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Abstract: Restricted by a metal-enclosed structure, the internal defects of large transformers are
difficult to visually detect. In this paper, a micro-robot is used to visually inspect the interior of a
transformer. For the micro-robot to successfully detect the discharge level and insulation degradation
trend in the transformer, it is essential to segment the carbon trace accurately and rapidly from the
complex background. However, the complex edge features and significant size differences of carbon
traces pose a serious challenge for accurate segmentation. To this end, we propose the Hadamard
production-Spatial coordinate attention-PixelShuffle UNet (HSP-UNet), an innovative architecture
specifically designed for carbon trace segmentation. To address the pixel over-concentration and
weak contrast of carbon trace image, the Adaptive Histogram Equalization (AHE) algorithm is
used for image enhancement. To realize the effective fusion of carbon trace features with different
scales and reduce model complexity, the novel grouped Hadamard Product Attention (HPA) module
is designed to replace the original convolution module of the UNet. Meanwhile, to improve the
activation intensity and segmentation completeness of carbon traces, the Spatial Coordinate Attention
(SCA) mechanism is designed to replace the original jump connection. Furthermore, the PixelShuffle
up-sampling module is used to improve the parsing ability of complex boundaries. Compared with
UNet, UNet++, UNeXt, MALUNet, and EGE-UNet, HSP-UNet outperformed all the state-of-the-
art methods on both carbon trace datasets. For dendritic carbon traces, HSP-UNet improved the
Mean Intersection over Union (MIoU), Pixel Accuracy (PA), and Class Pixel Accuracy (CPA) of the
benchmark UNet by 2.13, 1.24, and 4.68 percentage points, respectively. For clustered carbon traces,
HSP-UNet improved MloU, PA, and CPA by 0.98, 0.65, and 0.83 percentage points, respectively. At
the same time, the validation results showed that the HSP-UNet has a good model lightweighting
advantage, with the number of parameters and GFLOPs of 0.061 M and 0.066, respectively. This
study could contribute to the accurate segmentation of discharge carbon traces and the assessment of
the insulation condition of the oil-immersed transformer.

Keywords: surface discharge; discharge carbon trace; image segmentation; semantic segmentation;
UNet; HPA; SCA

1. Introduction

Large oil-immersed transformers play a critical role in the power system [1]. Their
failure would affect the power supply of the entire system and even have serious social
consequences. Preventive overhaul and maintenance of the transformers are essential for
the stable operation of the power system [2—4]. Due to the metal-enclosed shell and the
complex internal structure, internal defects of large transformers are difficult to detect.
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Commonly used methods, such as manually drilling into the transformer and lifting the
shell, face the problems of low efficiency, poor accuracy, high risk and high cost. With the
rapid development of robotics and artificial intelligence, micro-robots will be an efficient
tool for the inspection and detection of transformer internal defects. The basic technique,
how to accurately and intelligently determine the degree of insulation degradation based
on the captured images, is the key to inspection with the micro-robots.

Surface discharge is one of the most common causes of insulation degradation that
occurs inside the oil-immersed transformer. It refers to the discharge along the interface
of the oil and paper. Figure 1 shows surface discharge near the upper clamp and the tap-
connecting lugs on the internal body structure of the transformer. It results in insulation
degradation, electric leakage, or even an explosion [5,6]. In recent years, a number of trans-
former failures caused by surface discharge had serious impacts on power supply and new
energy consumption [7,8]. Since surface discharge leads to the carbonization damage of the
oil and paper composite insulation, the carbon trace is an important visual characteristic of
surface discharge. The area, morphology, and edge features of carbon trace have important
reference value for judging and analyzing the cause, degree, and development trend in the
surface discharge [9]. Therefore, the accurate semantic segmentation of carbon traces is the
premise and foundation for the micro-robot to successfully detect the discharge degree and
insulation degradation trend. However, there is no relevant research at present.

\

(a) Internal body structure of the transformer (¢) Surface discharge near the tap-connecting lugs

Figure 1. Surface discharge and carbon traces of different parts inside the transformer.

