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Abstract: While virtual reality (VR) technologies enable remote communication through the use of 3D
avatars, it is often difficult to foster engaging group discussions without addressing the limitations to
the non-verbal communication among distributed participants. In this paper, we discuss a technique
to detect the intentions to speak in group discussions by tapping into intricate sensor data streams
from VR headsets and hand-controllers. To this end, we developed a prototype VR group discussion
app equipped with comprehensive sensor data-logging functions and conducted an experiment of
VR group discussions (N = 24). We used the quantitative and qualitative experimental data to analyze
participants’ experiences of group discussions in relation to the temporal patterns of their different
speaking intentions. We then propose a sensor-based mechanism for detecting speaking intentions
by employing a sampling strategy that considers the temporal patterns of speaking intentions, and
we verify the feasibility of our approach in group discussion settings.
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1. Introduction

The advancement of virtual reality (VR) technology has led to its widespread applications
in various domains such as communication, tourism, education, and entertainment [1,2]. Dur-
ing the outbreak of COVID-19, VR has been explored as an alternative for conducting meetings
when face-to-face communication was not possible due to lockdown measures. However,
within the context of supporting these remote multi-user meetings, a persistent challenge has
been the effective management of turn-taking in discussions [3,4]. The implementation of
turn-taking in the conversation involves speakers and listeners closely observing each other
to identify and receive signals for turn-taking [5]. However, the available features and range
of social signals in virtual environments differ significantly from physical settings. Interaction
in virtual environments often involves the use of avatars, which may have less expressive
capabilities than our physical bodies. Additionally, the field of view in virtual environments
may be narrower than that of humans, limiting our perception of the environment primarily
through a low-bandwidth visual channel [6]. The limitations in expressive capacity and
perception capabilities can have an impact on turn-taking in conversations, particularly when
participants have to take the floor without being prompted by someone else. In this case,
participants may find it challenging to capture the attention of others unless they are actively
speaking or the current speaker has directed their focus toward them. Consequently, their
social signals can be more challenging for others to notice. Therefore, our research will focus
on situations within the turn transition where participants have to take the floor without being
prompted by others, and we will refer to the intent to seize the floor as “speaking intention”,
which is often included in social signals.

To the best of our knowledge, there has been no prior research addressing the concept
of speaking intention among participants in VR group discussions. We believe that com-
munication of speaking intention is of significant importance for managing participation
in conversations and ensuring appropriate individual contribution opportunities in VR
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group discussions. In this paper, we present a research endeavor focused on investigating
speaking intention, aiming to analyze the challenges associated with its presence in VR
and explore the feasibility of detecting speaking intentions to assist group communication
in VR environments. To detect speaking intentions, we primarily focus on sensor features
available on VR devices including head-mounted displays and controllers. We draw upon
prior research on non-verbal cues such as proximity cues and gaze in communication [7–11]
and introduce relational features between two participants based on their individual sensor
data. Firstly, we analyze real VR group discussions based on quantitative and qualitative
data to uncover the patterns that inform the design of the detection mechanisms for speak-
ing intentions. To do so, we recruited 24 participants for group discussions conducted
in a VR environment. During the experiment, we collected sensor data and gathered
speaking intention labels from participants through the cued retrospective approach. We
next design the neural network-based approaches for detecting speaking intentions using
the uncovered patterns, and we attained an accuracy of 62.79%. Our primary contributions
are as follows:

1. We identified an asymmetry in how participants convey speaking intention in VR.
They perceive that expressing their speaking intentions as relatively straightforward,
but perceiving others’ speaking intentions is challenging.

2. We observed temporal patterns around speaking intentions as the intervals between
the start of speaking intention and actual speaking are typically short, often lasting
only around 1 s.

3. We show that our neural network-based approaches are effective in detecting speaking
intentions by only using sensor data from off-the-shelf VR headsets and controllers.
We also show that incorporating relational features between participants leads to
minimal improvement in results.

2. Related Works

We employ VR for the support of social interactions, considering it not merely as a
substitute for other social applications but as a medium that adds genuine value [12]. This is
primarily attributed to its provision of enhanced expressiveness and a heightened sense of im-
mersion from a technological standpoint [13]. VR has been demonstrated to provide support
in general or intimate social scenarios [14], self-expression, and identity exploration [15], as
well as skill and cultural learning [16–18]. However we also face challenges stemming from
the absence of non-verbal cues. Tanenbaum et al., following a survey of mainstream social VR
platforms, discuss the lack of support for two crucial social signals: facial expression control
and unconscious body posture [19]. Bombari et al. also highlight non-verbal behavior as a
significant design challenge in immersive interactive virtual environments [20]. In addressing
this challenge, Lou et al. propose a solution employing additional electromyography (EMG)
sensors to track facial muscle movements, using this information to reconstruct facial expres-
sions for virtual avatars [21]. Kurzweg et al. found that important non-verbal communication
cues, such as body language, were underrepresented in virtual meetings, resulting in a decline
in the quality of communication. To remedy this, they suggest designing a series of body
language to indicate participants’ conversation status, attention, and engagement, such as
using gestures like drinking, typing, or answering a phone call to signify busyness [22]. In this
paper, we also address the insufficient non-verbal cues on social interactions in VR particularly
focusing on turn-taking in conversations, including situations where other participants are
seeking opportunities to speak.

