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Abstract: Drowning poses a significant threat, resulting in unexpected injuries and fatalities. To
promote water sports activities, it is crucial to develop surveillance systems that enhance safety
around pools and waterways. This paper presents an overview of recent advancements in drowning
detection, with a specific focus on image processing and sensor-based methods. Furthermore, the
potential of artificial intelligence (AI), machine learning algorithms (MLAs), and robotics technology
in this field is explored. The review examines the technological challenges, benefits, and drawbacks
associated with these approaches. The findings reveal that image processing and sensor-based
technologies are the most effective approaches for drowning detection systems. However, the image-
processing approach requires substantial resources and sophisticated MLAs, making it costly and
complex to implement. Conversely, sensor-based approaches offer practical, cost-effective, and
widely applicable solutions for drowning detection. These approaches involve data transmission
from the swimmer’s condition to the processing unit through sensing technology, utilising both wired
and wireless communication channels. This paper explores the recent developments in drowning
detection systems while considering costs, complexity, and practicality in selecting and implementing
such systems. The assessment of various technological approaches contributes to ongoing efforts
aimed at improving water safety and reducing the risks associated with drowning incidents.

Keywords: drowning detection systems; image processing; sensor-based technologies; water safety;
surveillance systems

1. Introduction

In recent decades, the popularity of swimming pools and other water attractions has
significantly increased. To ensure the safety of individuals in pools, rivers, and beaches,
it is crucial to have accessible and well-maintained surveillance systems. Drowning is
responsible for approximately 7% of all injury deaths and is ranked the third leading
cause of accidental-injury-related death by the World Health Organisation (WHO, Geneva,
Switzerland) [1]. Globally, an estimated 230,000 people lose their lives to drowning each
year, making it a threat to individuals of all age groups, from infants to senior citizens [2].

Despite the significant risk that drowning poses to public health, global estimation
might significantly understate its true extent [3,4]. Specific demographics, such as children
and young men, who engage in water-based activities are more susceptible to this danger [5].
Drowning is a multifaceted issue with various underlying causes [6–9]. However, the
primary factors contributing to drowning include the inability to swim, fear of water,
and insufficient supervision of children [10]. It is important to note that drowning is
often a silent event, and victims rarely exhibit convulsive movements. Instead, they exert
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considerable energy to keep their heads above water, often unable to call for help or signal
their distress. When water enters their larynx or trachea, panic and spasms can occur,
preventing them from shouting for assistance. Detecting drowning is typically challenging,
as victims may struggle in the water, have trouble breathing or have an irregular heartbeat.
Without the intervention of a trained lifeguard, individuals may remain on the water’s
surface for only 20 to 60 s before submersion occurs. Therefore, locating a missing person
in the water is crucial for their survival.

In recent years, significant progress has been made in advancing technologies that
enhance public safety in water-related environments [11,12]. These advancements have
brought forth many methods and tools, ranging from simple yet effective techniques to
sophisticated systems, all aimed at mitigating risks associated with water-related incidents,
particularly drowning. This paper investigates and evaluates various approaches to address
this critical issue.

The primary objective of this study is to explore different strategies and assess their
performance, cost-effectiveness, complexity, and accuracy. By thoroughly examining these
factors, we aim to provide valuable insights into the most efficient and reliable methods
for detecting and preventing drowning incidents. Given the time-sensitive nature of
such emergencies, the swift identification and analysis of relevant parameters become
imperative. The ability to quickly recognise and understand these parameters within
a limited time window is crucial for effective intervention and ultimately saving lives.
This paper comprehensively reviews strategies encompassing image processing, machine
learning implementations, and sensor techniques. These diverse approaches offer unique
advantages and have the potential to contribute significantly to drowning detection and
prevention efforts. By evaluating the strengths and limitations of each method, we can
shed light on their practicality and effectiveness in real-world scenarios.

The World Health Organisation has highlighted that 90% of drowning incidents
occur in low- and middle-income countries [1]. Therefore, the cost-effectiveness and ease
of access to drowning prevention technologies are crucial factors in determining their
applicability in these regions compared to high-income countries. For example, while
image processing techniques are efficient, they demand significant investment and complex
machine learning algorithms, which makes them expensive and intricate. On the other
hand, sensor-based methods offer a more accessible and affordable option for drowning
detection. These methods utilise sensors to transmit data about the swimmer’s condition
to a central processing unit, employing wired and wireless communication channels.

The analyses by Peden and McGee [13] and Tyler et al. [14] highlight the prevalence
and risk factors of drowning in low- and middle-income countries. Peden and McGee’s [13]
examination of WHO Global Burden of Disease data reveals that a majority of fatal and
non-fatal drowning incidents occur in these regions, with exceptionally high rates in Africa,
the Western Pacific Region, and the Southeast Asia Region. Complementing this, Tyler
et al.’s [14] review of 62 relevant articles, predominantly from Asia (56%) and Africa
(26%), identifies several key risk factors for drowning. These include being young (under
17–20 years old), male gender (75% male vs. 25% female), residing in rural areas (84%
rural vs. 16% urban), incidents occurring more frequently during the daytime (95% day
vs. 5% night), lack of adult supervision (76% unsupervised vs. 18% supervised), and
limited swimming ability (86% non-swimmers vs. 10% swimmers). Additionally, the risk
of drowning was similar in both small (42% in ponds, ditches, streams, and wells) and
large bodies of water (46% in lakes, rivers, seas, and oceans).