As one of the research hotspots in computer vision, semantic segmentation aims to
recognize and understand the specific meaning of each pixel in an image. Traditional
semantic segmentation is mainly based on low-level features such as texture, color, and
shape and then segments the image by clustering or graph cutting, etc. Typical networks
include Efficient Graph-Based Image Segmentation, TextonBoost, etc. [10,11]. With the
rapid development of deep learning technology, significant breakthroughs have been made
in the field of semantic segmentation, and there are some novel and efficient segmentation
networks, such as Fully Convolutional Network (FCN) [12], UNet [13], DeepLab [14],
etc. To meet the needs of medical image segmentation, UNet was designed to perform
pixel accurate localization and segmentation by feature fusion with its special encoding-
decoding structure and jump connections [13]. In order to overcome the limitations of
UNet’s ordinary convolutional module and achieve a better perception of global features
and long-range semantic information, Cao et al. proposed a U-shaped encoder-decoder
architecture based on a transformer mechanism. By using a Shifted-Window module to
extract contextual features, a Swin-Transformer decoder was designed for the accurate
segmentation of the heart and other organ images [15]. Based on the Swin-Transformer,
Atek et al. constructed the Transformer Interactive Fusion (TIF) module to realize the fusion
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of different-scale features and built the dual-scale coding U-type segmentation network
SwinT-Unet [16]. Although the transformer module improves the network performance, it
also increases the network parameters and decreases the training and inference speed. By
using regular convolution in the shallow stage and Tok-MLP module to label and project the
convolutional features in the deep stage, UNeXt effectively reduced the network parameters
and complexity while achieving a better segmentation performance [17]. Meanwhile, the
attention mechanism has provided new insights for segmentation performance improve-
ment. A variety of UNet structures with different attention mechanisms, such as Nested
UNet [18], Resnet Coordinate Hardswish UNet (RCH-UNet) [19], and Spatial-Coordinate
Attention UNet (SPCA-UNet) [20], have emerged. The above networks perform well in
segmenting edge-regular targets such as medical images and traffic road images but face
severe challenges in segmenting carbon traces. We put forward a much higher requirement
for the segmentation model to perceive the global information and local detail features.

* Challenges of carbon trace segmentation:

@ Inside the metal-enclosed shell of the transformer, the micro-robot needs supple-
mental light to properly acquire image data. Changes in the intensity of supplemental light
lead to large differences in the overall brightness and contrast of the captured images, as
shown in Figure 2a,b.

@ Changes in the degree of surface discharge result in significant differences in the
size of carbon traces, as shown in Figure 2c,d.

(® For the surface discharge, there is spatial randomness of the arc ablation site and
local complexity of the dendritic development of carbon traces, resulting in extremely
complex edge features, as shown in Figure 2e,f. This trait is the main challenge of carbon
trace segmentation, which dramatically reduces the segmentation accuracy.
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Figure 2. Significant contrast, size differences, and complex edges of the samples.

For the accurate segmentation of carbon traces, an HSP-UNet semantic segmentation
network based on the UNet architecture was proposed in this paper. The proposed HSP-
UNet model could achieve good semantic segmentation effect for carbon traces with
complex edge features and reduce the model parameters and computational overhead.

Main contributions of this paper:
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@ The grouped HPA module is designed for the high-dimensional feature extraction,
which reduces the algorithm complexity while realizing the effective fusion of carbon trace
feature maps with different scales.

@ To alleviate the semantic gap between encoder and decoder and improve the
segmentation completeness of carbon trace, the SCA mechanism is designed to replace the
original jump connection.

(® To improve the parsing ability of carbon trace edge features, the PixelShuffle up-
sampling module with better adaptability for feature maps is used to replace the original
Bilinear Interpolation module.

2. Brief Introduction of Our Inspection Micro-Robot

For efficient and convenient inspection of the transformer internal defects, an inspec-
tion micro-robot was developed, as shown in Figure 3. The micro-robot mainly consists
of a body shell, an ultrasonic emission module, an ultrasonic range module, an image
acquisition module, propeller propulsion modules, and a manipulation platform. The
body shell of the micro-robot is an elliptical sealed structure used to mount and protect
the following functional modules. The ultrasonic emission module is installed at the top
of the body, which is mainly used for the three-dimensional positioning of the robot. The
image acquisition module is installed on the upper part of the body, which is used to
inspect the internal structure of the transformer and collect carbon trace images at the same
time. Ultrasonic range modules are installed around the body shell, which are used to
detect the distance between the robot and nearby objects. Propeller propulsion modules
are used to control the movement of the micro-robot inside the transformer. Meanwhile,
there is a manipulation platform for the micro-robot, which can remotely control the robot
and store the collected images of carbon traces. The dimensions of the micro-robot are
15 x 15 x 26 cm (Length x Width x Height), which is determined for high throughput of
the micro-robot in the narrow space of the transformer.

—

. Ultrasonic localization module

. Communication wireless antenna
. Body shell of the micro-robot
Supplementary light modules

. Image acquisition module

. Ultrasonic ranging module

. Horizontal propeller propulsion

. Vertical propeller propulsion

. Manipulation platforms

Figure 3. The micro-robot for transformer internal inspection.

