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Abstract: Hand gesture recognition, which is one of the fields of human–computer interaction (HCI)
research, extracts the user’s pattern using sensors. Radio detection and ranging (RADAR) sensors
are robust under severe environments and convenient to use for hand gestures. The existing studies
mostly adopted continuous-wave (CW) radar, which only shows a good performance at a fixed
distance, which is due to its limitation of not seeing the distance. This paper proposes a hand gesture
recognition system that utilizes frequency-shift keying (FSK) radar, allowing for a recognition method
that can work at the various distances between a radar sensor and a user. The proposed system adopts
a convolutional neural network (CNN) model for the recognition. From the experimental results, the
proposed recognition system covers the range from 30 cm to 180 cm and shows an accuracy of 93.67%
over the entire range.

Keywords: human–computer interaction; hand gesture recognition; micro-Doppler signature; FSK
radar; Doppler radar; convolutional neural network; data preprocessing

1. Introduction

Human–computer interaction (HCI) is a research field that develops various interac-
tions between humans and computers [1,2]. Typically, a keyboard and mouse have been
used for human–computer interactions. However, research in regard to developing simpler
interaction methods, such as voice and gesture recognition, is rapidly progressing, with
the development of hardware and software in recent years [3]. Hand gesture recognition
is one of the most effective human recognition methods among the various recognition
techniques. Various technologies are still being widely studied on the Internet of Things
(IoT) [4]. A remote control without a remote controller in a smart home environment is
one of the important research areas [5,6]. This type of remote control includes various user
interfaces, such as human gestures, the voice, the iris, and fingerprints. Human gestures
are the simplest and most natural gestures among them. They are also the most intuitive in
a smart environment, as they can interact with devices as well as be universally used in
various applications. User demands about hand gesture recognition have recently been
continuously increased, and the research is being actively developed with regard to improv-
ing the gesture-recognition rate [7,8]. The hand gesture system is being applied to various
devices, such as drones, robots, and smart home devices, as hand gesture recognition
develops [9,10].

Hand gesture recognition detects and analyzes hand movements, which can control a
device using a predetermined movement pattern. Sensors are essential devices for hand
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gesture recognition, which mainly involve camera sensors, acceleration sensors, and radio
detection and ranging (RADAR) sensors [11,12]. The recognition based on camera sensors
is widely and easily conducted by photographing a hand gesture and by using vision
technology. However, a vision sensor includes an infringement of personal information,
and it is heavily influenced by the surrounding environment, such as low illuminance.
Accelerometers have the advantage of recognizing the minute movements of hand gestures
or being strong against environmental factors. However, they have the inconvenience
of constantly being worn by the user [11]. On the other hand, radar sensors are hardly
affected by the recognition environment, and they are relatively free from the infringement
of personal information [13,14]. In addition, there is no need to wear a sensor, so radar
sensors are useful for IoT services, such as smart homes.

The previous studies based on the radar sensors mainly adopted the continuous-
wave (CW) radar. However, the CW radar cannot measure the distance, so there is a
problem with a low recognition rate when the distance between a radar sensor and a user
is changed [15]. The restricted utilization by working at a fixed distance is critical to the
development of commercial products and services [16–18]. The algorithm proposed in
this paper can address this problem by obtaining distance information via radar. There
are three radar options for obtaining distance information: the frequency-shift keying
(FSK) radar, frequency-modulated continuous-wave (FMCW) radar, and stepped-frequency
continuous-wave (SFCW) radar. The FSK radar has the least hardware complexity and is the
most cost-effective among the three radars. Moreover, it requires simpler signal processing,
resulting in a relatively lower computational load. Devices commonly employed for gesture
recognition in IoT emphasize real-time performance and power efficiency. Therefore, the
FSK radar is adopted in this paper.

Existing research that adopts radar has only focused on improving the accuracy of
hand gesture recognition. Few studies have addressed the decrease in accuracy due to
changes in the distance between the user and the radar. This point is important for the
real user. Furthermore, most of the research only utilized the CW radar or the FMCW
radar for gesture recognition, not the FSK radar. The employment of the FSK radar benefits
from the low signal processing computational load of the CW radar and the distance
measurement advantages of the FMCW radar. Therefore, this paper presents a novel
contribution compared to existing methods.

Furthermore, the proposed algorithm can be applied to various fields. It is especially
valuable for drone control in warfare situations, where illumination and power are limited.
Because radar has robust characteristics related to the surrounding environment, adopting
the FSK radar has benefits in terms of the power consumption.

The remaining sequence of this paper is composed as follows. A micro-Doppler
system, Doppler radar sensors, and a micro-Doppler signature signal are introduced in
Section 2, and then the CW and FSK radar sensors are compared. Section 3 describes
an existing Doppler radar real-time hand gesture recognition system. A hand gesture
recognition system using the FSK radar is proposed in Section 4, and Section 5 explains
the five methods of the CNN training and inference in the system. Section 6 proposes
a preprocessing method to improve the model’s performance. The experimental setting
is shown in Section 7, and the results are presented in Section 8. Finally, the paper is
summarized and concluded in Section 9.