This paper aims to provide researchers, practitioners, and decision-makers with valu-
able insights into the most promising and viable approaches to enhance water safety by
thoroughly examining the performance, cost, complexity, and accuracy of drowning de-
tection and prevention strategies. Ultimately, our collective efforts in understanding and
implementing these innovative technologies can significantly reduce drowning incidents
and ensure a safer environment for individuals in water-related settings.
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2. Drowning Behaviour, Signs, and Statistics

From 2008 to 2020, Connecticut researchers [15] conducted autopsies on 500 bodies
retrieved from the water categorised by age, gender, location, type of water body, cause of
death, method of death, decomposition symptoms, body mass index (BMI), brain weight,
lung weight, pulmonary oedema, stomach contents, and toxicological tests. Men more
frequently drown than women (excluding cases of suicide). Two common characteristics
of drowning deaths are water retention in the lungs and brain swelling. It is essential to
look at the big picture while assessing anatomical data. In salt water, the brain and lungs
both increase in mass. However, BMI and fat distribution also have a role. Figure 1a shows
the total number of drowning victims at different locations. As depicted in Figure 1b,
swimming or other recreational activities are the most common activities leading to drown-
ing, regardless of age or location (except in the ocean or a harbour). In 80% of drowning
deaths, it was unclear if drugs or alcohol played a role. However, among the remaining
20% where such involvement was determined, 58% involved legal drugs (56% involved
alcohol), 19% involved illegal drugs, 15% involved legal and illegal drugs, and 8% did not
involve either [16].
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by location (river/creek; beaches; lake/dam) in 2019/2022 [16].

Drowning can be categorised as active or passive. Active drowning is when a person
actively tries to swim to the surface. For example, the swimmer can perform “ladder
climbing” or other actions that cause them to break the water’s surface (splashing and
flailing their limbs), or they may remain submerged without generating an audible sound or
visual ripple. If a swimmer is actively drowning, they are either immersed or unable to keep
their head above water and cannot call or signal for help. Passive drowning occurs when
swimmers lose consciousness while submerged in water, preventing them from resisting
and leading to death [17,18]. It was commonly thought that non-swimmers drown due to a
‘fight or flight’ response characterized by frantic movements. However, observations from
witnesses indicate that drowning typically does not involve such thrashing behaviours. In
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some instances, a body was reported to float on the water when it stopped moving. The
swimmer sank and disappeared. These reports show that drowning is a hidden killer, as
the victim cannot signal for help.

While drowning mainly results from asphyxiation, incidents involving falls or dives
into the ocean can sometimes lead to secondary complications such as spinal or brain
injuries, which are exacerbated by oxygen deprivation but are not direct causes of drowning.
Alcohol and drugs can also influence drowning and death. Drowning is a form of death
through asphyxiation and severe cerebral hypoxia, also known as suffocation [19,20]. Both
active and passive drowning have phases that last 10–12 min. During this interval, the
person can be rescued and resuscitated without permanent harm: (1) The person inhales
water. (2) If a person is at risk of drowning or oxygen depletion, their airways will close.
(3) The swimmer loses consciousness, and their body slows down to conserve oxygen.
(4) Water enters the lungs through the windpipe. (5) Low oxygen causes muscle twitching.
(6) Without oxygen, brain damage is permanent. (7) Oxygen-deprived brain death occurs.
Before stage five, a drowning swimmer can be rescued and resuscitated without long-
term health effects. However, once brain damage from lack of oxygen commences, the
chances of rescue and survival without long-term implications quickly diminish until stage
seven. Therefore, while it takes seconds for someone to start drowning, it takes minutes to
accomplish a rescue without irreversible damage, and any drowning prevention method
must account for this [18,21].

Drowning often results in death and injury, but in fortunate cases, the aftermath of a
non-fatal drowning may not result in significant health issues. Nonetheless, there have been
documented instances where non-fatal drowning has negatively affected a person’s health
and quality of life [22–27]. The brain or other organs may sustain damage, a condition
known as hypoxic brain injury (owing to oxygen shortage). Preventable drowning is the
leading cause of death for children under four. It has been found that swimming pools
are the most common location for non-fatal drownings, especially among children [28]. In
contrast, most adult and adolescent drownings occur in natural bodies of water such as
lakes, rivers, and beaches [29].