Turn-taking is an important part of any verbal interaction such as conversation, par-
ticularly in groups [23]. In group discussions, multiple participants come together and
organize themselves for effective communication, assuming various roles such as speakers,
addressees and side participants [24]. Within this dynamic, the turn-taking mechanism
serves as a vital coordination tool, facilitating participants’ communicative actions to ensure
smooth interactions among themselves. Therefore, researchers have explored the turn-
taking mechanisms in communication from various perspectives. Jokinen et al. focused
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on identifying cues in human interaction that imply turn-taking. They highlighted the
crucial role of gaze in coordinating turn-taking and the flow of conversational information,
noting the significance of head movements in multiparty dialogues as well [11,25]. Streeck
and Hartge discussed the role of gestures in turn-taking, observing that the gestures of
listeners can serve as indicators of their desire to speak and as cues for the initiation of a
new turn [26].

The relationship between these non-verbal cues and turn-taking lays the foundation
for predicting turn-taking in conversations. Ishii et al. discussed a model for predicting the
next speaker in multiparty meetings by focusing on the participants’ head movements [27].
Another model also developed by them predicts the next speaker based on non-verbal
information in multiparty video conversation [28]. Furthermore, some researchers have
focused on investigating turn-taking mechanisms in dialogues with the goal of improv-
ing human–machine interaction in conversational systems [29]. For instance, Ehret et al.
enhanced embodied conversational agents (ECAs) by incorporating non-verbal features
such as gestures and gaze to signal turn-taking, thereby making human–machine dialogues
smoother and more enjoyable [30]. In the realm of voice-based human–machine interaction,
managing turn-taking in conversations is a crucial area of focus [31,32]. Research in this
field typically seeks to develop automated methods for predicting turn-taking based on con-
versational cues. When developing models to predict turn-taking, researchers often place a
significant emphasis on syntax, semantics, pragmatics and prosody features [33–35]. How-
ever, in our research, the focus is on predicting the user’s speaking intentions. The focus
is not solely on when turn-taking happens but also on identifying who triggers the turn-
taking. For the participants initiating turn-taking, their verbal cues and prosody features
are not available before they acquire the floor and begin speaking. Consequently, in our
model development, we chose to concentrate on non-verbal cues recorded in sensor data.

Gibson et al. categorized turn transitions into four types (Turn Receiving: when a
person speaks after he or she is addressed; Turn Claiming: when a person speaks after
someone addressees the group as a whole; Turn Usurping: when a person speaks after
someone else is addressed; Turn Continuing: when someone who is already in possession
of the floor changes targets.) based on the participation framework: Turn Receiving, Turn
Claiming, Turn Usurping and Turn Continuing [36,37]. In previous research, Turn Receiving
in which the speaker relinquishes the floor and the addressee takes the turn, and Turn
Continuing in which the speaker keeps the floor, have been extensively explored [38–40].
In our study, however, we will focus on situations where participants proactively take
the speaking turn (i.e., Turn Claiming or Turn Usurping). We aim to leverage non-verbal
cues from user behaviors recorded by sensors in VR devices to predict situations where
individuals actively seek to speak during discussions. By doing so, we aim to facilitate a
more seamless and engaging VR social interaction experience.

3. Experiment

We conducted a communication experiment in a VR environment with 24 participants,
aiming to gain insights into participants’ speaking intentions in VR communication and to
explore the feasibility of utilizing sensor data to detect speaking intentions. We envisioned
a scenario of communication and discussion in a virtual space that is designed for a small
number of participants. We organized participants into small groups of four, engaging them
in a social game called “Two Truths and a Lie”. We employed the Oculus Quest 2 as the VR
device for our experiment due to its affordability and widespread availability. This device
includes two handheld controllers and a head-mounted display (HMD) and operates as
an all-in-one VR system, allowing usage without being tethered to a computer. As the
virtual environment for the experiment, we developed a VR multiplayer social application
using Unity (Figure 1). In the virtual environment, we implemented a simplified avatar
representation consisting of the head, upper torso, and hands. The application includes
essential features for participant interaction, such as voice communication and a virtual
whiteboard. Additionally, for data collection purposes, the application incorporates a



Sensors 2024, 24, 362 4 of 20

data-recording function, enabling us to collect real-time sensor data from each participant’s
VR device.

Figure 1. The virtual environment used in the experiment (a). Discussion taking place in the virtual
environment (b).

3.1. Data Collection

In the experiment, we collected and curated the data set comprising sensor data and
labels indicating participants’ speaking intentions.

3.1.1. Sensor Data

In the virtual environment, users can directly control their avatars through body
movement. This is achieved by mapping users’ real-world movements onto the virtual
environment using sensors on the VR device. Therefore, by recording sensor data, we can
effectively reconstruct users’ behavior in the virtual environment.