2. Micro-Doppler System

The basic operating principle of a radar sensor is to measure the speed and distance
of an object by emitting a microwave signal toward an object and receiving the signal
reflected by the object. A moving object changes the frequency of a reflected signal by
Doppler effects, and the radar sensor can detect the moving object by the Doppler frequency
estimation [19–21].
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Figure 1 shows the principle of a CW Doppler radar sensor. The Doppler effects
occur when either a wave source or a target is in motion. The magnitude of a frequency
difference between the emitted signal and the reflected signal is proportional to the relative
velocity between the wave sensor and the target [22–24]. Figure 1 illustrates that the
radar sensor is fixed, so only the target movement can generate the Doppler frequency.
A voltage-controlled oscillator (VCO) generates a carrier wave, and the corresponding
signal is transmitted via the TX antenna, which goes into a mixer at the same time. Both
the transmission and the reflected waves, with frequencies of fTX and fRX , are fed into the
mixer and mixed into the Doppler frequency.
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Figure 1. The process of extracting data using the transmit frequency and the receive frequency in a
CW radar sensor.

A micro-Doppler signature refers to the time-varying frequency modulation where a
transmitted signal is reflected at a moving point of a target [25–27]. The frequency estimated
by the radar sensor changes over time in regard to a moving object. The micro-Doppler
signature refers to a unique characteristic with respect to a distinguished change in the
frequency that is caused by the movement of a target. Micro-Doppler signatures have been
researched in various fields, which include human behavior, biosignals, and distinction
from animals, and they are widely utilized in real life [28,29].

A micro-Doppler signature can be analyzed from a spectrogram, which is obtained
by the short-time Fourier transform (STFT) process. It is generally difficult to find out the
overall pattern change in the frequency over time when the frequency of a signal changes with
the passage of time. A large part of the temporal change does not appear in the calculated
spectrum for the long-time captured nonperiodic signal, so it is advantageous to use the STFT
technique, which continuously analyzes a short section where the spectrum component does
not change. The STFT repeatedly performs the fast Fourier transform (FFT) process for a
moving window. A spectrogram can be formed from the FFT result calculated for each time
that can be expressed in three-dimensions (time, frequency, and magnitude).

Figure 2 depicts that the FSK radar transmits the signal by switching two carrier
frequencies, f1 and f2. Switching rapidly occurs and the gap of the two frequencies is very
small. The operational principle of each frequency is similar to the CW doppler radar
system. However, it can estimate the target distance due to using two frequencies. More
detailed explanations will be provided in Section 4 regarding the FSK radar.
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3. Existing Hand Gesture Recognition Systems

Hand gesture recognition means classifying and recognizing specific actions by mea-
suring the data of moving hand gestures, extracting unique features, and analyzing them.
The data of hand gestures can be measured using various sensors. A CW radar sensor is con-
ventionally used for gesture recognition. Figure 3 shows a block diagram of a hand gesture
recognition system using a CW Doppler radar sensor. The hand gesture recognition system
is divided into an analog signal processing section, a digital signal processing section, and
a software section. The analog signal processing section measures the micro-Doppler signal
of the hand gestures by using a CW radar sensor. A micro-Doppler signal generates both
the in-phase (I) and the quadrature-phase (Q) data. The I/Q data are digitalized using
an analog-to-digital converter (ADC), which is then fed into the digital signal processing
section. The received raw data are adjusted to the required sampling rate via the decimation
process in the package block of the digital signal processing section. The preprocessing that
is used in order to merge the adjusted I/Q signals is followed for easier data management
in the dual-port random access memory (DPRAM). The reorganized data are addressed in a
round-robin method and stored in the DPRAM space. The detection module continuously
finds a valid frame during this process by analyzing the adjusted signals in real-time. The
valid frame means a dataset that consists of useful data samples captured by radar sensors
during the motion of the hand gesture. When the detection module claims to have found
the valid frame, trigger and control signals are sent to the DPRAM and STFT module. The
STFT module reads the valid data stored in the DPRAM and then creates a spectrogram for
a software section. The software section analyzes the micro-Doppler signature by using the
spectrogram for the hand gesture recognition. The convolutional neural network (CNN)
inference is generally performed on hardware accelerators or graphics processing units
(GPUs) for the recognition.
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It is important to detect a valid frame for a real-time hand gesture system. If the valid
data of a hand gesture are not detected properly, the spectrogram that does not contain
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a meaningful pattern is fed into a neural network, which results in a severe performance
degradation with respect to the recognition rate. In an existing method [30], the trigger
point is found by the average of the difference between the adjacent time samples in a
frame by using Equation (1).

T[i] =
1
S

S−1

∑
k=0

|x[i − k]− x[i − k − 1]| (1)

where S is the frame size, which is set as the number of time samples that cover the motion
duration of a hand gesture. Because a frame is moving sample-by-sample, a frame works
like a moving window. Here, |x[i]| denotes the magnitude of x[i]; T[i] is a trigger value of
the i-th frame, which is compared to the predefined threshold value for the frame detection.
The i-th frame consists of the i-th time sample and the previous S-1 samples. If the trigger
value is smaller than the threshold, the trigger value is recalculated in the next frame.
Otherwise, the current frame is declared as a valid frame. This method has as a limit the
performance degradation with respect to the detection probability, which is due to both the
use without noise estimation and the use of a partial magnitude of a signal, which heavily
depends on the motion range of a hand gesture and the noise level.

Another approach [31] determines a valid frame by using the change rate of the trigger
value, which consists of the two steps. The first step detects the approximate frame position,
like the existing method [30]; the second step verifies the previous decision by using the
change rate of the trigger value. The change rate of the trigger value is defined as the
trigger ratio, which is calculated using Equation (2).

