represents one of the most important limitations e-nose systems experience,
especially when it comes to their clinical translation and deployment.

3. Materials and Methods

A systematic literature review was conducted, according to the PRISMA guide-
lines [62], on several databases, including PubMed, ScienceDirect, and Google Scholar,
according to the following terms: ((“E-nose” OR “Electronic nose” OR “Olfaction technol-
ogy” OR “Odor detection”) AND (“Kidney” OR “Chronic Kidney Disease” OR “Chronic
Kidney Disorder” OR “Kidney Failure” OR “Renal Failure”)).

The records included were related to research on humans published between 1 Jan-
uary 2004 and 31 July 2024 in the English language—excluding systematic reviews, meta-
analyses, and case report studies—that could possibly be employed to foster discussion or
to cross-search further related articles. The time scale adopted was chosen to ensure the
inclusion of up-to-date technologies and techniques in terms of advancements, particularly
within e-nose devices and related AI models.
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Each article was analyzed in terms of disease investigated, technology employed, and
overall performance, including sensitivity and specificity or accuracy.

4. Biomarkers of Chronic Kidney Disease

The results of the literature search are graphically displayed in Figure 3. After duplicate
removal, 1350 records were screened, 1317 of which were excluded. The vast majority of
them were excluded by title (n = 1277), n = 37 by abstract, and the remaining n = 3 by
full text. n = 33 papers were assessed for eligibility, 12 of which were finally included
in the qualitative synthesis of the present review. According to the papers retrieved, the
abnormal concentration of a number of compounds appears to be present in biological
samples drawn from individuals suffering from kidney disease, due to the accumulation of
toxins in their body, in turn caused by kidney malfunction.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 22 
 

 

 
Figure 3. The PRISMA flowchart. 

Nitrogen-containing compounds, including ammonia and di- and tri-methylamine, 
are mostly increased in their concentrations regarding renal conditions. According to a 
source in the literature [82], they are among the main responsible compounds for the pe-
culiar breath odor of patients with renal failure, including those with uremia, resembling 
a typical urine smell [83]. As such, ammonia comes from the metabolism of proteins and 
nucleic acids, it is converted to urea and ammonium salts, and is then eliminated from the 
human body through urine, this process, however, being impaired in those with a signif-
icant urea imbalance possibly due to kidney failure, where urea concentration in body 
fluids is abnormally high [64], or similar conditions. In terms of concentrations in breath 
samples, Romani and colleagues [66], using selected ion flow tube mass spectrometry 
(SIFT-MS), found that a subject presenting an ammonia concentration equal to or above 
6450 ppbv has a probability of being affected by CKD, equal to 75%, with just 0.01% prob-
ability to be misclassified as having CKD, highlighting the excellent predictive value of 
the compound in the framework of renal conditions. Ammonia was also found increased 
among children and adolescents with CKD (284 vs. 556 ppbV on average) with respect to 
healthy counterparts [67]. However, when it specifically comes to methylamine, in pedi-
atric patients with CKD, it was found to be lower than among healthy individuals (6.5 vs. 
10.1 ppbV) [67], raising uncertainty about the effective validity of this biomarker for CKD, 
at least in this specific cohort. 

Also, Demirjian and colleagues [65] retrieved interesting results about acetone. Ace-
tone is present in the breath of individuals due to a plethora of conditions, including dia-
betes mellitus and ketonemia, but is also one of the major volatile organic compounds 

Figure 3. The PRISMA flowchart.

More specifically, an increased concentration of several substances, like ammonia and
isoprene nitrogen-containing compounds, including isoprene, aldehydes, and uremic tox-
ins, was observed in nephropathic subjects, whereas methylamines showed contradictory
results (Table 3) [63–67].
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Table 3. Altered biomarkers in clinical conditions related to kidney disorders and their physiological
sources (CKD: chronic kidney disease).