Sensor data were automatically collected through our developed VR social application.
During application usage, position, rotation, velocity, acceleration, angular velocity, and
angular acceleration data were captured from three nodes (HMD, left hand controller and
right hand controller) at a frequency of 20 Hz. Each type of data was represented in three
dimensions corresponding to the X, Y, and Z axes. Consequently, every data frame obtained
from the VR device consisted of 54 values (3 × 6 × 3). It is worth noting that within the
virtual environment of the application, users can control the movement and rotation of
their avatars in two ways: directly through body movements or by using the joystick on
the hand controllers. Therefore, when considering the user’s position and orientation in
the environment, we not only use data from sensors but also integrate the actions from the
user’s controllers.

3.1.2. Participant Annotated Labels

To obtain information from participants regarding their speaking intentions in com-
munication, we employed a cued retrospective approach to collect these subjective data.
Prior research has indicated the efficacy of retrospective methods with visual cues (such
as images or videos) for accurate data collection in short-term studies [41,42]. Specifically,
during the course of the experiment, we would capture first-person perspective videos
for each participant within the virtual environment. After the experiment, participants
were asked to review the recorded videos and identify instances of their intentions to
take the floor actively and the moments when these intentions arised. We deliberately re-
frained from opting for an in-the-moment labeling approach during the experiment, which
was primarily due to the concerns that it might influence participants’ natural speaking
behavior.

During the annotation process, we employed the VGG Image Annotator tool (Figure 2),
which offers video annotation capabilities, allowing participants to add annotations on
the timeline while reviewing video record. Participants have the flexibility to adjust the
playback speed of the video, ranging from 0.1× to 16×. They can add annotations on the
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timeline and modify the start time and end time of labels. The minimum unit for label
movement on the timeline is 20 ms. Using this tool, participants review the video and
add labels to mark when they initiated taking the floor to speak or when their speaking
intentions based on their recollection. Participants do not need to adjust the end time of the
labels, simplifying the annotation task.

Figure 2. Interface of VGG Image Annotator. Participants annotate the time when speaking began in
the active speak row. In the speaking intention line, the time when the intention to speak arose is
annotated. The end time of the label does not require adjustment.

3.2. Two Truths and a Lie

Participants were divided into groups of four and engaged in a game of “Two Truths
and a Lie” within the VR application we developed. In this game, group members took
turns sharing three statements about themselves with one of the statements being false.
After a participant’s presentation, the group members engaged in open discussions. For in-
stance, they could ask the presenting participant for additional details to clarify statements
or point out aspects they found suspicious. Following the discussions, the non-presenting
participants were required to guess which statement was the lie. Once the presenter re-
vealed the answer, the round continued to the next participant who then initiated their set
of statements, and the process was repeated.

“Two Truths and a Lie” is a classic icebreaker activity commonly used to break the
ice at social gatherings or group meetings. Such activities foster an energetic and positive
discussion environment, allowing participants to relax and seamlessly integrate into the
discussions [43,44]. The selection of this scenario was aimed at fostering speaking intentions
among participants during the experiment. Throughout the game, participants had the
freedom to move within the virtual environment as they like and were also able to utilize
a virtual whiteboard. The game lasted approximately 15 min, during which researchers
refrained from intervening. However, a timer was set to alert at 4-min intervals to prevent
any individual participant’s turn from becoming excessively lengthy.

3.3. Participants

We recruited 24 participants from our university to take part in the experiment, consist-
ing of 12 females and 12 males. They were university graduate students and one lecturer,
aged 22–30 (M = 25.5, SD = 2.27). Among them, 13 individuals (54%) had prior experience
with VR devices, while 11 (46%) had not used them before. Participants were randomly
assigned to groups of four with the requirement that each group included two males and
two females to maintain gender balance across the groups.
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3.4. Experiment Procedure

Once a group of four participants arrived at the designated room, the formal exper-
imental procedure commenced. Initially, participants were briefed on the process and
purpose of the experiment along with the data collection requirements. Subsequently,
we offered participants a guided tutorial on how to use the VR equipment and provided
them with a comprehensive overview of the operational procedures of the application
utilized during the experiment. Recognizing that some participants might not have prior
experience with VR devices, approximately 30 min are allocated for participants to put
on the HMD and familiarize themselves with the VR equipment to mitigate the novelty
effect. During this period, participants who were new to VR were encouraged to engage
with the built-in Oculus tutorial application The “First Step” was designed to facilitate the
rapid comprehension of hand controller usage. Following the warm-up phase, participants
entered the VR virtual meeting room to engage in a multiplayer interaction involving a
social game of “Two Truths and a Lie” with a duration of approximately 15 min.

Throughout the experiment, participants remained seated while utilizing VR. The four
participants were positioned in the corners of the room to ensure sufficient distance between
them and prevent mutual interference. After the conclusion of the “Two Truths and One
Lie” game, we introduced the annotation task to the participants. The instructions covered
the definition of speech intentions and the usage of the annotation tools. Following the
instructions, we provided each participant with a computer equipped with the annotation
tool, and we allocated time for participants to practice using the annotation tools before
commencing the formal annotation process, ensuring their proficiency in operating the
annotation tools. The whole annotation process took approximately 30 min.