R[i] =
T[i + ∆d]

T[i]
(2)

where T[i + ∆d] means the delayed trigger value. The trigger ratio is the ratio of the trigger
value of the current frame to the trigger value of the previous frames before a specific time.
The trigger ratio can be used in order to find the starting and ending points of the hand
gestures. The method using the trigger ratio demonstrates a higher probability of detecting
a valid frame and robustness to noise compared to the conventional method utilizing the
trigger value. This is attributed to the identification of actual gestures based on the rate of
change in the trigger values.

4. Proposed Hand Gesture Recognition System Using the FSK Radar

The distance information is hardly obtained in CW radar sensors. In addition, the
minimum or maximum detection range of the radar sensors is limited, because it varies
depending on both the transmit power and the specifications of the radar sensors. Varying
the received power of the radar sensors caused by the change in the motion distance makes
accurate hand gesture recognition difficult in the existing hand gesture recognition system
utilizing the CW radar sensors. The sensing position of a hand gesture was fixed in previous
studies due to this problem. This paper proposes a system adopting the FSK radar sensor
that can acquire a comparable gesture-recognition rate, regardless of the motion distance of
the hand gestures, by utilizing the distance information.

Figure 4 is a block diagram of the proposed real-time hand gesture recognition system
that uses the FSK radar sensor. The proposed system is divided into an analog section, a
digital section, and a software section. The analog block receives the analog signal that is
measured by the FSK radar, and then converts it into I/Q digital time samples for the digital
device. The data packaging first adjusts the sampling speed that is required by the system
via the decimation process in the digital device. Since the FSK radar sensor alternately
transmits two carrier frequencies, the samples are supposed to be divided according to
the changing period of the carrier frequency. The received samples that correspond to
the same transmit carrier frequency are collected during the data package process based
on the frequency-changing period. The system does not know the distance information,
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and it should save power by preventing wasteful transactions for the motionless state, so
a predetection is needed in order to coarsely find a valid frame by using the main data
stream, x0[n]. The predetection is similar to the existing algorithms [30]. The data stored
in the DPRAM are transferred to the range estimation block whenever the predetection
module declares the coarse detection. The detection module searches for the exact valid
frame and then sends the center position of the valid frame, which is denoted as nc, and the
frequency indices, p[n], to the estimation module. The FSK radar sensor adopts two carrier
frequencies, which is unlike a CW radar sensor that uses a single carrier frequency, and
it utilizes the phase difference of the received signal in order to measure the distance [32].

The distance information estimated in the estimation module,
∼
R, is utilized for the CNN

inference. The stored data streams in the DPRAM are normalized based on the received
power in the preprocessing module, which are fed into the other DPRAM. A spectrogram
calculation of the valid frame, which is denoted as X0[k, l], is performed in the STFT module,
and the image-merging preprocessing is performed. This is based on the characteristics
of the FSK radar, and a further explanation will be provided in Section 6. The output
spectrogram is inferred by using a CNN processor with the estimated distance. The CNN
processor is separately trained by using the hand gesture datasets, which consist of the
classified spectrograms that are generated while changing the distance.
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Figure 4. Block diagram of the proposed hand gesture recognition system.

The FSK radar sensor transmits two carrier waves by turns, which have f1 and f2
frequencies. Figure 5 displays an example of the data sample classification method of a
received signal in the FSK radar sensor. When assuming that there are four sample positions
of a received signal, S0, S1, S2, and S3, during every transmission of two carrier waves, the
first data stream, x0[n], is sampled at every S0 point, and the second one, x1[n], is sampled
at every S1 point. The first data stream, x0[n], is mainly used for the frame detection and
recognition, and the other streams are used for the image-merging preprocessing. The
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relation between the output data stream of ADC, which is denoted as x[n], and the classified
data streams, xi[n], are defined by Equation (3).

xi[n] = x[2 × SS × n + i] (3)

where SS is the number of sample positions per each carrier wave. Increasing the number
of sample positions per each carrier wave and the samples per each data stream can
obtain accurate hand gesture recognition, but it increases the number of FFT points and
FFT operations, which require heavy computing power. A decimation process as well
as classification are also needed for a reasonable cost of computing power, which can be
properly defined by the performance and objectives of a sensor system.
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Figure 5. An example of the data sample classification of a received signal in the FSK radar sensor
(SS = 2).

There are differences among the spectrograms based on the received power. Figure 6
illustrates the difference between the two types of data, which have an influence on the
CNN model training and inference. Thus, the power normalization preprocessing has
to be conducted for effective neural network training and recognition accuracy. The
normalization equations are provided in Equations (4) and (5).

D_N[n] = G × D[n] (4)

G = P_const/P_avg (5)

D[n] represents the original radar data and D_N[n] is the normalized data. G denotes
the gain value, P_avg is the average power value of the original data, and P_const refers
to the power normalization coefficient, which is set to 106 in this paper. The result of the
power normalization is displayed in Figure 7. Finally, these preprocessed spectrograms are
used for training and inferencing the gestures.
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5. Proposed CNN Training and Inference Methods

This paper introduces five methods for creating a distance-adaptive hand gesture
recognition system using the FSK radar. One is the proposed method in this paper, while
the remaining four methods are the candidates that we explored. The system aims to cover
a range from 30 cm to 180 cm. To train the CNN models for these methods, we collected
training data at 30 cm intervals—specifically, data measured at distances of 30, 60, 90, 120,
150, and 180 cm. Also, the model was tested using data measured at 10 cm intervals.