The National Drowning Report by the Royal Life Saving Society Australia for 2022/23 [16]
comprehensively analyses drowning incidents in Australia. It revealed a marginal increase in
drownings, with 281 cases, a 1% rise compared to the 10-year average of 279. A significant 77%
of these incidents involved males. Adults aged 45 and older accounted for 57% of the drown-
ings, with 44% occurring in major cities. Rivers and creeks, beaches, and oceans/harbours
were the most common locations, accounting for 27%, 27%, and 12% of incidents, respectively.
The primary activities leading to drownings were swimming and recreating (33%), falling
into water (15%), and boating (8%). Children aged 0–4 years and adults over 75 years were
particularly vulnerable to drowning due to falls into water, representing 69% and 22% of
their respective age group drownings. Notably, boating-related drownings decreased by 40%
compared to the decade-long average. For young children under four years, fatal drowning
cases decreased significantly, representing 6% of the total in 2022/23, marking a 6% drop
from the previous year and a 33% decline from the 10-year average. Similarly, the crude
fatal drowning rate for this age group decreased by 32% from the 10-year average and 59%
from the rates observed 20 years ago. Drownings in the 5–14-year age group constituted 2%
of the total, a 53% reduction from the previous year and a 35% decrease from the 10-year
average. The 15–24-year age group represented 11% of drowning cases, down 17% from
the previous year and 7% from the 10-year average. Interestingly, the 25–64-year age group,
which accounted for 54% of drowning deaths, showed a 1% increase compared to the 10-year
average. The age groups with the highest drowning rates were 45–54 years, 55–64 years, and
65–74 years, representing 15%, 15%, and 14% of the drownings, respectively. This is important
when training AI models. If it is not trained using images of sufficient numbers of both males
and females, an algorithm may achieve, for instance, 80% accuracy, while failing to safeguard
any females. While the report does not explicitly address race, it is important to consider
factors like age, gender, and other visible differences to ensure that any model appropriately
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protects everyone who could use or purchase an AI-based drowning detection device. Table 1
provides a summary of the most common technologies for drowning detection.

Table 1. Summary of recent methods of drowning detection with advantages and limitations.

Method Advantages Limitations

Lifeguard

• Human judgment and experience
• Immediate response and rescue capability
• Communication and coordination with

authorities

• Limited physical endurance and potential
for fatigue

• Restricted field of view and potential for
human error

Video processing-drones

• Aerial view for wide coverage and
surveillance

• Rapid response and quick deployment
• Real-time video feed for situational

awareness

• Limited battery life and flight time
• Restricted flight regulations and airspace

limitations
• Vulnerability to environmental conditions

(e.g., wind)
• Affordability and accessibility in

low-to-medium income countries.

Image-processing technology

• Continuous monitoring and real-time data
collection

• Accuracy and effectiveness in recognising
and differentiating drowning incidents.

• Customisable thresholds for personalised
detection

• Underwater drowning detection

• Limited detection range and requires
regular maintenance and calibration.

• Expensive and complex to implement.
• Requiring high-end AI techniques and

infrastructure.
• Affordability and accessibility in

low-to-medium income countries.
• Dependence on camera placement and

quality

Wearable sensors

• Continuous monitoring and real-time data
collection

• Cost-effectiveness and wide availability
• Customisable thresholds for personalised

detection
• Easy integration with artificial intelligence

system which increases the accuracy.
• Affordability and accessibility in

low-to-medium income countries.

• Sensitivity to environmental conditions
and false alarms

• Limited detection range and coverage
• Maintenance and calibration requirements
• Limited underwater communication

Although the number of drowning deaths is important, it is not the whole story.
For every fatal drowning, there are around 2.5–2.7 times as many non-fatal episodes [22].
Furthermore, drowning can result in various adverse consequences other than death.
Only 5% of people who survive drowning do so without suffering a permanent handicap.
Considering the years of life lost, estimated lost productivity, and hospitalisation and
search and rescue expenses, the average annual economic impact of fatal drownings in
Australia was calculated to be around 1.24 billion AUD for the period from 2002 to 2017 [30].
Contrary to popular belief, drowning is extremely difficult to detect unless one is trained to
detect it. There are a few basic movements or physical indications which usually indicate
a swimmer is in distress, such as (1) agitated movement of the arms, (2) glossy or closed
eyes, (3) tilted head with the mouth barely keeping above water level, (4) hair covering
the entire face/forehead, thus obscuring a person’s vision, (5) aberrant breathing and
hyperventilating, (6) swimming without a direction, and (7) floating on one’s back without
any leg movement [31]. These signs may be commonplace indicators of drowning, but
only a few are measurable parameters and are consistent occurrences for every scenario.
Research shows this is mainly because drowning indicators for one person may not be
applicable or legitimate for another. This can lead to either false alarms or, in some cases,
failure of detection [32].

3. Image Processing Techniques for Drowning Detection

Many drowning incidents occur in places without adequate supervision. It is pro-
hibitively costly to have lifeguards monitoring large portions of the coastline. Thus, they
are mainly tasked to patrol popular beaches. Additionally, lifeguards do not patrol most
rivers or residential pools. Due to the expense, comprehensive monitoring is not feasible.
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The alternative is to develop a low-cost autonomous system that identifies swimmers in
distress from an above-water vantage point, such as a pole, observation tower, or a mobile
Unmanned Aerial Vehicle (UAV), such as a quadcopter or fixed-wing aircraft. Previous
research into this field has focused on the use of autonomous systems to detect swim-
mers (regardless of their distress level) [33] or UAVs to capture better footage for trained
employees to monitor [34].