Finally, each participant was required to complete a post-experiment questionnaire.
The questionnaire encompassed participants’ experiences in conducting multiperson meet-
ings in VR and their experiences related to speaking intentions during the experiment. The
questionnaire included queries utilizing a 5-point Likert scale (1 = “Strongly Disagree” and
5 = “Strongly Agree”) and open-ended questions. Figure 3 depicts the experimental process
with the data collected at each stage.

Figure 3. Flowchart of the experimental procedure.

3.5. Data Processing

To capture participants’ complete conversational flow during the experiment, we con-
ducted utterance segmentation on the collected video recordings. Drawing from prior re-
search [45–47], we employed pauses as delimiters to segment utterance units. A pause
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exceeding 200 ms following a participant’s utterance was used as an utterance unit boundary.
These utterance units were manually extracted by researchers based on audio cues. Figure 4
shows the utterance segmentation result for a group of four participants, and Table 1 presents
the basic facts about utterance units. Subsequently, we corrected the speech start times anno-
tated by participants using the results of utterance segmentation. The annotated start times by
participants were replaced by the start times of the nearest utterance within a 1 s gap. This
approach aims to minimize errors introduced by participant variations during timestamp
annotations (such as some participants tending to annotate timestamps slightly slower or
faster compared to the video).

Figure 4. The segmentation results of utterance for a group (each row represents a participant). The
colored sections indicate that the respective participant is speaking.

Table 1. Through video recording, we have divided a total of 1441 utterance units. “Duration”
represents the duration of each utterance unit in seconds. “Interval” represents the time interval
between two consecutive utterance units from the same person in seconds.

Statistics Mean SD Median Max Min

Duration 3.08 4.47 1.82 72.03 0.17
Interval 13.06 24.02 4.62 229.15 0.24

In multimember conversations, features among members, such as spatial proximity to
someone or gaze at someone, are significantly associated with turn-taking [8,9,39,48,49].
Therefore, in addition to using individual sensor data, we also computed and introduced
relational features among members within the group. Based on the HMD positions, we
computed the distances between participants and each of the other members as a fea-
ture representing proximity. Using HMD orientation, we computed the angle between
the participant’s facial direction and the position of each other participants as a feature
representing gaze. Additionally, recognizing the prominent role of the previous speaker
during turn-taking, we introduced a speaking status feature for distinguishing the speaker
within the group. The speaking status feature is a binary label that signifies whether each
participant is speaking, which is determined by the results of utterance segmentation.

Consequently, we refer to the distance, angle, and speaking status features as relational
features (with speaking status considered as a role-related relationship). Specifically, fol-
lowing the introduction of relational features, each data frame for participants is composed
of a total of 63 numerical values derived from 54 + 3 × 3. Here, in “3 × 3”, the first “3”
represents the other three individuals within the group, and the second “3” represents the
three types of relational features.

4. Analysis of Experimental Data

In this section, we present the results of the analysis of the subjective data collected
from participants along with the key insights we obtained regarding the speaking intention.

4.1. Questionnaire Result

At the end of the experiment, we conducted a post-experiment survey to inquire about
participants’ perceptions of speaking intentions within the VR environment (see Table 2
and Figure 5). In the questions concerning the performance and perception of speaking
intentions in the VR environment, participants generally found it easy to express their own
speaking intention in the virtual environment (Mean = 4.08). However, discerning the
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speaking intention of others posed a challenge (Mean = 2.75). This outcome demonstrates
the asymmetry in conveying and perceiving speaking intention when utilizing VR as
a communication medium. Although VR provides participants with an environment
highly resembling the real world, where users can directly control avatars through body
movements, enabling them to express their intentions using non-verbal cues similar to
face-to-face communication, technical and design-related issues hinder the perception of
these cues by others. Regarding the influence of the ease of conveying and perceiving
speaking intentions on group discussions, participants generally believed that reduced
difficulty in conveying and perceiving speaking intentions was beneficial for productive
group discussions (Mean = 3.91). Furthermore, we incorporated an open-ended question to
investigate instances where participants had contemplated speaking during interactions but
ultimately decided not to do so along with the reasons behind their decisions. Each response
was coded by the researchers, and thematic patterns were subsequently extracted from
these codes, as shown in Table 3. We found that the most significant cause of participants
for abandoning their intention to speak is timing. After participants have expressed their
intention to speak, if they are unable to gain the floor quickly, the topic will be pushed
further by other participants. This can lead to the loss of currency in what the participant is
trying to say and thus abandonment of the intention to speak.

Table 2. Post-questionnaire questions.

Question Type

Q1 Do you think it is easy to express your speaking intentions in the
virtual environment? 5-Point Likert Scale

Q2 Do you think it is easy to perceive the speaking intentions of
others in the virtual environment? 5-Point Likert Scale

Q3 Do you think that perceiving and expressing speaking intentions
more easily would be beneficial for group discussions? 5-Point Likert Scale

Q4
Have you ever had situations during the discussion where you
wanted to say something but finally didn’t? If yes, please write
down the reason.

Open-Ended Question

Table 3. The coding result for Q4: Why did you give up your intention to speak?

