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Abstract: As an important direction in computer vision, human pose estimation has received extensive
attention in recent years. A High-Resolution Network (HRNet) can achieve effective estimation results
as a classical human pose estimation method. However, the complex structure of the model is not
conducive to deployment under limited computer resources. Therefore, an improved Efficient and
Lightweight HRNet (EL-HRNet) model is proposed. In detail, point-wise and grouped convolutions
were used to construct a lightweight residual module, replacing the original 3 × 3 module to reduce
the parameters. To compensate for the information loss caused by the network’s lightweight nature,
the Convolutional Block Attention Module (CBAM) is introduced after the new lightweight residual
module to construct the Lightweight Attention Basicblock (LA-Basicblock) module to achieve high-
precision human pose estimation. To verify the effectiveness of the proposed EL-HRNet, experiments
were carried out using the COCO2017 and MPII datasets. The experimental results show that the
EL-HRNet model requires only 5 million parameters and 2.0 GFlops calculations and achieves an AP
score of 67.1% on the COCO2017 validation set. In addition, PCKh@0.5mean is 87.7% on the MPII
validation set, and EL-HRNet shows a good balance between model complexity and human pose
estimation accuracy.

Keywords: human pose estimation; lightweight network; HRNet; CBAM

1. Introduction

The pose is one of the important biological characteristics of the human body, and
human pose estimation aims to detect the keypoints of the human body in pictures or videos
to describe the human pose. It is an important research direction in computer vision and
the basis for computer understanding of human actions and behaviors and has important
research significance for realistic video surveillance, human–computer interaction, medical
rehabilitation, intelligent driving, and other typical application scenarios [1–3].

Traditional methods for human pose estimation mainly use graph-structure-based
models [4,5], which rely on hand-designed features, have poor robustness, and are not
suitable for practical applications. Deep-learning algorithms have made a splash in the
field of computing because of their excellent learning capabilities, and researchers have
focused on how to implement human pose estimation tasks using deep learning.

DeepPose [6] first applied a deep neural network to human body pose estimation,
planned the pose estimation task as a regression problem based on a deep neural network
to detect the keypoints of the body, and obtained good pose estimation results. Subse-
quently, based on the Cascaded Pyramid Network (CPN) [7], Multi-Stage Pose Network
(MSPN) [8], Residual Steps Network (RSN) [9], and other deep-learning methods have
emerged for solving the problems of keypoint occlusion, environmental interference, and
complex backgrounds in pose estimation. For example, Kan [10] et al. divided the body
keypoints into six structural groups, each of which was further divided into terminal and
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base keypoints. This group further developed a self-constrained prediction–validation
network to learn the structural correlations between these two subsets within each struc-
tural group. Although the accuracy of the human pose estimation algorithm has achieved
good results, with the development of human pose estimation, the algorithm structure
used for pose estimation is becoming more and more complex, such as HRNet [11], High-
erHRNet [12], TransPose [13], ViTPose [14], and other networks. Although these methods
can achieve high-precision human pose estimation, the convolutional layer of the network
is getting deeper and deeper, and the number of parameters and computations is also
rising, which makes related experiments require increasingly higher computer equipment
performance, which is not conducive to the practical application of human pose estimation.
It is difficult to achieve accurate pose estimation when the background color is cluttered
and complex, the body parts are occluded, or the body color is similar to the surrounding
environment. Maintaining high-resolution information is very important for the detection
of these keypoints. However, in each network structure that maintains high-resolution
information, there is high network complexity and a large number of calculation parame-
ters. Therefore, a major challenge in pose estimation is how to have fewer parameters and
better performance while preserving high-resolution information. Among them, HRNet
achieves high accuracy in the task of human pose estimation, but its parameter number
and computational complexity are high. Thus, lightening the network is a major challenge
in the field of pose estimation. It is challenging to balance the complexity and accuracy of
the model because of the loss of accuracy caused by the light weight of the model.

To reduce the computational power and memory requirements of the computer while
maintaining the accuracy of pose estimation, some scholars [15–18] have researched human
posture estimation methods based on lightweight models. Still, the existing methods cannot
maintain a good balance between the model complexity and the accuracy of human posture
estimation. This paper focuses on reducing the demand for efficient human pose estimation
models on device memory and computational resources to achieve lightweight models
while maintaining their performance in human pose estimation tasks.