As the micro-robot inspects the internal structure of the transformer, the image acqui-
sition module will continuously capture the internal environment, and the captured images
will be transmitted to the manipulation platform.

3. Carbon Trace Image Dataset
3.1. Acquisition of Carbon Trace Images

The transformer enclosure is a common site of surface discharge. Due to the difficulty
of obtaining carbon trace images of surface discharge inside the actual operating trans-
former, there are not enough samples. Therefore, an oil-paper insulation discharge test
platform was constructed to restore the transformer internal scene and artificially generated
carbon trace samples. The test platform mainly consists of a specimen model, a boosting
platform, and an image acquisition module. The specimen model consists of a nylon
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screw, acrylic board, nylon bracket, front electrode, voltage equalization ring, connecting
rod, and oil-immersed cardboard, as shown in Figure 4. The size of the oil-immersed
cardboard is 25 cm X 15 cm, which is attached to the acrylic plate with a nylon clamp.
The tilt angle of the oil-immersed cardboard could be changed by adjusting the angle of
the clamp. The boosting platform adopts a transformer (SB-10KVA /100KV, Haotai Tech-
nology, Yangzhou, China) to provide the discharge voltage, and the specimen container
consists of a transparent acrylic sheet for easy observation and the collection of carbon
trace images. The transformer oil used in the test is Keramay # 25 oil. An industrial camera
(HTSUA134GC/M, Huateng Vision, Shenzhen, China, 1.3 megapixels, frame rate 211FPS)
was used to collect carbon trace images at 25 cm from the oil-immersed cardboard.

Nylon Screw

AC Transformer

Front Electrode

Oil-immersed
Cardboard

Capacitive
Voltage Divider

Nylon Bracket

Voltage Regulator

Figure 4. Test platform for carbon trace image acquisition.

Generally, surface discharge will produce two kinds of carbon traces, i.e., dendritic
carbon trace and clustered carbon trace. When the oil-paper insulation stays dry, dendritic
carbon trace will appear with surface discharge. When the oil-paper insulation is damp,
clustered carbon trace appears. In this paper, a total of 499 images of dendritic carbon trace
and 565 images of clustered carbon trace were collected. As shown in Figure 5, dendritic
carbon trace has a very complex edge, which is the main challenge for accurate semantic
segmentation. In contrast, the edge of clustered carbon trace is much smoother, which is
relatively much easier to segment.

3.2. Image Enhancement Based on the AHE Algorithm

Restricted by the metal-enclosed shell of the oil-immersed transformer, the acquisition
of carbon trace often suffers from the problem of insufficient complementary light, resulting
in the carbon trace images showing an over-concentration of pixel values, weak contrast,
and other problems. At the same time, the oil stains on the oil-immersed cardboard also
tend to cause local reflections, which reduces the clarity of carbon trace images. In order to
improve the quality of carbon trace images and reduce the difficulty of extracting carbon
trace features by the semantic segmentation model, the AHE algorithm was adopted in
this paper [21]. Using the distribution function of the cumulative probability of image
gray level as the transformation function, the AHE algorithm focuses on the local region
of the carbon trace and performs a pixel-by-pixel localized histogram equalization. It can
alleviate the over-concentration of pixel values and effectively enhance the contrast of
carbon trace images. Due to insufficient supplemental light, the original carbon trace image
was dark and low contrast, as shown in Figure 6a. The corresponding gray level probability
distribution of the original image was too concentrated, as shown in Figure 6b. After
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processing with the AHE algorithm, the overall brightness of the image was significantly
improved, and the edges of the carbon trace were clearer, as shown in Figure 6¢c. The
processed image showed a uniform distribution of gray levels, indicating that the quality
of carbon trace images could be greatly improved with the AHE algorithm, as shown in
Figure 6d.

(b) clustered carbon traces

Figure 5. Examples of two kinds of discharge carbon traces.
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(a) Original carbon trace image (b) Gray level probability distribution of (a)
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Figure 6. Comparison of carbon trace image with and without the AHE.
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3.3. Construction of Carbon Trace Dataset

The acquisition of carbon trace samples inside the oil-immersed transformer is diffi-
cult and costly, resulting in the inadequacy of carbon trace samples. In order to improve
the segmentation performance and generalization ability of the proposed semantic seg-
mentation model, Gaussian fuzzy process, horizontal and vertical flip, image scale, and
horizontal and vertical translation were used to augment the original carbon trace samples.
Then, a dataset of the dendritic carbon trace Set j,,;yitic Was constructed, which contained
2495 samples, and a dataset of the clustered carbon trace Set,j,q1.r Was constructed, which
contained 2825 samples. Furthermore, these two datasets were divided into a training set,
validation set, and test set in the ratio of 8:1:1. For the dataset of dendritic carbon traces,
the sample sizes in the training set, validation set, and test set were 1996, 250, and 249,
respectively. For the dataset of clustered carbon traces, the sample sizes in the training set,
validation set, and test set were 2260, 283, and 282, respectively.