Theme Code Count

Timing Reasons
Difficulty interrupting others 4
Taking too long to organize their thoughts 3
Topic has changed 2

Content Reasons The content is irrelevant to the current topic 4
Someone else already mentioned the same thing 3

Social Etiquette Worried about offending others 2
Worried about talking too much 1

Experimental Setup Don’t want to increase the workload of labeling 2
Experiment time is limited 1

None None (No instance of giving up) 5

Figure 5. Participants’ responses to questions Q1–Q3. Horizontal axis is the number of participants.
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4.2. Participant-Annotated Labeling Results

In the experiment, we collected a total of 501 active floor-taking labels from partici-
pants, which were paired with 501 corresponding speaking intention labels. Initially, we
examined variations in the frequency of seizing the floor across different participants. As
illustrated in Figure 6a, the highest number of frequency occurrences by a single partic-
ipant was 45, while the lowest was 5 (Max: 45, Min: 5, Mean: 20.875, Std: 9.653). The
results indicate the individual differences in the frequency of seizing the floor, which can
be attributed to variations in participants’ personalities and other relevant traits. In or-
der to explore the temporal patterns of speaking intention generation and the initiation
of speech, we analyzed the time intervals between them. Figure 6b shows the distri-
bution of time intervals, revealing that the intervals are primarily concentrated around
1 s (Max = 23.99, Min = 0.064, Mean = 1.055, Q1 = 0.518, Q2 = 0.792, Q3 = 1.111). This
suggests that in most cases, participants execute their speech shortly after forming the
speaking intention. Furthermore, we conducted an in-depth exploration into whether
differences in time intervals existed across different participants. Our ANOVA result has
shown significant discrepancies within the time interval data among the 24 participants
(p-value: 2.23 × 10−22 < 0.01). To pinpoint these divergences, we performed multiple
comparisons using Tukey’s honestly significant difference (HSD) method. The results
indicate that the differences are only attributed to one participant who exhibits significant
differences in comparison to all other participants (p = 0.05). However, there are no sig-
nificant differences observed among the remaining participants. As shown in Figure 6c,
participant 15 exhibits some notably long intervals, but the median interval time does not
differ significantly from that of others. Upon reviewing video recordings of this participant,
we found that the reason for these extended intervals is that other participants are firmly
holding the floor when this participant forms the intention to speak, requiring him to wait
for their speaking to conclude. This situation was also reported in the questionnaire, where
other participants would abandon their own speaking intentions as a result. However, this
participant did not easily abandon their speaking intentions when faced with the difficulty
of obtaining the floor, instead opting to wait for an opportunity to express her opinions.

(a)
Figure 6. Cont.
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(b)

(c)
Figure 6. Analysis of participant-annotated labels. (a) Number of actively initiated speaking sequences;
(b) distribution of intervals; (c) box plot of intervals. In Figures (b,c), the “interval” means the time gap
between a participant forming the intent to speak and actually beginning to speak.

5. Detection of Speaking Intention

In this section, we examine the feasibility of detecting participants’ speaking intention
based on the social signals embedded in sensor data. Employing a data-driven approach,
we train the neural network model to perform the classification task between two categories:
sensor data when participants exhibit speaking intention (positive class) and sensor data
when participants do not exhibit speaking intention (negative class). In the following
subsections, we first introduced our data sampling strategy. Subsequently, we utilized
the data collected in the experiment to train and test three widely used time-series data
classification models, presenting the results for each model. Additionally, for each model,
we compared the impact of using different features on the model’s performance.

5.1. Data Sampling Strategy

For the purpose of speaking intention detection, our initial step involves filtering out
sensor data corresponding to participants’ speech moments. Utilizing the results of our
utterance segmentation, we obtain the speaking state of participants at each moment. In
practical applications, this information can also be acquired through microphones. For all
remaining sensor data points during non-speaking states, we select a sampling window
of 3 s prior to the participant’s active initiation of speech. This selection is based on the
temporal patterns associated with speaking intention.
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Specifically, within this window, we designate the 1.5 s period immediately preceding
the onset of speech as the sampling region for positive samples. This decision is supported
by the fact that this interval can encompass the vast majority of instances indicative of
speaking intention as illustrated in Figure 6b, where 1.5 s > 1.1 s, which is the third quartile.
Conversely, the interval between 1.5 and 3 s prior to the start of speech is designated
as the sampling region for negative samples. This approach offers two key advantages.
Firstly, it allows for a balanced size of positive and negative samples. Secondly, it reduces
interference from unrelated behaviors. Throughout the entire communication session,
participants spend an average of 715.1 s in a non-speaking state in contrast to an average
of only 22 s when participants exhibit speaking intention. Furthermore, during non-
speaking states, participants are likely to disengage from the communication process.
For example, we observed that some participants engage in activities such as drawing
on the whiteboard or exploring the virtual environment while others are engaged in
communication. These behaviors fall outside the scope of communication and introduce
noise into the detection process. Therefore, we consider sampling in the proximity of the
time point when participants initiate speech to avoid capturing data during the time when
participants have disengaged from the communication context. Additionally, referring
to the statistics of the time intervals between two consecutive utterances by participants
(Table 1, with a median of 4.62 s), the chosen 3 s window aligns well with the typical
intervals between participant speech during regular communication.