The proposed method and candidates 1, 2, and 3 train multiple models via the training
data, and the proper model was selected by utilizing the estimated distance from the FSK
radar. On the other hand, candidate 4 combines the data from various distances and trains
with the combined dataset. Figure 8 displays block diagrams of each method, and the detail
of each method will be explained.

The common CNN model structure used in the explored methods is summarized in
Table 1. The neural network in this paper has advantages in terms of complexity. Gesture
recognition systems, commonly employed in environments such as smart homes and edge
devices, require a low power consumption and computational speed for real-time operation.
This paper considered the number of parameters so to choose its own CNN model instead
of traditionally renowned models, which include ResNet, MobileNet, and EfficientNet. The
increase in the parameter count induces a rise in computational resources and a degradation
in the inference speed. Furthermore, models with many parameters are unsuitable for
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edge devices because they demand significant memory. Additionally, the memory read
and write operations are time-consuming tasks with considerable power consumption.
Therefore, a model with fewer parameters is advantageous for a hand gesture recognition
system. Table 2 presents a comparison of the total parameters between our CNN model
and classical models. We compared our CNN model with ResNet18, which has the fewest
layers among the ResNet variants, and with EfficientNetB0, the lightest version of the
EfficientNet architecture.
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Table 1. Specifications of the CNN model structure used for hand gesture recognition.

Layer Output Shape

input 656 × 875 × 3
Conv1 + batch normalization+ ReLU + max pooling 328 × 437 × 16
Conv2 + batch normalization + ReLU + max pooling 164 × 218 × 32
Conv3 + batch normalization + ReLU + max pooling 82 × 109 × 64
Conv4 + batch normalization + ReLU + max pooling 41 × 54 × 128

Conv5 + batch normalization + ReLU 41 × 54 × 256
Fully connected layer 4

Table 2. A comparison of the number of the total parameters between the paper’s own CNN model
and classical models.

Model CNN in This Paper ResNet18 MobileNet EfficientNet

Total parameters 947,556 21,069,956 4,282,564 5,365,415
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5.1. Candidate 1

Candidate 1 involves training models corresponding to each distance by utilizing data
that are measured at each distance. A total of six trained models are obtained with the
training data that are available at 30 cm intervals. The key point is selecting the appropriate
model based on the estimated distance information from the radar. In this method, the
nearest model from the estimated distance is chosen. For instance, if the distance is 40 cm,
the 30 cm model, which is the closest from the estimated distance, will be selected.

5.2. Candidate 2

Candidate 2 also trains six models with the corresponding distance. However, the
difference lies in the inference stage. This method uses two models that are adjacent to the
estimated distance. First, the method conducts inference with the two models, respectively.
For example, if the estimated distance is 50 cm, the 30 cm model and 60 cm model will be
chosen for the inference. The predicted values from each model are obtained, averaged,
and the final recognition decision is based on the highest average value across all classes.

5.3. Candidate 3

Candidate 3 also involves training models for each distance, which is similar to the
previous methods. As in candidate 2, adjacent models are used during the inference.
However, the key difference lies in the handling of the results of the inference. Candidate
3 utilizes a weighted average based on the distance instead of averaging the probability
of the adjacent models. For instance, if the measured distance is 40 cm, a higher weight is
assigned to the 30 cm model, whereas a lower weight is assigned to the 60 cm model. After
that, the weighted average is conducted. Equation (6) expresses the weighted average.

weighted mean value = pred_1 × (30 − R)
30

+ pred_2 × R
30

(6)

Here, pred_1 represents the prediction of the model closer to the radar between the
two adjacent models, while pred_2 is the prediction farther away from the model.

5.4. Candidate 4

Candidate 4 integrates the entire training dataset into a single set. In this case, inference
is conducted regardless of the estimated distance.

5.5. Proposed Method

The proposed method involves training models by combining the training data from
adjacent distances. Specifically, data from 30 cm and 60 cm are merged into one training set,
followed by merging data from 60 cm and 90 cm into another training set. Plus, datasets
that consist of only 30 cm and 180 cm are utilized in order to cover the distance from 0
to 30 cm and beyond 180 cm. A total of seven trained models are obtained. The distance
information is used to select the appropriate model during the inference. For instance, if
the distance is measured as 40 cm, the model trained on the combined dataset of 30 cm and
60 cm is chosen. Also, if the estimated distance is 110 cm, the model that was trained on
the combined dataset of 90 cm and 120 cm is selected.

6. Image-Merging Preprocessing

The data preprocessing method related to the FSK radar system is also proposed in
this paper. It is used for the AI training and inference.

Figure 5 in Section 4 explains the four data streams in the FSK radar system. The x0[n]
and x1[n] data streams correspond to the f1 frequency, whereas the x2[n] and x3[n] data
streams correspond to the f2 frequency. It is expected that the spectrograms of the data
streams at the same frequency exhibit the same shape. Consequently, four spectrograms
have the same appearance due to the small frequency gap between the two carrier fre-
quencies. However, in real radar data, the spectrograms show different shapes at the same
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carrier frequency. In other words, x0[n] and x1[n] have distinct spectrograms. Similarly,
the x2[n] and x3[n] data streams also show differences despite sharing the same frequency.
Figure 9 explains this phenomenon, which has distinct features on the top-right side and
the bottom-left side. The original images are used in Figure 9 for the visibility, while the
power-normalized images are utilized in the real model training and inference.