4. Proposed Network
4.1. Network Structure of HSP-UNet

In order to improve the perception of complex edge features and realize the accurate
segmentation of carbon trace image, a high-precision semantic segmentation model HSP-
UNet was designed based on the structure of a UNet network, introducing the grouped
HPA module, SCA attention mechanism, and PixelShuffle up-sampling module. The
proposed network consisted of an encoder and a decoder, which were composed of 6-layer
down-sampling and 6-layer up-sampling modules, respectively, as shown in Figure 7. The
specific design process was as follows:

@ Design the grouped HPA module to replace the conventional Conv2d module in
the Stage 4~6 layers, which can reduce the number of model parameters and complexity
while effectively integrating carbon trace features from different perspectives.

@ Design the SCA mechanism to replace the original jump connection, which can
alleviate the semantic gap between the encoder and decoder and improve the perception
ability for complex edge features of carbon traces, improving the completeness and accuracy
of carbon trace segmentation.

(® Use the PixelShuffle module to replace the Bilinear Interpolation (BI) up-sampling
module of the decoder, which can help parse the deep semantic features of carbon traces,
improving the segmentation accuracy of the complex edge of carbon traces.

4.2. Grouped HPA Module

In order to reduce the model parameters and improve the perception of multi-view
features, the HPA module with linear complexity was adopted in this paper. According to
the size parameters [B, C, H, W] of the input feature map, a tensor p is randomly initialized
and adjusted by using the Bl algorithm. In order to extract the multi-view features of the
input feature map, a grouped HPA module was constructed, which was inspired by the
multi-head self-attention (MHSA) mechanism [22], as shown in Figure 8. The input feature
map was divided into four groups {X1, X2, X3, X4} along the Channel dimension. The HPA
operations were performed on the H-W, C-H, and C-W axes for the first three groups {X1,
X2, X3}, respectively. And the depthwise separable convolution (DW) is performed on the
fourth group X4. Then, the four groups of feature maps along the Channel dimension were
concatenated using the Concat instruction. The merged feature maps were processed by
using LN and DW instructions to obtain the final output feature map.
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Figure 7. Network structure of the proposed HSP-UNet.
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Figure 8. Structure of the grouped HPA module.

4.3. SCA Attention Mechanism

Compared with other attention modules such as SENet [23] and CBAM [24], Coordi-
nate Attention [25] (CA) could better accurately localize and identify the target of interest
in the global range, which reduces the loss of spatial positional information as well as the
module parameters. The structure of the CA is shown in Figure 9. The input feature maps
are averagely pooled in the height direction and width direction, respectively, to obtain
the feature maps in two directions, as shown in Equation (1). Then, to obtain the feature
maps of 1 x (W + H) x C/r, the processed feature maps are concatenated and sequentially
processed with Conv2d, BatchNorm, and Sigmoid instructions, as shown in Equation (2).
Next, the feature map is split into two tensors f* and f* along the Channel direction and
processed with Conv2d and Sigmoid instructions. As a result, the attention weights g and
g on the height and width direction were obtained, as shown in Equation (3). Finally, the
¢ and g% were weighted with the input feature map to obtain the output feature map, as
shown in Equation (4) [25].

1

h = — xc(h,i
20 = g5 T [xe () "
Z%(w) = ﬁ0<iZ<H|xc (],w)
f=o(R([Z"2"))) @)
§" = o(B (M)
{ g = o(Fu(F9)) )
ye(i,j) = xc(i,j) x (i) x & .(f) (4)
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Figure 9. Structure of the CA module.

The discharge carbon trace has obvious spatial edge features, presenting complex
edges and rich local information, while its color, texture, and other features are not obvious.
So, it is necessary to improve the ability of the CA to perceive the spatial location informa-
tion. Therefore, the CA-based SCA is proposed to further improve the ability to extract
the detailed edge features of carbon traces. First, the input feature layer is globally pooled
with the average pool operation and maximum pool operation in the channel direction,
respectively. So, the feature layers of the maximum value and the average value at the
spatial level are obtained, with the shape of [1, H, W]. Then, the two feature layers of the
maximum and the average value are concatenated and fed into the Conv2d layer with the
channel number of one, achieving the fusion of spatial location information of the carbon
trace. After the operation of activation function, the spatial feature parameters of the input
feature layer are obtained. Finally, the above spatial features are weighted with the original
input feature layer to enhance the spatial feature of the input layer, which is then sent to
the CA mechanism. The structure of the proposed SCA is shown in Figure 10.