HRNet can achieve high accuracy in human pose estimation tasks, but maintaining
high-resolution representation also increases the number of model parameters and the
computational burden. Therefore, this paper aims to solve the conflict between high-
resolution representation and lightweight models by using HRNet as the object. The main
body of HRNet contains four feature extraction stages, the last three of which are performed
by Basicblock [19] modules, and therefore, Basicblock occupies a large proportion of the
structure of the HRNet network. In this work, we conducted a lightweight study on the
Basicblock structure and firstly constructed a lightweight Basicblock module (L-Basicblock,
Lightweight Basicblock), but this approach caused the loss of feature information in the
human pose estimation process.

Attention mechanisms [20,21] can obtain the target area that needs to be focused on
and then obtain target detail information from that area and suppress useless information.
Many excellent attention mechanisms have emerged in recent years [20,22–25] that can
be easily applied to the pose estimation network to extract critical human information.
Therefore, in this paper, to compensate for the information loss in the network caused by
the module’s lightweight nature, the CBAM attention mechanism is further introduced
in L-Basicblock [26], and then, the LA-Basicblock module is constructed to propose a
lightweight and effective human pose estimation model named EL-HRNet; the model can
maintain its performance while achieving a lightweight network.

The main contributions of this work can be summarized as follows:

(1) To solve the problem of the high number of parameters and computations of the pose
estimation network HRNet, the Basicblock module, which is widely used in HRNet,
is improved, and a lightweight L-Basicblock module is built to reduce the number of
parameters and computations of the model and speed up the output of human pose
estimation results;
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(2) To improve the problem of feature information loss caused by the module’s lightweight
nature, the CBAM attention mechanism is further introduced in L-Basicblock, and
finally, the LA-Basicblock module is constructed to pay attention to the feature infor-
mation of different resolution subnetworks in HRNet to obtain rich, effective human
keypoint information and suppress invalid information;

(3) A lightweight human pose estimation model, EL-HRNet, with an excellent balance
of complexity and accuracy, is constructed to achieve an accurate estimation of
human pose.

2. Materials and Methods

Human pose estimation first detects the representative human keypoints in the picture
and then connects the keypoints to form the corresponding limbs to obtain the complete
human pose in the picture [11]. High-resolution feature maps contain a lot of effective
human keypoint location and semantic information, and obtaining high-resolution feature
maps in the process of image processing in human pose estimation models is an effective
means to improve the accuracy of human pose estimation. HRNet obtains excellent human
pose estimation performance by maintaining high-resolution representations throughout
the model and fusing the information of feature maps that have different resolutions
through parallel branching, but the increase in high-resolution representations leads to a
consequent increase in the number of model parameters and computational effort [17].

In this paper, based on the HRNet model, human pose estimation is studied. Given the
problems of a large parameter number and calculation amount, the L-Basicblock module
is proposed to reduce the parameter number and calculation amount of the model and
reduce the requirements of the model for computer memory and running computing power.
Using the combination of a 1 × 1 convolution and 3 × 3 group convolution (GConv), the
feature graph is compressed to greatly reduce the number of parameters and computations
while maintaining features with different resolutions. Secondly, given the loss of key
information about the human body in the image features caused by the light weight of
the model, the lightweight CBAM attention mechanism is further introduced based on
the L-Basicblock module to build the LA-Basicblock module. The CBAM module can
model the key information in the feature map from the channel domain and spatial domain,
realizing the dual attention of channel and spatial information, thus improving the ability
of the network to represent the human posture. This implements a lightweight and efficient
EL-HRNet human pose estimation model. Finally, the improved EL-HRNet human pose
estimation model was trained, verified, and tested on two large datasets, COCO [27] and
MPII [28], and the OKS (Object Keypoint Similarity) evaluation index was used on the coco
dataset. The PCKh (head-normalized probability of correct keypoint) evaluation index is
used on the MPII dataset.

2.1. HRNet Model

HRNet is a classical heatmap-based method for human pose estimation. A picture
I ∈ RW×H×C (W is the width of the picture, H is the height of the picture, C is the channel
of the picture, and the input picture has three channels: red, green, and blue) containing the
human body is input into the HRNet network, and then a series of convolution operations
are performed; finally, the model will output a heatmap H ∈ RW ′×H′

with p human
keypoints, and the coordinates with the highest heat value in each heatmap will be scaled
to the input picture space. The framework of HRNet is shown in Figure 1.