In the sampling regions for positive and negative samples, we employed a sliding
window approach to extract sensor data with a window size of 25 and a step size of 1.
Figure 7 illustrates the sampling process. In total, we collected 2447 samples, comprising
1303 positive samples and 1144 negative samples.

Figure 7. Sampling process. The motion data represent the data obtained from the sensor of the
participant’s VR device. These data along with the relational features result in 63 dimensions. The
utterance indicates the participant’s utterance units, where red indicates the unit labeled by the
participant as actively speaking. In the light red region of length 1.5 s, we sample positive samples.
In the light gray region of 1.5 s, we sample negative samples.

5.2. Neural Network Model

Due to the success of neural network (NN)-based methods in various tasks involving
time-series classification, such as anomaly detection [50], human activity recognition [51],
and gaze pattern recognition [52], we have chosen an NN-based approach to process
the time-series sensor data. Specifically, we input the sampled data along with their
corresponding labels into a time-series neural network model. The network autonomously
extracts features from the data and performs binary classification through a fully connected
layer with a sigmoid activation function. Regarding the NN architectures employed for
handling time-series data, we experimented with several commonly used time-series
classification architectures, which included the following: EEG Net [53], an architecture
primarily composed of two convolutional steps, first the temporal convolution and then
the depthwise convolution, MLSTM-FCN [54], an architecture that combines both one-
dimensional convolutional neural networks (1D-CNNs) and long short-term memory
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(LSTM) layers, and InceptionTime [55], an architecture inspired by Google’s Inception
network [56], which is also based on convolution layers.

The specific architecture details of the model can be found in Appendix A (Tables A1
and A2).

5.3. Model Performance

During model performance validation, we used widely adopted metrics, including
accuracy, precision, recall, and F1 score, which are common for evaluating classification
model performance. Additionally, we calculated the area under receiver operating char-
acteristic (AUROC), which is a metric that evaluates the model’s overall discriminating
ability between positive and negative samples across different thresholds.

To assess the generalization performance of features across participants, we employed
leave-one-out cross-validation. Specifically, during each model training iteration, we
selected one participant’s data as the validation set while using the data from the remaining
participants as the training set. Since we had a total of 24 participants, this model training
process was repeated 24 times. After completing the training for all models, we calculated
the average performance metrics as the measure of model performance. Table 4 and Figure 8
show the performance metrics and ROC curves for each neural network architecture. We
introduced random prediction as a baseline to assess whether sensor data contribute to
speaking intention recognition. This baseline model randomly assigns samples to positive
or negative classes with a 50% probability.

Table 4. Model performance with relational features and without relational features. “Acc.”: Accuracy,
“Prec.”: Precision, “F1.”: F1 score.

Sensor Data + Relational Features Only Sensor Data
Metrics Acc. Prec. Recall F1 Acc. Prec. Recall F1

Baseline 0.4879 0.5221 0.4956 0.5085 0.4879 0.5221 0.4956 0.5085
EEG-Net 0.6279 0.6738 0.6099 0.6403 0.6164 0.6156 0.6312 0.6233

MLSTM-FCN 0.6207 0.6466 0.7352 0.6881 0.6115 0.6261 0.7345 0.6760
InceptionTime 0.5654 0.6058 0.5621 0.5831 0.5653 0.5872 0.5966 0.5919

(a) (b)
Figure 8. ROC curves of models (a) Sensor data + relational features; (b) Only sensor data. “AUC”:
AUROC.

Overall, EEG Net achieved the highest accuracy (0.6279) and precision (0.6738).
MLSTM-FCN attained the highest recall (0.7352) and F1 score (0.6881). However, In-
ceptionTime did not achieve the best performance in any of the metrics. Next, when
observing the receiver operating characteristic (ROC) curves, EEG Net exhibited the best
discriminating ability between positive and negative samples with an AUROC of 0.65.

Furthermore, we examine the impact of the introduced relational features in the detec-
tion task. However, directly calculating the importance of features in neural networks is
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not straightforward. Therefore, we attempted to compare the model’s performance with
and without the inclusion of relational features, measuring feature importance based on
the performance difference. This approach is frequently used when examining specific
features or modules within neural networks [57,58]. Table 4 (Only Sensor Data) shows the
performance metrics of models that do not utilize relational features. The results indicate
that models without relational features generally exhibit slightly weaker performance
compared to models with these features. However, the recall (0.6312) for EEG Net and
the recall (0.5966) and F1 score (0.5919) for InceptionTime improved slightly compared to
the same architectures with relational features. Nevertheless, none of them reached the
best performance. When looking at the ROC curves, models without relational features
demonstrated slightly inferior performance compared to those using relational features.
However, overall, the difference in performance between models with and without rela-
tional features was minimal, suggesting that the impact of relational features on speaking
intention detection is limited.