4.4. PixelShuffle Upsampling Module

Compared with the original BI module in the UNet, the PixelShuffle module is able
to learn and optimize its own up-sampling parameters independently, which has better
adaptability to the feature map and a better pixel reconstruction effect [26]. For the feature
maps of dendritic carbon traces, the PixelShuffle module could better retain the detailed
features and boundary information, which helps to improve the semantic segmentation
accuracy. In the PixelShuffle module, a L-layer convolutional network is used to process the
low-resolution feature maps of carbon trace, whose L — 1 layers are shown in Equation (5).
For the Lth layer, a convolution with a step size of % is used to up-sample the feature
maps of carbon trace from the low-resolution space to the high-resolution space, as shown
in Equations (6) and (7). And the loss function of the above up-sampling module is the
pixel-wise MSE, as shown in Equation (8) [26].
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SHIMRWa,by) = (Wh o+ IR 4 by) 5)
fl (ILR; Wl:l/ bl:l) = (P(Wl *flil(ILR> + bl)
where W, b;, and I € (1, L—1) are the learnable network weights and bias parameters,
respectively; W) is a 2D convolution tensor of size Ny _; X N x K; x Kj, where Nj is the

number of features in the /th layer, the value of Ny is C, and K; is the size of the filter in the
Ith layer; and the bias parameter b; is a vector with the length of N;.

R _ fL(ILR> =PS (wL x L1 (ILR) +0by) (6)

PS(T)x,y,c = TLx/rJ,Ly/rj,C~r-mod(y,r)+C'm0d(x,r)+c (7)

where PS is a concatenating operator for the periodic pixels that can transform a tensor
with the size of H x W x C - 72 into a tensor with the size of rH x rW x C, as shown in
Equation (7); and W is a convolution operator with the size of nj_; x r2C x kp x ky.

rH rW
£(Wyr, bi.r) = mz Z (LI — fxy ILR)) )

x=1x=

l Input

Residual CxHx W

IxHXW Avg Pool IxHxW
Concat

Conv2d IxHxW

Sigmoid IXHxW

Weighted

b Residual Cx Hx W

CxHx1 XAvgPool Cx1IxW
C(}IKat
Conv2d C/r x 1% (W+H)
BatchNorm+Non-linear C/r x 1 X (W+H)
. |
lit
Spit_§ )
CxH*1  convad Conv2d CxIxWw
CxHx1 Sigmoid Sigmoid CxIxW
Y

Q Weighted Cx Hx W

v  Output

Figure 10. Structure of the SCA.
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5. Results and Discussion
5.1. Training Setup

The training environment is Windows 11 x 64, and the hardware parameters are as
follows: CPU Intel(R) Core (TM) i5-12500H, RAM 16 GB, GPU Nvidia GeForce RTX2050,
video memory 4 GB; and the software parameters are as follows: Python 3.8.17, training
framework PyTorch 2.0.1, CUDA version 11.8, CUDNN 8.9.3. The model is trained using
an AdamW optimizer, with an initial learning rate of 1 x 1073, a learning rate adjustment
strategy of CosineAnnealingLR, a weight decay coefficient of 1 x 1072, the epochs of 300,
and a batch size of eight.

5.2. Evaluation Metrics

In order to verify and evaluate the performance of the proposed HSP-UNet model,
three evaluation metrics, Mean Intersection over Union (MIoU), Pixel Accuracy (PA), and
Class Pixel Accuracy (CPA) based on the confusion matrix are used in this paper. The
calculations of these three metrics are shown in Equations (9)—(11) [19].

T T,
Iniou = P + n x 100% 9)
To+F+Fk Th+h+k
Ty + Ta
Py = E 100% 10
A L A Tat B+ Bn 10)
T
Cra P % 100% (11)

Tp + Fp

where T}, is the correctly identified real sample of carbon trace, Fp, is the incorrectly identi-
fied real sample of carbon trace, T}, is the correctly identified sample of the background,
and Fj, is the incorrectly identified sample of the background.