Sensors 2024, 24, 349 11 of 23 
 

 

and 60 cm is chosen. Also, if the estimated distance is 110 cm, the model that was trained 
on the combined dataset of 90 cm and 120 cm is selected. 

6. Image-Merging Preprocessing 
The data preprocessing method related to the FSK radar system is also proposed in 

this paper. It is used for the AI training and inference. 
Figure 5 in Section 4 explains the four data streams in the FSK radar system. The x[n]  and xଵ[n]  data streams correspond to the fଵ  frequency, whereas the xଶ[n]  and xଷ[n] data streams correspond to the fଶ frequency. It is expected that the spectrograms 

of the data streams at the same frequency exhibit the same shape. Consequently, four 
spectrograms have the same appearance due to the small frequency gap between the two 
carrier frequencies. However, in real radar data, the spectrograms show different shapes 
at the same carrier frequency. In other words, x[n]  and xଵ[n]  have distinct spectro-
grams. Similarly, the xଶ[n] and xଷ[n] data streams also show differences despite sharing 
the same frequency. Figure 9 explains this phenomenon, which has distinct features on 
the top-right side and the bottom-left side. The original images are used in Figure 9 for the 
visibility, while the power-normalized images are utilized in the real model training and 
inference. 

  
(a) (b) 

  
(c) (d) 

Figure 9. Examples of the phenomenon that shows distinct spectrograms at the same carrier fre-
quency: (a) data stream x[n]  at frequency fଵ ; (b) data stream xଵ[n]  at frequency fଵ ; (c) data 
stream xଶ[n] at frequency fଶ; (d) data stream xଷ[n] at frequency fଶ. 

A phase-locked loop (PLL) cannot ideally switch instantaneously between two fre-
quencies. It takes time to go into a stable state. If the data stream was captured at an un-
stable frequency, this phenomenon can occur. In other words, even-numbered data 
streams are in a stable state and odd-numbered streams are in an unstable state; or, it can 
be the opposite. 

Although commercial radar aims to set the position of the data samples at a stable 
state, this phenomenon can occur due to slight instabilities. The levels of instability from 
the PLL vary for each radar, and creating an ideal PLL is challenging. Thus, it is feasible 

Figure 9. Examples of the phenomenon that shows distinct spectrograms at the same carrier frequency:
(a) data stream x0[n] at frequency f1; (b) data stream x1[n] at frequency f1; (c) data stream x2[n] at
frequency f2; (d) data stream x3[n] at frequency f2.

A phase-locked loop (PLL) cannot ideally switch instantaneously between two fre-
quencies. It takes time to go into a stable state. If the data stream was captured at an
unstable frequency, this phenomenon can occur. In other words, even-numbered data
streams are in a stable state and odd-numbered streams are in an unstable state; or, it can
be the opposite.

Although commercial radar aims to set the position of the data samples at a stable
state, this phenomenon can occur due to slight instabilities. The levels of instability from the
PLL vary for each radar, and creating an ideal PLL is challenging. Thus, it is feasible to use
this phenomenon in other FSK radar systems by utilizing the data from the corresponding
radar.

Similar patterns of each gesture are observed during the spectrogram analysis. Figure 10
illustrates that the UPtoDOWN and LEFTtoRIGHT gestures show relatively small spec-
trogram differences between each of the data streams, whereas the RIGHTtoLEFT and
DOWNtoUP gestures show more distinct appearances. Also, the UPtoDOWN, RIGHT-
toLEFT, and DOWNtoUP gestures have more differences at the upper-right side, while the
LEFTtoRIGHT gesture displays more changes at the bottom-left side. Consequently, this
paper proposes utilizing these patterns for the AI model training in order to improve the
recognition accuracy.
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The CNN shows a high performance in regard to finding the features and patterns
of the images. Thus, it is helpful to forcibly generate patterns to improve the CNN per-
formance by merging the spectrogram images from each data stream. This merging-data
preprocessing is illustrated in Figure 11.
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We conducted experiments by applying this preprocessing method to the proposed
FSK radar systems, which are described in Section 5, and compared the results. To ensure
a fair comparison, the model structures were kept the same. Therefore, the size of the
resulting image was maintained to be the same as that of the original image, even when the
images were merged.

7. Experiment

A commercial FSK radar was utilized to verify the performance of the proposed
algorithm in this paper, and the system parameters were set up as shown in Table 3. The
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ADC sampling rate was 125 ksps and the sample time duration of the data stream was 32 us,
because the data are classified into four groups by the package block. Figure 12 illustrates
the four hand gesture types, including UPtoDOWN, DOWNtoUP, RIGHTtoLEFT, and
LEFTtoRIGHT. Figure 13 shows examples of the obtained spectrograms corresponding to
each gesture. Eight volunteers participated in the radar measurement. The measurements
were taken from participants with varying genders and body sizes to ensure general
performance across different users. A total of 230 samples were taken at distances of 30, 60,
90, 120, 150, and 180 cm for each gesture, which were used for the neural network training
and testing. Additionally, data at distances of 40, 50, 70, 80, 100, 110, 130, 140, 160, and
170 cm, which were exclusively used for the inference, were captured at 60 samples per
gesture. Consequently, a total of 4080 samples were used in the training and 3840 samples
were used in the testing. The ratio for the test dataset was higher than usual, given that the
inference was conducted for sixteen distances.