HRNet contains a total of four feature extraction stages, each of which adds a parallel
subnetwork compared to the previous stage, except for the first stage. The first feature
extraction stage consists of four Bottleneck modules of width 64 (Figure 1) that compress
and then amplify the feature information by a 1 × 1 convolution, 3 × 3 convolution, and
1 × 1 convolution to effectively obtain the underlying features of the input image. The sec-
ond, third, and fourth feature extraction stages consist of 1, 4, and 3 information exchange
modules, respectively, and each information exchange module consists of 4 Basicblock
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(Figure 1) units; Basicblock learns the feature information with two regular 3 × 3 convolu-
tions. To enable each subnetwork to repeatedly receive multiscale keypoint information
from other parallel subnetworks, HRNet introduces transition modules between every two
feature extraction stages. Each transition module can implement information transfer by
up-sampling or down-sampling.
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When the image containing the human body is input into the pose estimation network,
HRNet first reduces the resolution of the input image I to 1/4 through two 3 × 3 convolution
steps of 2 to obtain a high-resolution output feature map and keeps the high-resolution
representation of the first subnetwork. The resolutions of the feature maps of the second,
third, and fourth subnetworks are 1/8, 1/16, and 1/32 of the input image I, respectively.
Through the transition module between various stages of HRNet, the keypoint information
of the human body in feature maps at different scales can be obtained to improve the
accuracy of the human body pose estimation.

In the heatmap regression method, it is necessary to convert the labeled data into
training labels to obtain p heatmaps

{
h1, h2, . . . , hp

}
, with each heatmap having the size

w × h. For a particular labeled feature point ui = (xi, yi), the value of the feature point
(x, y) on the real heatmap corresponding to that feature point is as follows:

hi(x, y) = e−
(x−xi)

2+(y−yi)
2

2σ2 σ (1)

The true heatmap is a Gaussian distribution centered on the feature point ui, where σ
is the standard deviation of the manual design, taken as σ = 2.

The loss function of the human pose estimation network is defined as the Mean Square
Error (MSE), which is used to compare the predicted heatmap with the real heatmap,
and the result obtained by the human pose estimation network is the predicted heatmap.
Specifically, for the position of each joint, the difference between its estimated value and
the true value is squared, and the average value is taken as the value of the loss function.
The loss function MSE is defined as follows:

MSE =

p
∑

i=1

w
∑

j=1

h
∑

k=1

[
hi(x, y)− ĥi(x, y)

]2

p·w·h (2)
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where w and h are the width and height of the predicted heatmap (one-quarter of the
input image size W and H), p is the number of keypoints, and hi(x, y) and ĥi(x, y) are the
coordinates of the keypoints in the real heatmap and the predicted heatmap, respectively.

2.2. HRNet Model with the Introduction of a Lightweight Residual Module
2.2.1. Building the Lightweight Residual Module

In the HRNet human pose estimation model, Basicblock is used in the second, third,
and fourth stages, while the Bottleneck module is used in the first feature extraction stage,
which has the advantage of an additional short-cut branch compared with the traditional
convolutional structure to channel the input information directly to the output, which
can solve the training difficulties caused by the increasing depth of the network [18].
The original Basicblock structure is shown in Figure 2a, and its main structure consists
of two 3 × 3 convolutions, so this structure leads to a large number of parameters and
computations of the HRNet network.
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Figure 2. Flowchart of Basicblock and L-Basicblock. (a) Flowchart of Basicblock; (b) Flowchart of
L-Basicblock.

To reduce the number of parameters and computations of the HRNet, this study
constructed a module called Lightweight Basicblock (L-Basicblock) based on the Basicblock
module by proposing a new convolution structure (NConv3 × 3, New Convolution with
3 × 3 kernel size). The structure of NConv3 × 3 is shown in Figure 2b, which is a combi-
nation of a 1 × 1 convolution and 3 × 3 group convolution (GConv). In the NConv3 × 3
convolution structure, the number of channels is first reduced to 1/2 of the input channels
by a 1 × 1 convolution, which compresses the feature map and thus reduces the number of
parameters. Since the compression of the feature map causes the loss of effective keypoint
information, 3 × 3 GConv is then applied to divide the input feature map into g groups
by channel; each convolution kernel is divided into groups accordingly, and each group
convolution operation generates a new feature map to obtain more feature maps and sup-
plement the feature information. Finally, the results of 1 × 1 convolution and 3 × 3 GConv
operations are concatenated together from the channel dimension as the new output. The
flow of the constructed L-Basicblock structure is shown in Figure 2b.

2.2.2. Comparison of the Number of Parameters and Computations

To demonstrate the effectiveness of the proposed lightweight residual module L-
Basicblock in reducing the number of parameters and computations, the number of param-
eters and computations are calculated using the formula and compared with the original
Basicblock residual module.