5.3. Validation of the HSP-UNet

In order to verify the effectiveness of the proposed HSP-UNet, the models UNet [13],
UNet++ [27], UNeXt [17], MALUNet [28], and EGE-UNet [22] were used to carry out the
comparative analysis. The dataset of dendritic carbon trace Set jept/itic and the dataset of
clustered carbon trace Setj,stor Were used to train the above models, respectively. As shown
in Table 1, among the six segmentation models involved in the comparison, the model
parameters and computational GFLOPs of the HSP-UNet were only 0.061 M and 0.066,
respectively, which shows a better lightweighting advantage than the other models. The
model complexity and arithmetic power demand of the HSP-UNet were comparatively
low, which is conducive to the practical deployment of the HSP-UNet. The segmentation
effects of all the models on the clustered carbon trace samples were better than that on the
dendritic carbon trace samples. The main reason is that the edges of the clustered carbon
traces are smoother and easy to segment, while the edges of the dendritic carbon traces are
much more complex, which substantially increases the segmentation difficulty. Specifically,
HSP-UNet demonstrated obvious performance advantages on both datasets of carbon
traces. For the dataset of dendritic carbon traces, HSP-UNet improved the MloU, PA, and
CPA of the benchmark model UNet by 2.13, 1.24, and 4.68 percentage points, respectively.
Compared with the other four segmentation models, it also showed a better segmentation
performance. For the dataset of clustered carbon traces, the MloU, PA, and CPA of the
six segmentation models were all higher than 90%, 97%, and 94%, respectively. Since the
benchmark UNet already had a good segmentation effect on the clustered carbon trace,
the MloU, PA, and CPA of the HSP-UNet are improved by 0.98, 0.65, and 0.83 percentage
points, respectively. The enhancement of segmentation performance with the dataset of
clustered carbon traces was smaller than that with the dataset of dendritic carbon traces.
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Table 1. Segmentation comparison of carbon traces with 6 models.

Dataset Model Params/ GFLOPs/| Lintou (%) Py (%) Cpa (%)
UNet (Base) 312M 13.76 73.53 93.17 84.42
UNet++ 92M 34.86 73.47 93.07 84.32
Sebs 1o UNeXt 1.5M 0.57 73.93 93.58 85.47
dendritic MALUNet 0.177M 0.085 74.15 93.79 86.23
EGE-UNet 0.053 M 0.072 74.71 94.10 86.30
HSP-UNet 0.061 M 0.066 75.66 94.41 89.10
UNet (Base) 312M 13.76 90.41 97.42 94.56
UNet++ 92M 34.86 90.43 97.53 94.77
Set UNeXt 15M 0.57 90.54 97.44 94.53
cluster MALUNet 0.177M 0.085 91.14 97.58 95.13
EGE-UNet 0.053 M 0.072 91.21 98.01 95.24
HSP-UNet 0.061 M 0.066 91.39 98.07 95.39

The segmentation effects of the dendritic carbon traces and the clustered carbon traces
were comparatively analyzed in Figures 11 and 12, respectively. For the dendritic carbon
traces, the four models, UNet, UNet++, UNeXt, and MALUNet, were weak in perceiving
the edge features and failed to accurately segment the local complex edge, resulting in low
values of the MIoU. EGE-UNet adopted the GAB module to replace the jumping connection
between the encoder and the decoder, which increased the segmentation accuracy for
the edges of carbon trace. However, compared with the GroundTruth, EGE-UNet had
poor perception accuracy of local features and lost a large amount of carbon trace details.
Compared with the above five models, the HSP-UNet proposed in this paper achieved
the best segmentation effect. The SCA mechanism effectively improved the perception of
carbon trace edge features, contributing to a better segmentation completeness of carbon
trace. And the PixelShuffle upsampling module helped to resolve the carbon trace details,
resulting in the refined segmentation of carbon traces, and retained enough detailed in-
formation. Due to the smooth edges of clustered carbon trace, the segmentation effects of
the six models were less different. However, when focusing on the segmentation effect of
the local area with larger curvature (the red circle in Figure 12), the HSP-UNet model still
showed a better segmentation performance.

5.4. Generalization Performance of the HSP-UNet

To validate the segmentation performance of the HSP-UNet with different light con-
ditions, carbon trace samples with sufficient and insufficient supplementary light were
selected from the dendritic and clustered trace datasets. As shown in Figure 13a,b, the
HSP-UNet segmented two dendritic carbon traces completely and accurately, with the
MIoU of 0.736 and 0.775 for the light-sufficient one and the light-insufficient one. The
reason for the relatively lower MlIoU value of the light-sufficient sample is that the edge
features of this sample are too complex to segment the detail boundaries. With respect to
the clustered carbon traces of sufficient and insufficient light, the HSP-UNet also showed a
steady segmentation performance, with the MIoU of 0.922 and 0.907, respectively. Similarly,
to validate the segmentation performance of the HSP-UNet with samples of different sizes,
four carbon traces were selected from the dendritic and clustered datasets. The carbon
traces in Figure 14a,c are much larger than that in Figure 14b,d. The segmentation results
indicated a good generalization performance of the proposed HSP-UNet with the dendritic
and clustered samples, with the MIoU values of 0.774, 0.741, 0.918, and 0.913 from subplot
(a) to (d) in Figure 14.
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Figure 11. Segmentation comparison of the dendritic carbon traces.
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Figure 12. Segmentation comparison of the clustered carbon traces.
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Figure 14. Segmentation performance with samples of different sizes.
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5.5. Comparison of Different Attention Mechanism