Table 3. Experimental specifications.

RADAR Specifications and
System Parameters Descriptions

Radar model K-MC1 [33]
ADC sampling rate 125 ksps

SS 2
TS 32 us (=1/31.25 ksps)
∆f 9 MHz
f1 24.125 GHz
f2 24.134 GHz

Hand gesture types UPtoDOWN, RIGHTtoLEFT, LEFTtoRIGHT,
DOWNtoUP

Distance from the sensor 10 cm interval from 30 cm to 180 cm
Number of datasets per each label for the CNN 1980

Number of test participants 8
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8. Result 
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image-merging preprocessing that was applied to the 90 cm model. In this case, the FSK 
radar was utilized due to the preprocessing. Figure 14 shows the graph of Table 4. The 
inference at 90 cm showed the highest accuracy, which decreased as the distance increased 
from 90 cm. Furthermore, it exhibited an average accuracy that was 4.14% higher com-
pared to the case without the preprocessing when applying the image-merging prepro-
cessing. 

As a result, users have to keep their fixed position to achieve a better recognition 
performance in the existing method. Therefore, this system cannot cover a wide range. On 
the other hand, the preprocessing demonstrates that it improves the recognition accuracy. 
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Figure 13. Examples of the spectrograms obtained when the motion for each label was taken.
(a) UPtoDOWN; (b) RIGHTtoLEFT; (c) LEFTtoRIGHT; (d) DOWNtoUP.

Four hand gestures were tested with the proposed methods by using the FSK radar
sensor. Additionally, the test included the case not using the distance information in the
CW radar system. The time indices of the ideal time positions were manually checked for
every dataset for the test of the valid frame detection. The other system parameters were
experimentally selected to achieve the best system performance.

8. Result
8.1. Result of the Existing Method

Table 4 summarizes the inference result of the existing CW radar system. The 90 cm
model, which was positioned at the center of 30~180 cm, was used to assess the recognition
accuracy across the entire range of distances. The table also includes the results of the
image-merging preprocessing that was applied to the 90 cm model. In this case, the FSK
radar was utilized due to the preprocessing. Figure 14 shows the graph of Table 4. The
inference at 90 cm showed the highest accuracy, which decreased as the distance increased
from 90 cm. Furthermore, it exhibited an average accuracy that was 4.14% higher compared
to the case without the preprocessing when applying the image-merging preprocessing.
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Table 4. The recognition accuracy of the existing method and the case of adopting the proposed data
preprocessing on an existing method.

Distance (cm) Model_90 (Existing Method) Model_90 with Merging
Preprocessing

30 30.83% 39.17%
40 41.67% 48.33%
50 61.67% 69.58%
60 57.08% 53.75%
70 87.92% 88.75%
80 88.75% 90.83%
90 95.42% 96.67%

100 95.00% 93.33%
110 92.92% 94.17%
120 83.33% 84.17%
130 90.42% 87.92%
140 81.67% 87.92%
150 72.08% 82.50%
160 79.58% 79.58%
170 69.17% 82.08%
180 60.83% 75.83%

average 74.27% 78.41%

As a result, users have to keep their fixed position to achieve a better recognition
performance in the existing method. Therefore, this system cannot cover a wide range. On
the other hand, the preprocessing demonstrates that it improves the recognition accuracy.

8.2. Result of the Proposed Method

The experiments for the proposed method and candidates were conducted for four
different scenarios. The experiments were divided into two cases, which include one with
the image-merging preprocessing and another without it. Each of these two cases was
further divided into two subcases based on whether the real distance information, which
was estimated from the FSK radar, or an ideal distance was used. These four scenarios are
summarized in Table 5.

Table 5. The four scenarios for the experiments of the introduced method.

Scenario Name
Description

Image-Merging
Preprocessing Distance Information

Normal_real No Real value
Normal_ideal No Ideal value
Merging_real Yes Real value

Merging_ideal Yes Ideal value

The results of each of the scenarios are indicated in Tables 6–9, respectively, and
Figures 15–18 illustrate the graphs that correspond to Tables 6–9. The analysis of each result
is conducted in Section 8.3.
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Table 6. The results of scenario Normal_real.

Distance (cm) Candidate 1 Candidate 2 Candidate 3 Candidate 4 Proposed

30 93.28% 92.86% 94.12% 81.67% 92.44%
40 94.14% 94.14% 94.98% 92.08% 94.98%
50 75.00% 76.67% 75.83% 77.50% 82.92%
60 85.59% 88.98% 85.59% 86.67% 91.53%
70 86.19% 92.05% 86.19% 87.08% 92.47%
80 84.87% 88.66% 86.55% 85.42% 91.18%
90 93.94% 86.58% 93.94% 88.33% 92.21%

100 93.72% 96.65% 94.56% 95.00% 96.65%
110 92.02% 95.80% 92.02% 95.00% 94.12%
120 95.30% 95.73% 95.30% 90.83% 96.15%
130 92.05% 90.38% 92.89% 91.25% 86.61%
140 85.17% 87.29% 85.17% 92.92% 90.68%
150 93.15% 94.52% 93.15% 90.00% 94.52%
160 74.67% 80.79% 75.55% 84.58% 86.90%
170 77.49% 83.55% 78.35% 86.25% 80.95%
180 92.13% 91.67% 93.06% 91.25% 93.06%

average 88.05% 89.77% 88.58% 88.49% 91.08%

Table 7. The results of scenario Normal_ideal.