Clinical Condition (s) Altered Biomarker (s) Physiological Source (s) Alteration Type Reference (s)

Uremia, kidney
impairment, CKD

Nitrogen-containing
compounds (ammonia,

dimethylamine,
trimethylamine)

Protein metabolism [68] Mostly increased [63,66,67,69]

CKD, renal failure Ammonia Protein metabolism [65], blood
urea [70–73] Increased [63–65]

Renal failure 2-propanol Acetone reduction [65] Increased [65]

Renal failure Acetaldehyde Oxidative stress, inflammatory
processes [74–78] Increased [65]

CKD Acetone
Decarboxylation of acetoacetate
and acetyl-CoA [63], fatty acid

metabolism [79]
Increased [66,69]

CKD Isoprene Cholesterol metabolism [80] Increased [63,67]
Chronic

glomerulonephritis Nitric oxide Metabolic processes Increased [81]

CKD (pediatric) Pentanal, heptanal Oxidative stress [67] Increased [67]

CKD (pediatric) Ethanol
Non-specific, possibly

environmental contamination
[67]

Increased [67]

Nitrogen-containing compounds, including ammonia and di- and tri-methylamine,
are mostly increased in their concentrations regarding renal conditions. According to
a source in the literature [82], they are among the main responsible compounds for the
peculiar breath odor of patients with renal failure, including those with uremia, resembling
a typical urine smell [83]. As such, ammonia comes from the metabolism of proteins and
nucleic acids, it is converted to urea and ammonium salts, and is then eliminated from
the human body through urine, this process, however, being impaired in those with a
significant urea imbalance possibly due to kidney failure, where urea concentration in body
fluids is abnormally high [64], or similar conditions. In terms of concentrations in breath
samples, Romani and colleagues [66], using selected ion flow tube mass spectrometry
(SIFT-MS), found that a subject presenting an ammonia concentration equal to or above
6450 ppbv has a probability of being affected by CKD, equal to 75%, with just 0.01%
probability to be misclassified as having CKD, highlighting the excellent predictive value
of the compound in the framework of renal conditions. Ammonia was also found increased
among children and adolescents with CKD (284 vs. 556 ppbV on average) with respect
to healthy counterparts [67]. However, when it specifically comes to methylamine, in
pediatric patients with CKD, it was found to be lower than among healthy individuals
(6.5 vs. 10.1 ppbV) [67], raising uncertainty about the effective validity of this biomarker
for CKD, at least in this specific cohort.

Also, Demirjian and colleagues [65] retrieved interesting results about acetone. Ace-
tone is present in the breath of individuals due to a plethora of conditions, including
diabetes mellitus and ketonemia, but is also one of the major volatile organic compounds
(VOCs) present in human breath. It is mainly produced by hepatocytes through the decar-
boxylation of acetyl-CoA in excess, derived from the β-oxidation of fatty acids, and formed
by the decarboxylation of acetoacetate, in turn derived from lipolysis or lipid peroxida-
tion [80,84]. Overall, it is linked to the presence of ketone bodies, which are formed when
the human body, in need of energy, employs fats instead of glucose. According to Romani
and co-authors [66], acetone can be used to distinguish individuals with renal failure from
those not affected by the condition, with a threshold value of 345 ppbv, granting probability
for those who present with an acetone concentration in the breath of 88.6% (or higher) to be
affected by CKD, but still presenting a false positive likelihood of 54.2%, thus decreasing
the overall predictive value of the acetone assessment for CKD.
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According to the work by Demirjian and colleagues [65], acetaldehyde was highly
prevalent in breath samples of individuals with renal failure with respect to healthy controls
(81 (61–136) vs. 28 (18–41) ppb, p < 0.001) and, in any case, it should remain below 80 ppb,
not exceeding this level too much even after the ingestion of ethanol, which represents
its progenitor compound [85–87]. Commonly, acetaldehyde is related to oxidative stress
and inflammatory mechanisms; it is capable of binding to the free amino acid groups of
several proteins, also modifying the metabolism of apolipoprotein and fatty acids [88,89].
Its relationship with the inflammatory mechanisms and oxidative stress reported above
makes it a key predictor of various diseases, including CKD.

The same group [65] reported a significant increase of 2-propanol in breath samples
of those with kidney failure, with values around 219 (172–328) ppb versus 31 (26–38) ppb
(p < 0.001) reported in healthy individuals. This VOC originated due to the reduction of
acetone, and was reportedly abnormal in the exhaled breath of patients affected by lung
cancer and liver diseases, as well as in the breath condensate of those with cystic fibrosis
and chronic obstructive pulmonary disease (COPD) [90–93].