After verifying the segmentation performance of the HSP-UNet, four attention mech-
anisms, SCA, SENet [23], CBAM [24], and ECA [29] were selected to compare the seg-
mentation performance for carbon traces. Using the HP-UNet with an addition of the
grouped HPA module and the PixelShuffle up-sampling module as the backbone network,
the above four attention mechanisms were, respectively, added to analyze the segmentation
effect, as shown in Table 2. For dendritic carbon traces with rich detailed features, all four
attention mechanisms could improve the segmentation effect, indicating the feasibility
of using attention mechanisms to improve the perception of detailed features. Among
them, the SCA mechanism achieved the best improvement, with the MloU, PA, and CPA
improved by 2.19, 1.34, and 4.78 percentage points, respectively. For clustered carbon traces,
the improvements of the four attention mechanisms were relatively small. The reason
was that for the clustered carbon traces with smoother edges and fewer detailed features,
the attention mechanisms could not give full play to their detail perception capability.
Considering the segmentation needs of the dendritic and clustered carbon traces, the SCA
mechanism was adopted in this paper.

Table 2. Segmentation comparison of four attention mechanisms.

Setdentritic Setcluster
Types

Imiou (%) Py (%) Pg (%) Iintou (%) Py (%) Pg (%)
HP-UNet 74.37 94.07 86.32 90.55 97.73 94.97
HP-UNet+SEnet 74.54 94.34 85.06 90.74 97.84 94.73
HP-UNet+CBAM 75.02 94.30 87.70 91.25 98.12 95.24
HP-UNet+ECA 75.34 94.41 87.72 91.35 98.01 95.41
HP-UNet+SCA 75.66 94.41 89.10 91.39 98.07 95.39

5.6. Ablation Tests for the HSP-UNet

The model validation and the comparative analysis of four attention mechanisms
showed that the HSP-UNet proposed in this paper had the best segmentation performance
of carbon traces. Taking the dendritic carbon trace with a higher segmentation difficulty as
the object, the ablation test was carried out to analyze the contributions of the grouped HPA
module, SCA, and the PixelShuffle. The ablation test would provide a reference for the sub-
sequent model improvement and design. Using the UNet model as the benchmark, the test
results were shown in Table 3, where / indicated that the corresponding module was used.
Compared with the benchmark UNet, the adoption of the grouped HPA module improved
the MIoU, PA, and CPA of carbon trace segmentation by 0.61, 0.12, and 1.02 percentage
points, respectively; the addition of the SCA could improve the MloU, PA, and CPA by 0.79,
0.11, and 1.97 percentage points, respectively; and the adoption of the PixelShuffle module
improved the MlIoU, PA, and CPA by 0.20, 0.01, and 0.69 percentage points, respectively.
Therefore, the SCA mechanism contributed the most to the performance improvement, the
grouped HPA module the second, and the PixelShuffle module the least.

Table 3. Ablation results of the HSP-UNet.

Num UNet HPA SCA PixelShuffle Imiou (%) Py (%) Pg (%)
1 Vv 73.53 93.17 84.42
2 Vi v 74.47 94.29 86.44
3 v v v 75.46 94.40 88.41
4 v Vi v 75.37 9431 87.92
5 Vi v v v 75.66 94.41 89.10

Meanwhile, the Grad-CAM was used to visually compare and analyze the contribution
of different modules to the segmentation effect of carbon traces. The multi-dimensional
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feature map output from the last convolutional layer was utilized to generate the heat
maps of the ablation test. With respect to the original image of Sample 1 in Figure 15a, the
benchmark UNet had poor ability to perceive carbon traces in Figure 15b. The activation of
the upper right carbon trace was low, resulting in an incomplete segmentation of the carbon
trace region. The addition of the HPA module improved the segmentation completeness
of the carbon trace, but the activation of the carbon trace region was still low, as shown in
Figure 15c. The SCA mechanism dramatically improved the segmentation completeness
and activation intensity of the carbon trace. However, the activation of the background
region in the left part of the image was high, which may induce the model to misclassify
the background as the carbon trace, as in Figure 15d. The PixelShuffle module had a lower
activation intensity than the SCA mechanism, but it also reduced the activation of the
background region, which was conducive to reducing the misclassification probability of
the background, as in Figure 15e. The combined use of the above three modules could
effectively improve the activation intensity of the carbon trace while reducing the activation
intensity of the background region, which is conducive to improving the segmentation
integrity and accuracy of carbon traces, as in Figure 15f.