Distance (cm) Candidate 1 Candidate 2 Candidate 3 Candidate 4 Proposed

30 93.33% 93.33% 93.33% 81.67% 93.33%
40 94.58% 94.17% 94.58% 92.08% 95.00%
50 76.67% 76.67% 76.67% 77.50% 82.50%
60 92.08% 89.17% 92.08% 86.67% 93.33%
70 79.17% 91.67% 80.42% 87.08% 92.50%
80 88.75% 89.58% 90.00% 85.42% 90.83%
90 95.42% 91.67% 95.42% 88.33% 95.00%

100 95.00% 97.50% 95.42% 95.00% 94.58%
110 92.50% 96.67% 92.50% 95.00% 95.83%
120 95.42% 92.50% 95.42% 90.83% 92.50%
130 91.67% 91.25% 91.25% 91.25% 91.67%
140 88.75% 87.50% 88.75% 92.92% 90.00%
150 95.42% 94.58% 95.42% 90.00% 95.83%
160 78.33% 87.50% 79.17% 84.58% 89.17%
170 81.25% 87.92% 84.58% 86.25% 82.08%
180 93.75% 93.75% 93.75% 91.25% 93.33%

average 89.51% 90.96% 89.92% 88.49% 91.72%
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Table 8. The results of scenario Merging_real.

Distance (cm) Candidate 1 Candidate 2 Candidate 3 Candidate 4 Proposed

30 93.28% 93.28% 93.28% 87.92% 95.38%
40 94.56% 94.98% 94.56% 94.17% 93.72%
50 77.50% 79.17% 77.92% 84.17% 86.25%
60 88.14% 91.95% 88.56% 92.50% 95.34%
70 88.28% 92.05% 89.96% 90.83% 92.47%
80 89.08% 91.18% 89.92% 84.17% 91.18%
90 95.24% 90.91% 95.67% 92.50% 95.67%

100 92.89% 92.89% 93.31% 96.25% 97.07%
110 92.02% 94.54% 92.86% 97.08% 94.12%
120 97.44% 97.44% 97.44% 96.25% 99.15%
130 92.05% 90.38% 92.05% 93.33% 92.05%
140 89.41% 89.83% 89.41% 94.58% 94.49%
150 96.80% 94.52% 96.80% 93.33% 94.98%
160 85.15% 82.10% 85.15% 86.25% 88.21%
170 83.12% 85.28% 83.55% 87.08% 87.88%
180 95.83% 95.83% 95.83% 92.50% 98.15%

average 90.67% 91.02% 91.02% 91.43% 93.51%

Table 9. The results of scenario Merging_ideal.

Distance (cm) Candidate 1 Candidate 2 Candidate 3 Candidate 4 Proposed

30 93.33% 93.33% 93.33% 87.92% 94.58%
40 95.00% 95.00% 95.00% 94.17% 92.92%
50 78.75% 79.17% 79.17% 84.17% 88.33%
60 96.25% 92.50% 96.25% 92.50% 95.42%
70 79.17% 91.67% 81.25% 90.83% 92.08%
80 90.83% 91.25% 91.25% 84.17% 89.17%
90 96.67% 91.67% 96.67% 92.50% 97.08%

100 93.33% 95.83% 93.33% 96.25% 96.67%
110 91.25% 95.83% 92.92% 97.08% 97.50%
120 98.33% 96.25% 98.33% 96.25% 98.75%
130 93.33% 90.83% 93.33% 93.33% 92.08%
140 91.25% 90.00% 90.83% 94.58% 93.75%
150 98.33% 94.17% 98.33% 93.33% 96.67%
160 86.25% 91.25% 87.92% 86.25% 88.75%
170 86.67% 90.42% 86.67% 87.08% 87.08%
180 98.33% 98.33% 98.33% 92.50% 97.92%

average 91.69% 92.34% 92.06% 91.43% 93.67%
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8.3. Comparative Analysis of the Results of the Introduced Methods

The average accuracy for each distance was used as a performance metric. Table 10
shows the comparison of the Normal_real and Normal_ideal cases. The methods include
the distance information, except for candidate 4, which improved the accuracy when the
ideal distance was utilized. The performance improvement of the proposed method was
relatively low among them. The reason for this is that the proposed method exhibits an
intermediate characteristic between candidate 4 and candidates 1, 2, and 3. A smaller
gap between the two cases results in a more reliable system because it means that the
system is less influenced by the distance-estimation algorithm. This robustness also implies
an advantage in the scalability across various fields, as there is less need to consider the
distance estimation. Therefore, the proposed method and candidate 4 offer benefits in
creating a more robust system.

Table 10. A comparison between Normal_real and Normal_ideal.

Scenario Prop1 Prop2 Prop3 Prop4 Prop5

Normal_real 88.05% 89.77% 88.58% 88.49% 91.08%
Normal_ideal 89.51% 90.96% 89.92% 88.49% 91.72%

gap 1.46% 1.19% 1.34% 0.00% 0.63%
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A comparison between Merging_real and Merging_ideal is summarized in Table 11.
In the case of applying preprocessing, the accuracy gap, similar to the normal case, is also
small for the proposed method and candidate 4 with respect to the distance information.