Isoprene was also abnormally elevated in breath samples of pediatric patients with
CKD, with values reaching around 70.5 ppbV on average, largely higher than the concen-
trations reported in healthy counterparts (49.6 ppbV on average) [67]. Isoprene is one of
the most common VOCs in human breath, being formed along the mevalonic pathway of
the synthesis of cholesterol in the cytosolic fraction [80]. This important compound was
found as a biomarker of some conditions relating to cholesterol metabolism, including
hypercholesterolemia, with its concentrations being lower in children and progressively
increasing up to 25 years of age [84], although its relationship with specific metabolic
pathways in kidney conditions is still poorly clear.

Pentanal and heptanal were also found to be higher in pediatric patients with kid-
ney failure, markedly impacting their breath profile, especially in more severe stages of
CKD [67], with values exceeding 9.3 ppbV and 5.4 ppbV for patients, versus 5.30 ppbV
and 2.78 ppbV for controls, respectively. Those compounds, also retrieved in biological
fluids of patients with completely different conditions, including lung cancer, are normally
considered as reliable markers for oxidative stress, which turns out to be correlated to
kidney diseases, rather than directly to a kidney damage by itself. Such abnormalities
were mainly observed in patients receiving a transplant, arguably due, at least partially, to
immunosuppressive treatments [94], whereas their relationship with the pathophysiology
of renal diseases in patients with milder conditions is still under investigation [95,96].

Exhaled nitric oxide (NO) was also seen as abnormally concentrated in breath sam-
ples of those with glomerulonephritis, with levels around 29.5 ± 1.4 vs. 18.7 ± 1.0 ppb,
p < 0.0001, and higher exhaled NO output (166.6 ± 6.8 vs. 95.5 ± 5.6 nl/min/m2, p < 0.0001).
Similarly, plasma NO2-/NO3- concentrations were also higher in the same individuals [81].

Ethanol was also seen to be nearly doubled in breath samples drawn from pediatric pa-
tients with CKD (146 vs. 82.4 ppbV on average) [67], differing from controls either in those
with mild or moderate disease; however, this was possibly related to the contamination of
the external environment, especially when it comes to inpatients [67].

Finally, dimethyl sulfide (DMS), a potential marker of oxidative stress, was retrieved
as being abnormally present in biological samples of patients with CKD when comorbid
for diabetes [97]. However, this compound is not included in Table 1 due to its presence
having only been reported in individuals who are comorbid with diabetes, as stated above.

5. Electronic Nose Tools and Chronic Kidney Disease

Table 4 outlines the main studies dealing with the development and testing of elec-
tronic nose-like tools applied within the framework of CKD.
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Table 4. Overview on studies dealing with e-nose use in CKD.

Sample
Population

(Cases/Controls)

Disease
Studied

e-Nose Technol-
ogy/Device

Type of
Sample (s) Biomarker (s) Performances Reference

(s)

62 (42 ESKD,
20 CKD)/11 ESKD, CKD

E-nose equipped
with 3 MOS

sensors
Body odor

Methane, butane,
alcohols, ketones,
carbon monoxide,

nitrogen oxide,
ammonia

ACC: 100% between
patients and controls;
ACC: 95.2% between

ESKD and CKD

[98]

110/335
(117 DM,
110 AIn,
108 HC)

Renal disease Figaro MOS
sensors

Dead-space
breath air
samples

H2, CO, VOCs,
H2S, CO2, NH3,

NO, NO2

SE: 86.57%, SP: 83.47% [99]

46/20 Different
stages of CKD GNP sensors Breath

samples

Isoprene, acetone,
ethylene glycol,

acetoin, methylated
hydrocarbons,

ketones

ACC: 79% between
early-stage CKD and
controls; ACC: 85%
between stage 4 and

stage 5 CKD; ACC: 76%
between early and

advanced CKD

[100]

26/11 ESKD Nanomaterial-
based sensors

Exhaled
breath

samples

Nonane, methylene
chloride,

isopropanol,
styrene

ACC: 80% with DFA [101]

40/0 CKD

Figaro TGS2444,
MQ135, MQ137,

TGS826 MOS
sensors

Breath
samples Ammonia ACC: 88% (for

ammonia) [102]