Similar to Sample 1, there were obvious differences in the Grad-CAMs with different
modules for Sample 2. For the benchmark UNet, the activation intensity of the lower part of
the carbon trace was low, resulting in an incomplete segmentation of the carbon trace, as in
Figure 15h. As shown in Figure 15i, the HPA module improved the perception completeness
of the carbon trace, but the activation intensity of carbon trace edges was still low. This can
lead to significant loss of detailed edge information and make the network misclassify the
pixels near the carbon trace edges. In Figure 15j, the SCA module significantly improved
the activation intensity and completeness of the carbon trace, but the activation intensity of
the background near the carbon trace edge was a little high. It indicated that the perception
of the carbon trace edge for the network with the SCA module needs to be further improved.
As shown in Figure 15k, the PixelShuffle module can be a good complementary for the SCA
module, because the activation intensity of the background near the carbon trace edges
was lower than that with the SCA module, obtaining a much clearer boundary. Meanwhile,
the overall activation intensity of the carbon trace with the PixelShuffle module was lower
than that with the SCA module. Finally, by combining the three modules mentioned
above into the benchmark UNet, the Grad-CAM obtained a good activation intensity and
completeness with a clear boundary between the carbon trace and the background, as
shown in Figure 151. The above Grad-CAM results were in good agreement with the
evaluation indexes in Table 3.

5.7. Discussion

Through the forementioned analysis, the proposed HSP-UNet outperformed over
five State-of-the-Art segmentation models. But the segmentation performance on the
dendritic carbon traces needs to be further improved. In subsequent studies, the following
optimizations may be worth carried out: (1) The conventional convolution kernel in the
grouped HPA module has a fixed rectangular inception field, which shows an insufficient
adaptation to multi-scale complex edge features of the dendritic carbon traces. Owing
to the deformable inception field, deformable convolution [30] may have a better feature
extraction ability. (2) The U-shaped architecture is difficult to balance shallow spatial
features and deep semantic features. Spatially detailed features are usually sacrificed to
ensure the overall accuracy requirements of semantic segmentation, resulting in the need
to improve the segmentation performance of the U-shaped model on the dendritic carbon
traces. New model architectures, such as Bisenet series [31], may be an effective way to
improve the segmentation performance with carbon traces.
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(j) Test 3 (k) Test 4 (1) Test 5
Figure 15. Grad-CAM comparison of the HSP-UNet ablation test.

6. Conclusions

Aiming at the accurate assessment of surface discharge inside the transformer, this
paper constructed the HSP-UNet semantic segmentation network by means of an AHE-
based image enhancement and network structure design and optimization based on the
UNet, which achieved a good semantic segmentation of carbon traces with complex edge
features. It would provide technical support for an accurate assessment of the transformer
insulation condition.

(1) Aiming at the over-concentration of pixel values and the weak contrast of carbon
trace images collected inside the transformer, the AHE algorithm was used for image
enhancement, which effectively reduced the extraction difficulty of carbon trace
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features. At the same time, four data augmentation methods were used to construct
the dataset of dendritic carbon trace containing 2495 samples and the dataset of
clustered carbon trace containing 2825 samples.

(2) With the goal of model lightweighting and accurate segmentation, the HSP-UNet
model was constructed by integrating the grouped HPA module, SCA mechanism,
and PixelShuffle module. Experimental results showed that the model parameter and
GFLOPs were only 0.061 M and 0.066, respectively, which showed a good lightweight-
ing advantage. Meanwhile, compared with the existing models, HSP-UNet had
better segmentation on both carbon trace datasets. For dendritic carbon traces,
HSP-UNet improved the MIoU, PA, and CPA of the benchmark UNet by 2.13, 1.24,
and 4.68 percentage points, respectively. For clustered carbon traces, HSP-UNet im-
proved the MlIoU, PA, and CPA by 0.98, 0.65, and 0.83 percentage points, respectively.
Similarly, the validation experiments with the samples of different light conditions
and different size demonstrated a good generalization performance of the proposed
HSP-UNet.

(3) Ablation experiments for dendritic carbon traces showed that the grouped HPA
module, the SCA mechanism, and the PixelShuffle module adopted in the proposed
HSP-UNet can all improve the segmentation effect. Due to the improvement in
the ability to perceive detailed features, the SCA mechanism contributed the most
to the model performance, improving the MIoU, PA, and CPA by 0.79, 0.11, and
1.97 percentage points, respectively.
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