6. Discussion
6.1. Speaking Intention in VR

Through the annotations provided by participants, we investigated the temporal
patterns of participants in generating the intention to speak and taking the floor. The results
indicate that in the majority of the cases, the interval between the generation of speaking
intentions by participants and the commencement of speaking was mostly around 1 s with
only very few instances exceeding 5 s. In our experiment, these longer intervals were
primarily associated with a participant who appeared to be more ‘patient’ compared to
others. However, the vast majority of participants did not display such patience. Their
speaking intentions were typically generated shortly before speaking. Those participants
who could not gain the floor within a short timeframe to express their opinions often
abandoned their intention to speak. This is also corroborated by our questionnaire analysis,
as most participants reported timing as the primary reason for abandoning their speaking
intentions. Furthermore, these results also imply that the inability to perform effective turn-
taking regulation in a conversation can lead to missed opportunities for acquiring opinions.
Additionally, through the questionnaire, we also investigated participants’ perceptions
of conveying speaking intentions in the VR environment. Participants found it easy to
express their speaking intentions in VR, but perceiving the speaking intentions of others
was challenging. This asymmetry could lead to situations where participants believe they
have expressed their speaking intentions, but others have not noticed. If a participant starts
speaking directly in such situations, it is unpredictable for other participants. This can lead
to confusion in turn management and increase the likelihood of dialogue overlap. Similar
findings have been reported in previous research on web conferences [59,60], where verbal
conflicts occurred more frequently than in face-to-face situations.

6.2. Assistance Based on Speaking Intention Detection

For the challenges related to speaking intent in VR, we will discuss the possibilities of
providing assistance to VR discussion based on participants’ speaking intention detection
from both real-time and non-real-time perspectives.

6.2.1. Real Time

Multiplayer interactions conducted using VR represent a form of technologically me-
diated communication that allows designers to strategically separate non-verbal signals
transmitted by one interactant from those received by others [61]. Non-verbal signals can
be enhanced or attenuated through carefully designed virtual environments, influencing
the interactions among participants. For example, some research has artificially presented
non-verbal cues in VR environments and explored their impact on communication [62,63].
Similarly, when it comes to participants’ speaking intentions, we can consider designing
a presentation method to enhance them. Enhanced speech intentions can be made more
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noticeable to other participants, addressing the issue of perceptibility caused by the low
fidelity of VR. With such assistance, participants can better coordinate their conversational
exchanges in communication, thereby improving the efficiency of group interactions. Par-
ticipants in our survey also agreed that being able to perceive others’ speaking intentions
easily contributes to communication in VR.

6.2.2. Non-Real Time

In scenarios where group work or collaboration occurs in VR, tracking the frequency
of participants expressing speaking intentions can serve as a metric for analyzing or im-
proving interactions among participants. We think that speaking intentions provide a novel
perspective for assessing engagement in communication. While this is somewhat similar
to the use of total speaking time [64,65] or frequency of turn-taking [66], which have been
applied in previous research, speaking intentions arguably reflect participants’ proactivity
and their interest in the discussion content more accurately during the conversation. By
combining the analysis of speaking intentions with other metrics, we can gain deeper
insights into group interactions. For example, if a participant has many speaking intentions
but speaks infrequently, it may indicate that they are facing some obstacles to expressing
their opinions. Conversely, if someone has few speaking intentions but speaks frequently, it
could suggest that they are being forced to speak by others in the communication. By adjust-
ing the factors that influence interaction, we can improve the balance of the conversation,
thereby enhancing the performance and creativity in group work [67,68].

6.3. Speaking Intention Detection Based on Sensor Data

We classified the sensor data of participants before and after they had speaking inten-
tion to examine whether speaking intention detection could be achieved by capturing social
signals from sensor data. The results indicate that the models based on neural networks
achieved an accuracy of 0.6279, a precision of 0.6738, a recall of 0.7352, an F1 score of 0.6881,
and an AUROC of 0.65. Specifically, EEG Net achieved the best accurary, precision and
AUROC, while MLSTM-FCN attained the best recall and F1 score. In practical applications,
model selection may depend on the specific context. For instance, when providing real-time
feedback on speaking intention, precision becomes crucial, as false positive feedback on
speaking intention can disrupt communication. However, for statistical speaking intention
analysis during the communication process, recall might be of higher importance.

Additionally, we introduced relational features among participants and tested their
importance in speech intent detection. The results revealed that models using relational
features showed slight performance improvements, but the improvements were limited
(an increase of 0.0121 in the best F1 score). This suggests that relational features did not
play a significant role in speaking intention detection.

6.4. Limitation and Future Work

Our experiments were conducted in a laboratory environment; therefore, some of the
experimental conditions inevitably influenced the participants’ communication behavior.
For instance, participants reported in the questionnaires that their reluctance to express
intentions to speak was due to the added workload of labeling as well as the time constraints
during the experiment. Since speaking intentions are subjective and challenging to observe,
we could not eliminate the step of participant annotation. However, considering simplifying
the task or employing additional assistive tools may help alleviate participants’ concerns
about the workload.

In this study, based on our sampling method, we tested the feasibility of using data
from embedded sensors in VR devices to detect speaking intentions only within a 3 s
interval before participants started speaking. This still presents a gap in applying speaking
intention detection in a wider range of practical scenarios. Ideally, the model should be
capable of detecting speaking intentions in any segment of data sampled from participants’
communication. This is an exceptionally challenging task, as it implies that the model must
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distinguish between behaviors when participants have the intention to speak and all other
potential behaviors during communication. Therefore, the primary focus of future work
will be to explore speaking intention detection methods that can be applied to a wider
range of scenarios. We will attempt to detect speaking intentions within a broader sampling
range and consider integrating additional contextual information to eliminate situations
where detection or assistance is unnecessary, thus mitigating the challenges posed by the
participants’ diverse behaviors during communication.