16/28 (6 DM,
22 HC) CKD

E-nose equipped
with 6 chemical
sensors: MQ-2,

MQ-3, MQ9,
MQ-135, MQ-137

and MQ-138

Breath (and
urine)

samples

Different VOCs,
including ammonia

Correct classification
up to 100% with e-nose
data analyzed by SVM

[103]

n.a.
Renal

diseases
(potentially)

E-nose based on
PANI

nanocomposites

Breath
samples

simulation
Ammonia ACC: up to 85% with

SVM [104]

95/n.a. CKD FAIMS Urine
headspace VOC composition

81.4% differentiation of
kidney function

extremes
[105]

121/0 CKD V-OSC Breath
samples Ammonia

ROC AUC = 0.835
(p < 0.0001) across

CKD at 1st stage and at
any stage at 974 ppb
(SE: 69%; SP: 95%).
ROC AUC = 0.831

(p < 0.0001) between
patients with/without

eGFR < 60
mL/min/1.73 m2 (at

1187 ppb: SE: 71%, SP:
78%; at 886 ppb: SE:

80%, SP: 69%)

[106]
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Table 4. Cont.

Sample
Population

(Cases/Controls)

Disease
Studied

e-Nose Technol-
ogy/Device

Type of
Sample (s) Biomarker (s) Performances Reference

(s)

51/47
CKD (under
hemodialy-

sis)

Figaro MQ135
MOS sensor

Breath
samples Ammonia ACC: 85.7% [107]

110/142 Renal cancer Cyranose 320® Urine
sample Combined VOCs

SP: 89.4%, SE: 71.8%,
PPV: 84.04%, NPV:

80.37%; CVA: 81.7%,
p < 0.001.

ROC AUC: 0.85

[108]

6/3 Early and late
stage CKD

Fe2Mo3O8/
MoO2@MoS2

nanocomposite
gas sensor

Breath
samples Ammonia

R2 = 0.99 between
ammonia

concentrations and
sensors’ outputs

[109]

ACC: accuracy; AIn: airway inflammation; AUC: area under the curve; CKD: chronic kidney disease; CVA:
cross-validated accuracy; DFA: Discriminant Function Analysis; DM: diabetes; ESKD: end-stage kidney disease;
FAIMS: field asymmetric ion mobility spectrometry; GNP: gold nanoparticles; HC: healthy controls; MOS: metal–
oxide–semiconductor; n.a.: not available; NPV: negative predictive value; PANI: polyaniline nanocomposites; PPV:
positive predictive value; ROC: receiver operating characteristic; SE: sensitivity; SP: specificity; SVM: Support
Vector Machine; VOC: volatile organic compounds; V-OSC: vertical-channel organic semiconductor.

Most studies have employed such devices to characterize exhaled breath of individuals
with CKD [99–104,106,107,109], followed by urine samples [103,105,108]. However, one
of the seminal works in this regard, that by Voss and colleagues [98], focused on the
characterization of body odors via the application of an air sampling tool linked to three
thick-film metal oxide-based gas sensors and to a miniaturized computer interface to be
placed on the leg of patients with chronic and end-stage renal diseases. Through the
analysis of principal odor components (POCs), the approach allowed for the scientists
to distinguish between healthy and diseased individuals with 100% accuracy, whereas
discrimination between patients with chronic and end-stage renal disease was performed
with 95.2% accuracy when using the two first POCs and increased to 98.4% when the third
POC was also considered.