Joseph Redmon [35] designed Darknet for neural image recognition. It is being
updated by AlexeyAB and is used for object and human recognition. Redmon’s You Only
Look Once (YOLO) model is one of the most well known and is the basis of many modern
research articles on this issue. Many writers have released improved versions of YOLO
using Darknet as a starting point. MS COCO is an extensive library of pre-labelled images
with 80 classes and daily objects. Mean average precision (mAP), a measure of “overlap
between the prediction and ground truth bounding boxes” and predicted class accuracy,
is used to assess model performance. Speed can be expressed as a framerate by finding
the inverse of the time it takes to perform inference (process a single frame) [36]. Some
networks can add processing steps to increase application performance. For example,
Recurrent Only Look Once (ROLO) adds a long short-term memory (LSTM) layer to the
YOLO pipeline to provide recurrent neural network (RNN) capability, boosting the model’s
performance on occluded objects [37]. If a CNN or YOLO model has been trained, any
picture may be used, including thermal or other camera technologies that can identify
humans [38,39]. In addition, they are fast enough to run on mobile phones, computers, and
various platforms.

Studies have successfully distinguished people on land from those swimming, us-
ing trained vision systems [40]. Typically, search and rescue (SAR) applications motivate
research into detecting swimmers, such as autonomously locating lost people at great
distances [33]. It is crucial to detect and differentiate between swimmers who are drowning
and others who may be in the frame but are not swimmers, e.g., those on the shoreline or
poolside. Drowning detection has been studied for swimmers at sea [41] and in pools [42].
From an engineering standpoint, pools provide a convenient development platform. Above-
water cameras work well in pools with high-contrast walls. These walls contrast nicely
with all skin tones, making detection easier. In addition, pool locations facilitate under-
water cameras and provide mounting locations for this equipment. In contrast, an ocean
environment has a sandy bottom, and the water is only sometimes clear enough for them to
perform effectively due to sediments such as sand and marine life, which reduce visibility
to an unusable level [42,43].

Drowning can be detected through video surveillance in three ways, by employing (a)
submerged cameras to monitor whether the swimmer’s body is sunken, (b) a stationary
camera to detect the location of forceful splashes on the water, and a spinning underwater
camera to assess the location of the splashes by submerged individuals, and (c) a camera
that distinguishes only the drowning characteristics. Rooz et al. [44] were the first to
suggest using sonar. Active sonar is used to scan the pool area, and the technology can
distinguish between people and inanimate objects in the captured photos. An underwater
camera was then proposed as an alternative method [45,46] for detecting people near the
edge of the pool. However, this strategy largely overshadowed camera-based techniques.
Both solutions are costly and inconvenient due to underwater installation and housing. In
addition, underwater-camera-based systems suffer from blind spots. Existing drowning
detection approaches mimic drowning characteristics for supervised classification, but
drowning events are infrequent and difficult to simulate. Also, unexpected actions or
appearances cause anomalies in video footage. There are several methods for finding
video anomalies, but the most important step is extracting video features [47–50]. Video
anomaly detection tasks are another area where deep learning algorithms have had recent
success [51–53]. Since high-level semantic aspects of films can be extracted using deep
learning algorithms, together with the spatial and temporal elements, they are also more
resilient in dealing with complicated scenes.
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Feature extraction, feature expression, and evaluation criteria are available for estimat-
ing typical swimming speed based on swimmers’ motion capture—determining orientation
independent of the camera angle and assessing a risky situation, as depicted by the chart
in Figure 2 [54]. An alarm is triggered if no head is located within a given time range.
If no bounding box overlaps the initial bounding box of the head, then the target is not
swimming. In that case, whether the swimmer is treading water upright is assessed. An
alert will sound if the swimmer is in a risky upright posture. The typical swimming speed
may be calculated if the number of sample frames and intervals is known. This approach
helps identify any changes in the swimmer’s speed and determine if these changes are
unusual. When the threshold is exceeded, an assessment of a dangerous upright condition
is performed. Again, a warning will sound if the swimmer is upright and in a danger-
ous posture. Using the bounding box of the swimmer’s head and the overlapping area
of the neighbouring bounding box eliminates the error created by directly applying the
object displacement time ratio. When the camera’s optical axis is not perpendicular to the
swimmer’s direction, the long and short axes of the outer ellipse of the human body do not
operate. However, in such scenarios, measuring the ratio of the head size to the body size
provides a more accurate way to determine if the swimmer is in an upright position.
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As shown in Figure 3, the approach for swimmer status extraction comprises a learning
phase that constructs the initial background model and a detection phase that separates
swimmers from the non-stationary pool background [42]. Addressing the issues expe-
rienced by automated surveillance systems under challenging contexts is necessary for
developing algorithms for a system capable of detecting water emergencies in highly
dynamic aquatic environments. A robust segmentation algorithm based on block-based
background modelling and thresholding with a hysteresis approach enables reliable detec-
tion of swimmers in reflections, ripples, splashes, and fast illumination changes. A Markov
random field architecture addresses partial occlusions, enhancing the system’s tracking
capabilities. The relatively high noise level in the foreground detection and behaviour
recognition steps represent a significant obstacle to solving the problem [55]. As a result,
background subtraction, denoising, data fusion, and blob-splitting techniques are used,
motivated by the peculiarities of the aquatic background and the crowded pool situation.
In addition, visual signs of distress and drowning are integrated via a set of foreground
descriptors in the detection stage for early drowning. Also, a module consisting of data
fusion and hidden Markov modelling is built to discover the distinctive characteristics of
various swimming behaviours, notably those early drowning incidents.