Table 11. A comparison between Merging_real and Merging_ideal.

Scenario Prop1 Prop2 Prop3 Prop4 Prop5

Merging_real 90.67% 91.02% 91.02% 91.43% 93.51%
Merging_ideal 91.69% 92.34% 92.06% 91.43% 93.67%

gap 1.02% 1.32% 1.04% 0.00% 0.17%

Tables 12 and 13 show a comparison of the differences between applying and not
applying the image-merging preprocessing for both the real distance and ideal distance
cases, respectively. It was demonstrated that the preprocessing improves the recognition
accuracy for every case. Therefore, it is appropriate to apply the mentioned preprocessing
when using the FSK radar.

Table 12. A comparison between Normal_real and Merging_real.

Scenario Prop1 Prop2 Prop3 Prop4 Prop5

Normal_real 88.05% 89.77% 88.58% 88.49% 91.08%
Merging_real 90.67% 91.02% 91.02% 91.43% 93.51%

gap 2.63% 1.25% 2.44% 2.94% 2.42%

Table 13. A comparison between Normal_ideal and Merging_ideal.

Scenario Prop1 Prop2 Prop3 Prop4 Prop5

Normal_ideal 89.51% 90.96% 89.92% 88.49% 91.72%
Merging_ideal 91.69% 92.34% 92.06% 91.43% 93.67%

gap 2.19% 1.38% 2.14% 2.94% 1.95%

Figures 15–18 show the worst accuracy at the distance of 50 cm. This paper was
given training data from distances of 30, 60, 90, 120, 150, and 180 cm. It is normal that the
performance of the intermediate distances might not be high, because the intermediate
distances are supplemented with an algorithm using the given data. For distances of 90 cm
and 120 cm, as well as 120 cm and 150 cm, the patterns between the training datasets show
less variation compared to other areas, resulting in a high similarity and less degradation
in the inference performance in ungiven areas. During the experiments, even when the
same participant performed the same action repeatedly, pattern differences could occur.
Distances like 30 and 60 cm, 60 and 90 cm, and 150 and 180 cm exhibited significant
pattern differences between training datasets, while 90 and 120 cm and 120 and 150 cm
showed less pattern difference. This phenomenon is observed in Figures 15–18. To properly
validate the effectiveness of the proposed method in the depicted figures, it is crucial to
examine the regions with substantial pattern differences between training datasets (i.e.,
the intervals between 30 and 60 cm, 60 and 90 cm, and 150 and 180 cm). The proposed
method demonstrates a significant mitigation for performance degradation compared to
other candidates in these areas, indicating its effectiveness as a highly efficient approach.
Consequently, the proposed method showed the highest performance in every scenario,
which is summarized in Table 14.
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Table 14. Accuracy ranking for each of the cases among the introduced methods.

Scenario 1st 2nd 3rd 4th 5th

Normal_real proposed candidate 2 candidate 3 candidate 4 candidate 1
Normal_ideal proposed candidate 2 candidate 3 candidate 1 candidate 4
Merging_real proposed candidate 4 candidate 2 candidate 3 candidate 1

Merging_ideal proposed candidate 2 candidate 3 candidate 1 candidate 4

The conventional method using the CW radar demonstrated a maximum hand gesture
recognition accuracy of 94.21% [31]. However, when the proposed method and preprocess-
ing techniques were applied, it achieved an accuracy of 93.67%, maintaining a similar level
of accuracy while covering a wide range of distances.

9. Conclusions

The FSK radar sensor system for real-time hand gesture recognition was proposed
in this paper. The proposed system utilized the dataset-adjustment scheme depending
on the distance information. The existing methods adopting CW radar sensors could
not deal with the variance of the received signal caused by the change in the distance,
whereas the proposed method could maintain a reasonable recognition performance due
to the dataset correction depending on the change in the distance. This made sense,
because the CNN model could be trained and tested by using the useful dataset with
distinguishable patterns regardless of the distance. This paper also proposed a spectrogram
image preprocessing method using the characteristics of the FSK radar in order to enhance
the gesture-recognition accuracy. The deep-learning performance was improved due to the
new features that distinguished each gesture by adopting the image preprocessing.

A commercial FSK radar sensor was utilized for the experiments. The hand gestures
consisted of a total of four movements, and the distances between the user and the radar
sensor were from 30 cm to 180 cm with spaces every 10 cm. The labels were defined for
each movement and distance. The recognition and classification probabilities were defined
based on the CNN model, which was trained based on the data.

It was found from the experimental results that (1) adopting the existing system for
covering the wide range is unsuitable. The average accuracy was 74.27%, and it showed at
most 78.41%, even when utilizing the proposed preprocessing method. (2) The recognition
probability of the proposed method was the highest in every scenario. It was 93.51% with
the real estimated distance, and 93.67% with the ideal value. (3) The proposed image-
merging preprocessing increased the accuracy in all cases.

The proposed real-time hand gesture recognition system showed considerable recogni-
tion performance even under the change in distance, which is useful for various application
systems that require effective and secure human–computer interaction techniques. In future
work, we plan to improve the degradation in the recognition accuracy when the hand
gestures deviate in the vertical or horizontal directions, rather than occurring directly in
front of the radar. As another research direction, we are contemplating studies aimed at
dealing with variations in the recognition results from the differences in the execution
speed of the human hand gestures.
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