MOS sensors are the most popular, also when it comes to e-nose devices used or
developed for breath analysis in the framework of renal diseases, as also happened with
other conditions, like, for example, cancer (see [110] for a systematic review). This is mainly
due to their lower costs with respect to alternative solutions on the market, making them
ideal for point-of-care devices with requirements including fast response time, fair accuracy,
and affordability. On the other hand, they suffer from fluctuations due to environmental
conditions and drifts; therefore, they should be well calibrated and employed in controlled
environments [29]. In this regard, Guo and collaborators [99] used a sensor array composed
of 12 sensors—in turn sensitive to H2, CO, VOCs, H2S, CO2, NH3, NO, and NO2—set in
a 600 mL stainless steel chamber to analyze the breath samples of volunteers in one of
two different ways depending on the experimental demands, including the dead-space
air from the upper airway or alveolar air from the lungs. The study population was
composed of 110 subjects with renal conditions, 110 with airway inflammation, 117 with
diabetes, and 108 healthy controls. After signal pre-processing and feature extraction
by means of Principal Component Analysis (PCA), the resulting data were classified
according to a k-Nearest Neighbor (kNN) approach. Relating to the present review’s focus
on renal diseases, the results obtained by Guo with respect to that specific cohort reported
a sensitivity of 86.57% and a specificity of 83.47% for those with renal failure, values close
to those obtained on diabetic individuals, and much higher than those reported for patients
affected by airway inflammation.
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Some years later, Jayasree and colleagues [102], using a 500 mL Tedlar bag, collected
breath samples from a cohort of 40 individuals (30 males; 10 females) affected by CKD,
analyzing them through a tool composed of TGS2444, MQ135, MQ137, and TGS826 sensors.
After feature extraction, a Support Vector Machine (SVM) was applied to distinguish
between pre- and post-dialysis subjects, allowing for correct classification according to the
outputs of the TGS2444 sensor (the best performing one) in 83% of cases using two features,
increasing to 88% of cases when applying three features, providing overall satisfying results
within the specific use case scenario.

Saidi and collaborators [103] investigated the exhaled breath of volunteers with CKD,
diabetes mellitus, and healthy individuals using an e-nose and gas chromatography–
quadrupole time-of-flight mass spectrometry (GC/Q-TOF-MS). More specifically, the e-nose
system included an array of six commercial chemical gas sensors (MQ-2, MQ-3, MQ-9, MQ-
135, MQ-137, and MQ-138), manufactured by Hanwei Electronics Co. Ltd., Zhengzhou,
China. The volunteer cohort was composed of 16 patients with CKD, 6 with diabetes
mellitus, and 22 controls (total of 44 individuals, of which 30 were male and 14 were
female), from which an overall 264 breath samples were collected (216 samples from
36 subjects to train the model; 48 samples from 8 subjects to test the model). The exhaled
breath for all participants was collected into a 1 l Tedlar bag. After feature extraction,
including the conductance slope, the area under the curve, and the conductance change due
to breath exposure for the various sensors, pattern recognition methods were implemented,
including HCA, PCA, and SVM. According to the authors, 100% of samples were correctly
classified by the SVM, possibly due to the overfitting tendency within a relatively small
quantity of data to build the model, even if a leave-one-out cross-validation approach was
applied to avoid, or reduce, the problem of overfitting.

A work by Kalidoss and colleagues [107] further highlighted the role of MOS sensors
to characterize the breath samples of individuals with CKD. Here, an MQ-135 device (Fi-
garo Engineering, Inc., Rolling Meadows, IL, USA), extremely sensitive to ammonia, was
placed within a sampling system made up of a borosilicate glass measurement chamber,
featuring a volume of 500 mL to accommodate the complete alveolar breath. Fifty-one
individuals with CKD and forty-seven healthy controls were included in the study, per-
formed according to a feature selection step, followed by PCA and SVM and kNN models
for fine classification between cohorts. Using the Information Gain Feature Selection (IG FS)
approach, the authors achieved a significant accuracy value of 85.7% for SVM and 83.6%
for kNN classification models, confirming the applicability of e-nose systems based on
MOS sensors to solve the specific problem.

Chan and co-authors [106], with a similar approach, based on a vertical-channel
organic semiconductor (V-OSC) sensor, tried to discriminate between CKD patients de-
pending on their disease stage, using data from 19 stage 1, 26 stage 2, 38 stage 3, 21 stage
4, and 17 stage 5 patients, for an overall 121 individuals affected. The exhaled breath
samples were collected in a 500 mL plastic bag, then transferred into a second bag through
a desiccation cylinder, and finally connected to the inlet of the gas measurement system.
Classical statistics were employed for data analysis, revealing an ROC AUC of 0.835 across
CKD at first and at any stage at 974 ppb (sensitivity: 69%; specificity: 95%).