Sensors 2024, 24, 331 8 of 18

Sensors 2024, 24, x FOR PEER REVIEW 8 of 19 
 

 

background subtraction, denoising, data fusion, and blob-splitting techniques are used, 
motivated by the peculiarities of the aquatic background and the crowded pool situation. 
In addition, visual signs of distress and drowning are integrated via a set of foreground 
descriptors in the detection stage for early drowning. Also, a module consisting of data 
fusion and hidden Markov modelling is built to discover the distinctive characteristics of 
various swimming behaviours, notably those early drowning incidents. 

 
Figure 3. Design of the suggested algorithm for segmentation [42]. 

The first step in an unsupervised method for identifying drowning incidents in pools 
is gathering pool images. Incidents involving drowning are only included in the test set, 
not the training set. After the dataset is prepared, a ResNet-modified neural network is 
presented for reconstructing video frames [56]. When anomalous events occur, they can 
be found by comparing the reconstructed frames to the ground truth frames. Regarding 
the method quality outcomes in the dataset, the water surface region always generates 
substantial inaccuracies due to water and light variations. The water surface flaws are al-
ways present in normal and abnormal frames. Therefore, they cancel each other out when 
compared and do not influence the detection of abnormal frames. The error map will only 
show a slight deviation when someone acts following their typical behaviour. Someone 
drowning will generate abnormal frames, and the related region error grows considera-
bly. 

A video surveillance system can detect drowning accidents using advanced person 
tracking and semantic event detection technology [57]. Despite significant water ripples, 
splashes, and shadows, successful detection and tracking of swimmers are possible with 
a background model that efficiently includes updated information on swimming pools 
and aquatic environments. In the simulation of water distress conducted by a volunteer 
and the appropriate system reaction [57], activity and splash index with medium and high 
values are proposed as criteria for drowning identification. For example, an index of 1.7 
is considered a medium value, whereas an index of 2 is a high number and a symptom of 
drowning. Similarly, the difference between the medium splash index of 400 (safe) and 
the high splash index of 600 (alarm) is another method for detecting drowning. Thus, 

Figure 3. Design of the suggested algorithm for segmentation [42].

The first step in an unsupervised method for identifying drowning incidents in pools
is gathering pool images. Incidents involving drowning are only included in the test set,
not the training set. After the dataset is prepared, a ResNet-modified neural network is
presented for reconstructing video frames [56]. When anomalous events occur, they can
be found by comparing the reconstructed frames to the ground truth frames. Regarding
the method quality outcomes in the dataset, the water surface region always generates
substantial inaccuracies due to water and light variations. The water surface flaws are
always present in normal and abnormal frames. Therefore, they cancel each other out when
compared and do not influence the detection of abnormal frames. The error map will only
show a slight deviation when someone acts following their typical behaviour. Someone
drowning will generate abnormal frames, and the related region error grows considerably.

A video surveillance system can detect drowning accidents using advanced person
tracking and semantic event detection technology [57]. Despite significant water ripples,
splashes, and shadows, successful detection and tracking of swimmers are possible with
a background model that efficiently includes updated information on swimming pools
and aquatic environments. In the simulation of water distress conducted by a volunteer
and the appropriate system reaction [57], activity and splash index with medium and high
values are proposed as criteria for drowning identification. For example, an index of 1.7 is
considered a medium value, whereas an index of 2 is a high number and a symptom of
drowning. Similarly, the difference between the medium splash index of 400 (safe) and
the high splash index of 600 (alarm) is another method for detecting drowning. Thus,
drowning is noticed when the activity and splash index values exceed their high limits.
When underwater cameras capture the input video sequences, background subtraction
will differentiate between moving objects and the background within the caution zone [58].
In addition, convoluted water interferences are simplified using an inter-frame-based
denoising technique. The inter-frame-based denoising process will not affect the final
image quality. To clarify things, the system is set up to label each ROI on the frame with
the duration; if the time is longer than the threshold, an extra “D” would appear on the
label, designating the associated region as belonging to a drowned swimmer [58].

Robotic technology may assist in reducing drownings in swimming pools. For instance,
Laxman and Jain [59] used submerged and buoyancy-dependent lifts, motion detectors, and
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laser tripwires to create fail-proof autonomous rescue procedures. In order to counteract
a number of the shortcomings of submerged cameras and systems [44,45,60], a study by
Jose and Udupa [61] examines several approaches for screening swimming pools using
the above cameras [62]. Most drowning detection systems consist solely of the detecting
component, which a skilled lifeguard can cover. Fear and adrenaline make drowning
individuals quite twice as strong as normal, and they will grasp anything to survive.
Therefore, only a trained lifeguard can effectively save a drowning person. Using locations
from a camera above, the suggested robot design in [61] will provide the correct assistance
at the right moment, eliminating the need for lifeguards. The fully automated mechanism
can transport the sufferer to the pool edge. As seen in Figure 4, the suggested system
comprises three components: (1) an LED display with an alert system, (2) a top-mounted
camera, and (3) a gantry robot. The camera is equipped with a drowning-detecting system
that examines the shape and velocity of the swimmer. When the camera detects drowning,
the system sends coordinates to the gantry. The camera coordinates to tell the robot where
to release the ring buoy. A nylon chain and ring buoy will help the distressed swimmer
ascend the drift. A load cell at the end can determine if someone climbed on the dropped
buoy by measuring its effective weight. If the system detects a load, it pulls the victim on
the ring buoy back to the home position. When the camera detects drowning, it activates
the LED display and alarm unit to alert rescuers.
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4. Sensor-Based Techniques for Drowning Detection