7. Conclusions

In the VR environment, the low fidelity in replicating the physical world leads to the
deficiency of non-verbal cues, thereby posing challenges for user interactions. To address
this challenge, we aimed to provide assistance to participants in VR by using sensor data
from VR devices. In this study, we focused on turn-taking in group communication and
explored the difficulties encountered by participants in expressing speaking intentions and
acquiring the right to speak. We conducted a small-group communication experiment in
VR, during which we collected and built a dataset consisting of sensor data and speaking
intention labels.

We identified asymmetry in the transmission of speaking intentions in the VR envi-
ronment through questionnaires. Analysis of the labels provided by participants yielded
significant insights into speaking intentions. Building on these insights, we explored the
feasibility of using sensor data to detect speaking intentions. Our comparison of the three
neural network-based models indicated that the models can distinguish participants’ motion
data based on the presence or absence of speaking intentions, outperforming random classi-
fication across various evaluation metrics. However, surprisingly, the introduced relational
features among participants had a very limited impact on detection improvement. We also
discussed the potential for using speaking intention detection to assist interactions in the VR
environment. We believe that our work represents a first significant step toward providing
assistance in small group interactions in VR from the perspective of speaking intentions.
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Appendix A. Detail of the Models

In Tables A1 and A2, we list the detailed structure of the models used, including
the configuration of each layer, the size of the kernel k, the probability of dropout layer
p, the hidden size h of the LSTM, the reduction r of the Squeeze-and-Excitation block
(SE-Block) [69], and the output dimension dout of the fully connected layer.
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Table A1. Layer details of our EGG Net and MLSTM-FCN model. C is the number of channels in
time-series data. Legend: “Conv1D”: 1D Convolution Layer, “BN”: Batch Normalization, “AvgPool”:
Average Pooling Layer, “DimShuffle”: Dimension Shuffle, “DepConv”: Depthwise Convolution
Layer, “SepConv”: Separable Convolution Layer [53].

(a) EGG Net

EEG Net Layer Input Shape

Conv2D k = (1, 10) C × 25
BN 8 × C × 25
DepConv k = (C, 1) 8 × C × 25
BN + ELU 16 × 1 × 25
AvgPooling k = (1, 2) 16 × 1 × 25
Dropout p = 0.25 16 × 1 × 12
SepConv k = (1, 16) 16 × 1 × 12
BN + ELU 16 × 1 × 12
AvgPooling k = (1, 4) 16 × 1 × 12
Dropout p = 0.25 16 × 1 × 3
Flatten 16 × 1 × 3
Dense dout = 1 48

(b) MLSTM-FCN

MLSTM-FCN Layer Input Shape

Conv1D k = 8 C × 25
BN + ReLU 128 × 25
SE-Block r = 16 128 × 25
Conv1D k = 5 128 × 25
BN + ReLU 256 × 25
SE-Block r = 16 256 × 25
Conv1D k = 3 256 × 25
BN + ReLU 128 × 25
GlobalAvgPool 128 × 25

DimShuffle C × 25
LSTM h = 8 25 × C
Dropout p = 0.25 8

Concate 128, 8
Dense dout = 1 136

Table A2. Layer details of our InceptionTime model. The structure in the first block is the “Inception
Module”. The “pd” in the Maxpooling layer indicates that padding should be used to keep the output
size equal to the input.

Inception Time Layer Input Shape Connected to

Conv1D k = 1 C × 25 InputLayer
MaxPooling1D k = 3, pd C × 25 InputLayer
Conv1D1 k = 20 32 × 25 Conv1D
Conv1D2 k = 10 32 × 25 Conv1D
Conv1D3 k = 5 32 × 25 Conv1D
Conv1D4 k = 1 C × 25 MaxPooling1D
Concate 4 × 32 × 25 Conv1D1,Conv1D2

Conv1D3,Conv1D4

BN 128 × 25 Concate
ReLU 128 × 25 BN
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Table A2. Cont.

Inception Time Layer Input Shape Connected to

Inception Module

BN 128 × 25 Concate
ReLU 128 × 25 BN

Inception Module

Conv1D k = 1 C × 25 InputLayer
BN1 128 × 25 Concate
BN2 128 × 25 Conv1D
ReLU 128 × 25 BN1
Add 128 × 25 BN1, BN2
ReLU1 128 × 25 Add

Inception Module

BN 128 × 25 Concate
ReLU 128 × 25 BN

Inception Module

BN 128 × 25 Concate
ReLU 128 × 25 BN

Inception Module

Conv1D k = 1 128 × 25 ReLU1
BN1 128 × 25 Concate
BN2 128 × 25 Conv1D
ReLU 128 × 25 BN1
Add 128 × 25 ReLU, BN2
ReLU 128 × 25 Add
GlobalAvgPool1D 128 × 25
Dense dout = 1 128
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