Using a different technological approach, Marom and co-authors [100] applied two to
three gold nanoparticle (GNP) sensors, cross-reactive chemiresistors based on four types
of spherical GNPs with a core diameter of 3–4 nm, featuring organic ligands, including
2-ethylhexanethiol, tert-dodecanethiol, hexanethiol, and dibutyl disulfide. The signal
collected from CKD patients (n = 6 with stage 2, n = 16 with stage 3, n = 12 with stage
4, n = 8 with stage 5 CKD, and n = 20 healthy controls) were analyzed using an SVM.
According to the authors, 79% accuracy was reached between early-stage CKD and controls,
whereas stage 4 and stage 5 CKDs were distinguished in 85% of cases. A slightly worse
result was otherwise obtained between early and advanced CKD, discriminated in 76%
of cases.
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Later on, the same group [101] developed a protocol to analyze breath samples from
patients with end-stage renal disease to study the impact of hemodialysis on their volatiles.
In the study, the authors selected a group of sensors from an array of chemiresistors
based on different nanomaterials, including organically functionalized GNPs and ran-
dom networks of single-walled carbon nanotubes (SWCNTs) capped with organic films.
Twenty-six patients and eleven healthy controls were analyzed in the investigation, with
Discriminant Function Analysis (DFA) applied to select sensors and related features for
discrimination between the two groups. Finally, training and test subsets were created and
evaluated in terms of performance, with the test set attaining 80% correct discrimination
between patients and controls.

Le Maout and co-authors [104] developed an e-nose system with an array of 11 polyani-
line nanocomposites sensors to be employed to analyze seven cycles of 51 injections of
different concentrations of ammonia, a known biomarker for CKD in exhaled breath and
other biological fluids. After feature extraction, a number of models were employed for
data analysis, including Linear Discriminant Analysis (LDA), Random Forest (RF), Support
Vector Machine (SVM), and Multilayer Perceptron (MLP). With Recurrent Feature Elimina-
tion (RFE), the performances obtained with the different models were 91% for SVM, 87%
for MLP, and 84% for LDA, at the same time allowing for a reduction in the number of
sensors employed down to eight, six, and four, respectively.

Finally, Li and colleagues [109] developed an Fe2Mo3O8/MoO2@MoS2 nanocompos-
ite sensor to detect ammonia in the exhaled breath of patients with early- and late-stage
renal diseases (three for each of the two groups) against three healthy controls. Accord-
ing to the authors, the device was capable of detecting ammonia concentrations with
R2 = 0.99 using the sensors’ outputs, demonstrating their potential applicability for the
breath characterization of individuals with CKD at various stages.

Aside from investigations around breath, urine was also considered in a couple of
studies using e-nose-like systems within the framework of kidney diseases. CKD was
investigated by Jokiniitty and colleagues [105] concerning the analysis of urine headspace
samples with a tool based on field asymmetric ion mobility spectrometry (FAIMS). Ninety-
five patients with different degrees of CKD, according to their Glomerular Filtration Rate
(GFR) class, entered the study, their extreme being discriminated with an accuracy of 81.4%
using classical statistical analysis.

An investigation around renal cancer was performed by Costantini and collabora-
tors [108] using urine headspace samples from 252 individuals, of which 110 were renal
patients and 142 healthy controls, analyzed through the commercial Cyranose 320® (Smith
Detections, Pasadena, CA, USA), composed of an array of 32 sensors with different selec-
tivities towards a set of VOCs. After PCA, the authors were capable of discriminating the
two groups with a specificity of 89.4%, a sensitivity of 71.8%, and featuring a positive and
negative predictive value of 84.04% and 80.37%, respectively, highlighting the potentialities
of this approach for renal cancer detection from urine samples.