Various research efforts have evaluated and implemented sensors to detect drowning.
The anti-drowning system created by Chaudhari et al. [63] is an example of this type of
study. In their method, heart rate is monitored, compared to a predetermined threshold, and
transmitted using radio frequency (RF) with a range of 5–6 m. The device may be attached
to the swimmer’s head or hand for movement assessment. Kulkarni et al. [64] devised a
system for detecting drowning utilising non-invasive oxygen saturation, respiration, and
water sensors [65–69]. These measure blood oxygen saturation, breathing, and submersion.
The controllers are used to monitor, process, and control. The system recognises drowning
if any of the features mentioned earlier are present. Hemalatha et al. [70] described
a similar system with a receiver and transmitter. The wristband-mounted transmitter
module includes a microprocessor, RF transmitter, battery, and pressure sensor. This device
compares sensor data to a threshold and generates an output depending on the comparison,
similar to Chaudhari et al. [63]. John et al. [71] demonstrated a heart rate and pressure
sensor module-based system. The wristband design includes a microcontroller, a heart rate
sensor, and a blood pressure sensor with high and low thresholds on the transmitter side.
Similar to prior two-module systems, a receiver alert is delivered if a heart pressure reading
exceeds the threshold. Ramdhan et al. [72] implemented pulse sensors in a three-module
sensor-based system. The system is divided into a monitoring system, an access point,
and a drowning detection module. Like previous systems, data would be obtained and
compared with predetermined values. Researchers have also studied simple sensor systems
to deploy airbags for flotation. For example, Ramani et al. [73] presented an automated
drowning prevention system utilising a peripheral interface controller (PIC) microcontroller
and accelerometer. When threshold readings are exceeded, the wristband opens an airbag
to float the wearer to the water surface. An electric pulse triggers the airbag by burning
sodium azide pellets in its inflator. Burning creates nitrogen gas, which fills the airbag
and lifts the person to the surface. Nagalikitha et al. [74] suggest a similar system using
pressure sensors and accelerometers to initiate the inflation of an airbag.

Survey results [75] indicate that if additional parameters are monitored simultane-
ously, the accuracy of sensor-based approaches can be improved to a level equivalent to
other high-accuracy but more expensive methods, such as image-processing techniques.
However, more research is still needed to improve the performance of the sensor-based
systems. If one sensor in a multi-sensor device does not promptly pick up on the drowning
scenario, other sensors will. One example is the waterproof device for detecting drowning
presented by Jalalifar et al. [4]. The device includes heart rate, blood oxygen saturation,
swimming patterns, and depth sensors. Each sensor can operate autonomously to increase
the system’s anti-drowning capabilities. The microcontroller compares collected data from
sensors with user-defined criteria to determine an impending threat. The warning will
display if the danger persists over a specified interval. A drowning or safe message may
be shown by comparing these values and keeping track of time underwater. The data
collected by the sensors may be seen on an OLED screen, connected mobile device, or
computer. Unfortunately, the device cannot transmit Wi-Fi signals while submerged in
water. Figure 5 depicts the proposed sensor-based system, which uses a microprocessor,
sensors, a communication system, and a battery.

4.1. Measurable Behaviour

The drowning process can take only tens to hundreds of seconds, making rescue
operations difficult [18]. Submersion for more than 4–6 min without resuscitation causes
brain damage and leads to death. Research at the University of New England shows that
a non-fatal drowning heart rate and blood oxygen level should be checked for potential
drowning victims [10]. Only those parameters that can operate as consistent, reliable
parameters should be considered when deciding which to use for measurement. Based on
these and other studies, the following variables were chosen: heart rate [63,71,72], blood
oxygen saturation [64,76], depth of immersion [70], pattern of movement [73], and body
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temperature [77,78]. All the mentioned factors are reliable, with values that may vary from
person to person but stay within a stable range. As a result, the value may be adjusted for
each user to provide timely drowning warnings.
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4.1.1. Heart Rate

Early studies by researchers [79] divided drowning into two groups. Variations in
blood pressure and breathing patterns divided the groupings, while heart rate patterns
were common to both. In both cases, heart rates fell before death. A low heart rate leads to
a decline in blood oxygen saturation due to the diminished capacity of the heart to circulate
oxygenated blood into the body. Norwegian researchers [80] analysed the heart rate data of
a man who had fallen from his kayak. He was wearing a wristwatch capable of recording
heart rate and temperature. The researchers extracted the data and observed that within
minutes after submersion, the subject’s heart rate decreased to 43 beats per minute (BPM)
and varied between 78 and 35 BPM. In one study [4], 55 BPM was set as the threshold
value while testing a device. This implies that drowning is indicated when the heart rate is
55 BPM or lower.

4.1.2. Blood Oxygen Saturation

Oxygen saturation (SpO2) is measured as the ratio of the amount of oxygen-carrying
haemoglobin to the amount of haemoglobin not carrying oxygen [81]. For instance, the
SpO2 is calculated using Equation (1) [82,83]:

SPO2 = 100 × C [HbO2]

C [HbO2] + C [RHb]
(1)

where the oxygenated haemoglobin and deoxyhaemoglobin are defined as HbO2 and
RHb, respectively. Additionally, the concentration of oxygenated haemoglobin and deoxy-
haemoglobin is represented as C.

Every individual requires a certain amount of oxygen in their blood to function
normally. Inadequate SpO2 levels can result in severe symptoms, indicating the onset of
hypoxemia. In addition, there is a skin condition known as cyanosis because of its blue
(cyan) colouring. Hypoxemia (low oxygen levels in the blood) can lead to hypoxia (low
oxygen levels in the tissue) [81]. As all drowning victims suffer from hypoxia, prompt
oxygen administration is one of the most important therapies. However, conventional
oxygen administration is 100%, which might harm patients during resuscitation [84]. As the
oxygen level in the bloodstream is very stable, it is known as an indicator of drowning [4,75].
The usual range of oxygen saturation in the human body is 95–100% [85], and anything
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below this value is considered hypoxia [81]. Therefore, when a person is drowning, their
oxygen levels will drop dramatically, as expected; the quantity of oxygen in a person’s
system would effectively predict whether or not they are experiencing asphyxia due
to drowning.

4.1.3. Depth

Water depth was one of four parameters studied when the recovery record of 56
thousand rescues in a lifeguarded waterpark was analysed [86]. The study defines shallow
water as any depth of ≤1.5 m, while deep water is >1.5 m. The study also showed that 42%
of all rescues occurred in shallow water, and 56.6% of recoveries occurred in deep water.
Although there is no set depth at which drowning can occur, there is no disputing the fact
that water depth influences its prevalence. As divers would have a higher threshold than
swimmers in a shallow pool, our device must have a depth measurement option while
also providing the possibility to adjust the depth thresholds according to the swimmer’s
surroundings and level of capability. Thus, it can be inferred that depth would be a crucial
parameter to monitor and use in a drowning detector.

4.1.4. Body Temperature

Hypothermia is a medical disorder in which a human body’s heat loss rate is higher
than the heat gain, leading to a dangerously low body temperature. The average body
temperature is around 35 ◦C. Hypothermia occurs when the body temperature drops
below 35 ◦C. This can develop with prolonged exposure to water below 20 ◦C. When the
body’s temperature falls below 32 ◦C, the heart, brain, and other organs cease functioning
properly [78,87]. Safety experts say that many drowning fatalities occur due to hypothermia
rather than water in the lungs. The cold water removes heat from the body 25 to 30 times
quicker than air. Hypothermia occurs when a person loses enough body heat to drop below
normal temperature. Immersion in cold water instantly cools the skin and surrounding
tissues. Core body temperature (brain, spinal cord, heart, and lungs) declines within 10
to 15 min. The arms and legs become completely numb and unusable. Before the core
temperature goes low enough to cause death, the individual may lose consciousness and
drown [77].

4.1.5. Time Duration

The consequence of submersion time for drowning fatalities among those in open wa-
ter bodies was examined in depth by researchers in Washington [88]. The study concluded
that swimmers often died when submerged for over 15 min. It is vital to remember that
this period encompasses everything from submersion to cardiac arrest. The goal is to stop
drowning before it starts rather than trying to save someone about to pass away. A person
can be at risk of drowning with the entry of as little as half a cup of water into their lungs,
a situation that can occur in less than 60 seconds. A submersion time of approximately
15 seconds is established as the critical threshold for safety purposes. Then, if any of the
other signs mentioned earlier are activated within these 15 s without interruption for a
continuous 15 s, this would imply drowning, and the corresponding rescue notification
would be signalled.

4.2. Developed Domestic Sensor-Based Devices for Children

According to the Royal Life Saving Society Australia [16], 75% of toddler deaths under
the age of four resulted from drowning, with half of all deaths occurring in swimming
pools, followed by bathtubs/spas and lakes/dams. Similar findings have been reported
in the United States and Japan [89], indicating that one-to-four-year-old children had
the highest incidence of drowning. Most child drownings in this age group occur in
swimming pools. However, drowning may occur at any moment, particularly when
children should not be near water, such as when they have unsupervised access to pools [90].
For children aged 1 to 14, drowning is the second leading cause of accidental injury
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mortality, behind motor vehicle accidents. In addition, non-fatal infant drowning can result
in long-term health issues, including brain damage and expensive hospital admissions [91].
The neuropsychological result of children who have suffered a non-fatal drowning episode
cannot be adequately anticipated early in the therapeutic process. Therefore, vigorous
outpatient and inpatient care is essential. Despite considerably decreased submersion
periods, many survivors suffer from severe neurological impairment. These conditions will
have a lasting and significant impact on both their families and society throughout their
lives. [92]. Parental supervision is crucial in preventing drowning, and swimming pools
should be fenced, yet children continue to drown. Prevention of drowning requires a tiered
strategy. The more “layers of protection” between a child and water, the more negligible
the risk. Therefore, early detection of drowning incidents is necessary for this vulnerable
age group when roaming near water.