6. Discussion

CKD represents one of the most burdensome clinical conditions worldwide, with an
estimated 10% of the global population expected to be affected by the disease [111], which
is roughly 850 million people, mostly living in low- and lower-middle-income countries,
however with a poor awareness of the disease at the population level [112]. This fact
prevents the scientific and clinical community from undertaking large population studies,
especially in areas globally where the need for carrying out such investigations is higher.
This phenomenon is reflected in the relatively poor presence of related studies in the
scientific literature, especially when it comes to new technologies and approaches to the
problem, including the application of electronic noses (and similar) tools for investigating,
in a minimally invasive way, the presence of biomarkers in biological fluids, including
breath, urine, or saliva. Such deficit is particularly true when compared with other domains
of the clinical field, like cancer [110], diabetes [113], or heart failure [114], to make some
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examples of conditions where different approaches with respect to traditional ones are
commonly adopted. However, despite the relative scarcity of papers dealing with the
topic, the present review highlighted that the main application of e-nose systems within the
framework of CKD is represented by exhaled breath analyses, which are prevalent in the
literature with respect to other biological fluids, including urine, in turn mostly considered
considering its headspace. It is also quite common for other conditions—as reported,
for example, in different kinds of cancer [110,115], where exhaled breath is preferred
due to the information provided on cancers and their intrinsic nature—to be properly
analyzed through e-nose tools, in turn being capable of dealing with gaseous samples.
Focusing specifically on the type of electronic nose systems employed to investigate using
exhaled breath from individuals with CKD, it came to our attention that the most popular
technology is represented by metal–oxide sensors, the so-called MOS sensors, followed by
nanocomposite- or nanomaterial-based devices. In fact, MOS sensors offer a wide range of
advantages, which are well suited to the application of e-nose principles in the reference
domains where it is expected to take part, including for biological fluids assessment. Indeed,
MOS sensors are low-cost, quite sensitive, and offer a quick response, with significant
environmental sustainability, afforded by their relatively long life (up to 5–10 years) and
low power consumption. On the other hand, they are sensitive to environmental conditions;
therefore, efficient control in terms of temperature and humidity should be guaranteed,
also as a check for drifts and cross-sensitivity to gases other than those targeted. However,
e-nose systems, also relying on signal conditioning and processing, as well as approaches
for information extraction from raw data, including PCA, Artificial Neural Networks, and
more, represent the ideal playground for such sensors, minimizing their possible drawbacks
and maximizing their potentialities. At the same time, conversely to the scientific literature
dealing with other disorders [110], possibly due to the relatively low number of articles
about e-nose use within a kidney disorder framework, commercial e-nose devices are
poorly used in this specific field, with just one research work [108] using the Cyranose®320
device (Smith Detections, Pasadena, CA, USA), one of the most popular solutions on the
market [108], to analyze urine headspace samples within a renal cancer framework.

However, regardless of the approach adopted, it is evident from the current literature
review that most of the studies published to date report optimal performance (generally
above 80%) in the task of discriminating between VOCs emitted in biological fluids of
individuals with kidney disorders and controls, with such results also obtained in many
cases when attempting to distinguish between patients with different stages of kidney
conditions, a task significantly more difficult than that of discriminating healthy and
diseased individuals, thus enhancing the importance of e-nose devices within a minimally
invasive biological fluid analysis framework in the clinical and (bio-)medical fields.

7. Conclusions and Future Perspectives

Research around biomarkers for the detection of kidney diseases is continuously
growing and takes advantage of technological developments in various fields, including
the specific area of e-nose systems. In this regard, both the discovery of novel, more
efficient, and cost-effective sensing materials and the development of new methods, based
on AI, for enhancing the capabilities of e-nose tools to recognize specific patterns related
to the presence or absence of a given disorder, have the capability to promote the scaling
up of solutions relying on e-nose systems and similar approaches. In fact, it is common
belief that such technological advancement will allow for more frequent adoption of e-nose
systems within the framework of renal disease detection and monitoring, within the “p4
medicine” scenario, and it is also expectable to have continuously enhanced performance
from such solutions as long as they are developed and commonly used in the specific field
of investigation, thanks to the continuous learning and training from experience of the
intelligent part of e-nose tools. From the point of view of sensing materials, it is expectable
that novel solutions, both relying on new nanomaterials and on the combination between
different classes of existing materials, are expected to be released and used in the e-nose
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tools eventually developed for various purposes, including healthcare and kidney disease
diagnosis support and monitoring. Concerning AI, hybrid solutions with DL and TL will
probably replace, at least partially, actual Machine Learning approaches, which still play
the main role in contemporary e-nose tools.

From the development and release of large datasets, from an open science perspective,
with the continuously larger adoption of AI solutions, further benefits in this regard are
expected, with potential breakthroughs for both clinicians, in terms of diagnosis accuracy,
and patients. However, technological advancements will be fruitful for clinical practice
with a merely uniform, universally accepted validation pathway, in turn ensuring the full
deployment of such solutions in the related scenario, ultimately leading to an effective
benefit for the life quality of patients and their caregivers, and significant monetary savings
for healthcare providers.
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