As presented in Table 2, Multiple home-based safety devices have been developed and
produced to enhance children’s safety around swimming pools, spas, and bathtubs. While
these devices offer valuable assistance in preventing accidents, it is essential to recognise
them as components of a comprehensive approach to water safety. This holistic strategy
should also encompass consistent adult supervision, implementing physical barriers, and
providing thorough water safety education.

Table 2. Overview of functionality and key limitations of child safety devices for home pools and baths.

Device Functionality Limitations

Triaxial accelerometer device for bathtub [89]

• Monitor water wave motion in a bathtub using
a triaxial accelerometer.

• Identify aberrant wave motion.
• Alerts are sent to guardians through radio

transmission.

• Limited to Bathtubs: Specifically designed for
bathtubs, its effectiveness in larger bodies of
water like swimming pools needs to be
clarified.

• Dependence on Wave Motion Detection: It
may only detect drowning if the water wave
motion is sufficiently aberrant.

• Radio Transmission Range: The effectiveness
of alerts depends on the range and reliability of
the radio transmission.

WiEyeTNB [93]

• Designed for use in wireless networks at
homes or schools.

• The water-level detection sensor activates
upon contact with water above a
predetermined level.

• A small, wearable earring sensor is positioned
at the same level as a person’s mouth.

• It includes a central processing unit comprising
a low-power microprocessor with modest
storage (on-chip and flash memory).

• A ZigBee transceiver is used for low-cost
wireless communication within the unlicensed
RF Industrial, Scientific, and Medical (ISM)
bands (Range: 100 m).

• Powered by a lightweight, rechargeable, or
non-rechargeable battery.

• Water-Level Detection Limitation: This relies
on water reaching a certain level; it may not
detect if a child enters the water without
significantly raising the level.

• Wearable Sensor Challenges: As an earring, it
may need to be consistently worn or removed,
reducing its effectiveness.

• Limited Communication Range: Utilises
ZigBee with a 100 m range, which might not
cover more significant properties or distances.

• Battery Dependency: The need for regular
battery recharge or replacement could lead to
lapses in monitoring.

Safety Turtle Pool Alarm [94], Water Patrol Child
Guard [95]

• Features a house-based base station and a
wristband worn by children.

• The product is sealed and sturdy enough to
endure children’s play.

• The wristband detects water immersion
immediately and sends a radio signal to the
base station, triggering a loud alarm.

• A single base station supports multiple
wristbands.

• The alert system distinguishes between
immersion and incidental contact with
precipitation or sprinkler mist.

• Immersion Detection: While immediate, it
may not detect scenarios where a child is in
danger without being fully immersed.

• Wristband Design: The effectiveness depends
on the child consistently wearing the
wristband.

• Signal Interference: Although it can ignore
precipitation, other interference might affect
the functionality of the alarm.

• Single Base Station Limitation: While it can
connect to multiple wristbands, the single base
station might have limited coverage for larger
areas.

5. Conclusions

This paper provides a comprehensive understanding of the most favourable methods
of drowning detection, image processing, and sensor-based approaches. While expensive
and challenging, image processing offers high accuracy and real-time detection, including
underwater, but relies on costly AI and infrastructure, limiting its use to specific locations.
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Sensor-based methods are more affordable and universal, which makes them a viable
option for low-to-middle-income countries, benefiting from advancements in machine
learning and IoT for customisation. However, they require individual calibration and face
challenges in motion tracking standards and underwater communication. Integrating AI
and mobile apps can enhance personalisation in sensor-based systems.

To achieve optimal performance with sensor-based methods, it is crucial to customise
the device for each user, considering factors such as age, health, and gender. Fortunately,
advancements in machine learning algorithms (MLAs) and the Internet of Things (IoT) now
enable the practical adaptation of sensor-based devices. Conversely, image processing meth-
ods rely on high-end AI techniques and costly infrastructure, limiting their applicability to
specific installations, such as pools and designated areas. In contrast, sensor-based methods
offer universality in their application. Despite significant technological advancements in
drowning detection systems, notable areas still require attention. Sensor-based methods
for tracking motion present room for further development, particularly in establishing
standardised ranges for acceptable acceleration and velocity thresholds during swimming.
Underwater wireless communication in sensor-based approaches also poses challenges
that must be addressed.

Nevertheless, integrating removable components that emerge from the water or float
on its surface in a drowning incident can effectively alert lifeguards. AI can be lever-
aged in sensor-based techniques to personalise measurable parameters for individuals,
considering their unique physical and health conditions, age, gender, and other factors.
Additionally, the development of a mobile app holds the potential to personalise individual
parameter settings.

This paper underscores the strengths and weaknesses of different drowning detection
approaches, paving the way for further advancements in water safety and preventing
drowning incidents. By addressing the identified shortcomings, we can enhance the
effectiveness and reliability of sensor-based systems, ensuring improved safety measures
for individuals engaged in water activities.
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