Suppose that the input image I ∈ RW×H×C has a feature map with the size
Win × Hin × Cin after the first feature extraction stage of HRNet, and the output feature
map with the size Wout × Hout × Cout is obtained after information processing by feeding
this feature map into the Basicblock module. Then, the number of convolutional layer
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parameters (Params, Parameters, the total number of parameters to be trained in the model)
of a Basicblock module can be expressed as follows:

ParamsB = k × k × Cin × Cout + k × k × Cout × Cout ≈ 18Cin
2 (3)

where k is the convolution kernel size, Cin is the number of input channels of the first 3 × 3
convolution, and Cout is the number of output channels of the first 3 × 3 convolution.
Cin = Cout is assumed here for the convenience of calculation and comparison.

The amount of computation (FLOPs, floating-point operations) for a Basicblock mod-
ule containing convolutional layers can be approximated as follows:

FLOPsB ≈ 2 × k × k × Cin × Cout × Wout × Hout ≈ 18Cin
2WoutHout (4)

where Wout is the output width of the Basicblock module, Hout is the output height of the
Basicblock module, and the output feature map size of both the first 3 × 3 convolution and
the second 3 × 3 convolution here is Wout × Hout × Cout.

The modified number of parameters is effectively reduced compared with the orig-
inal Basicblock. The convolutional layer of the L-Basicblock structure consists of two
NConv3 × 3, where each NConv3 × 3 contains a 1 × 1 convolution and 3 × 3 GConv. The
input size of the 1 × 1 convolution is W × H × Cin, and the output size is W × H × Cin/2;
then, the number of parameters of the 1 × 1 convolution is Cin

2/2. The input size of 3 × 3
GConv is W × H × C1, and the output size is W ′ × H′ × C2. Then, the number of parame-
ters of 3 × 3 GConv is 9/2×Cin. Therefore, the total number of convolution parameters
of L-Basicblock is Cin

2 + 9Cin, which is much smaller than the number of convolution
parameters of the original Basicblock [10] module 18Cin

2.
The computation of the 1 × 1 convolution is Cin

2/2 × W × H, and the computation of
3 × 3 GConv is 9/2 × CinWoutHout. The computation of the convolutional layer of the L-
Basicblock module is Cin

2WH + 9CinWoutHout, which is much lower than the computation
of the convolutional layer of the original Basicblock module 18C2

inWoutHout. Therefore, the
number of parameters and computations of L-Basicblock is greatly reduced compared with
the original Basicblock, but the module’s lightweight nature will inevitably cause some
information loss and lead to the performance degradation of pose estimation.

2.3. EL-HRNet Model Incorporating CBAM Attention Mechanism

To compensate for the feature information loss in the human pose estimation pro-
cess brought about by the introduction of L-Basicblock, the LA-Basicblock module shown
in Figure 3b is further constructed by introducing a smaller-overhead CBAM attention
mechanism into the L-Basicblock structure shown in Figure 3a. This module first extracts
information from the feature map of the input module through two NConv 3 × 3 convolu-
tion structures to obtain the output feature map and then pays attention to the key channel
and spatial information in the output feature map through the CBAM at the same time
to obtain rich feature information and improve the performance of pose estimation while
maintaining the low number of parameters and computations of the model.

2.3.1. CBAM Attention Mechanism

CBAM is a lightweight, general-purpose module that can be integrated into any
convolutional network architecture. It consists of two main parts: the channel attention
module and the spatial attention module. The CBAM flowchart is shown in Figure 4a.

The channel attention module uses the channel relationships of features to generate
channel attention maps of keypoints, and the detailed structure of the module is shown in
Figure 4b. For the input feature map F ∈ RW×H×C of the attention module, the channel
attention module is concerned with which information in the input image is meaningful for
the output keypoint feature map. To efficiently compute the channel attention, the spatial
dimension of the input feature map is compressed. Firstly, two different spatial context
features, Fmax

c and Favg
c , are generated using average pooling and maximum pooling op-
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erations to aggregate the valid keypoint spatial information in the feature map, and then
each of the two features is passed through a shared network to generate a one-dimensional
channel attention feature map, Fc ∈ R1×1×C, to aggregate the keypoint information. The
shared network contains a perceptron with hidden layers, a multi-layer perceptron (MLP),
and the feature size of the hidden layers is set to R1×1×C/r to reduce the parameter over-
head, where r is the compression ratio. Finally, the channel attention feature map is output
by summing and merging at the element level to obtain the valid keypoint channel in-
formation. The computation process of the channel attention module is expressed by the
following equation:

Fc = σ(MLP(MaxPool(F))⊕ MLP(AvgPool(F))) = σ
(

MLP(Fmax
c )⊕ MLP

(
Favg

c

))
(5)

where σ represents the sigmoid activation function, MaxPool is the maximum pooling layer,
AvgPool is the average pooling layer, and ⊕ represents the element-by-element summation.
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The spatial attention module uses the spatial relationship between features to generate
a spatial attention map, which is shown in Figure 4c. It focuses on the information area of
“where” the important keypoint of the input feature map is, which is complementary to
the channel attention module. First, the channel attention feature map Fc and the original
input feature map F are multiplied at the element level to obtain the input feature map of
the spatial attention module; then, it is max-pooled and average-pooled along the channel
dimension, and the output is concatenated to generate a valid feature descriptor, which can
effectively highlight the information regions of keypoints by applying the pooling operation
along the channel dimension. A convolutional layer is applied to the concatenated feature
descriptor to generate a two-dimensional spatial attention feature map Fs ∈ RW×H×1.

The calculation process of the spatial attention module is expressed in the follow-
ing equation:

Fs = σ( f7×7([MaxPool(F ⊗ Fc); AvgPool(F ⊗ Fc)])) = σ
(

f7×7

([
Fmax

s ; Favg
s

]))
(6)

where f7×7 denotes a two-dimensional convolutional layer with a convolutional kernel
size of 7, Fmax

s ∈ RW×H×1 is the spatial feature map with maximum pooling, and
Favg

s ∈ RW×H×1 is the spatial feature map with average pooling.
The CBAM first aggregates the channel information of human keypoints through

a channel attention module, and then it will go through a spatial attention module to
obtain the spatial information of relevant keypoints and finally obtain the keypoint feature
map F′ ∈ RW ′×H′×C′

by weighting to obtain the valid human keypoint information. The
arithmetic formula of the attention mechanism is as follows:

F′ = Fs ⊗ (Fc ⊗ F) (7)

where F represents the feature map of the input CBAM attention mechanism, Fs represents
the feature map of the output channel attention module, Fc represents the feature map of
the output spatial attention module, F′ represents the feature map of the final output of the
CBAM attention mechanism, and ⊗ represents element-by-element multiplication.

2.3.2. EL-HRNet Model Incorporating Attention Mechanism

After the lightweight improvement of Basicblock in the original HRNet model and
the introduction of the CBAM attention mechanism, the effective human keypoint infor-
mation can be quickly obtained, and a high-quality keypoint heatmap can be output. The
framework of the EL-HRNet model with the LA-Basicblock residual module is shown in
Figure 5.

Assuming that the input feature of L-Basicblock is X ∈ RWin×Hin×Cin and the
output feature is Y ∈ RWout×Hout×Cout , the computation process is expressed by the
following equation:

Y1 = BN( fNConv3×3(ReLU(BN( fNConv3×3(X))))) (8)

Y = ReLU(Y1 ⊕ X) (9)

where Y1 denotes the feature map of the intermediate transition, Batch Normalization (BN)
denotes the batch normalization operation, Rectified Linear Unit (ReLU) is the modified
linear unit, fNConv3×3 denotes the operation of the NConv3 × 3 convolutional structure,
and ⊕ denotes the residual connection.

With the introduction of the CBAM attention mechanism, the formula for LA-Basicblock
can be expressed as follows:

Y = ReLU(SA(CA(Y1))⊕ X) (10)

where CA denotes the channel attention operation, and SA denotes the spatial atten-
tion operation.
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3. Experiment and Discussion

In this study, two large datasets, COCO2017 [27] and MPII [28], were selected ac-
cording to the HRNet model to train, validate, and test the improved EL-HRNet human
pose estimation model. The backbone network is HRNet-32:32 is the width of the first
high-resolution branch, and the widths of the other three subnetworks are 64, 128, and
256, respectively.

Some estimation results of the EL-HRNet model on the COCO2017 dataset are shown
in Figure 6.
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From the first and second pictures in Figure 6, it can be seen that the proposed model
can accurately locate human skeletal points in both single- and multi-person pictures;
from the third and fourth pictures, it can be seen that the model can also locate human
skeletal points when the human body is seen from the side and the back; from the fifth and
sixth pictures, it can also be seen that the model can better identify human skeletal points
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in complex backgrounds and occlusion situations. Therefore, EL-HRNet can accurately
recognize the human body pose in various scenes.

To verify the performance of the model, the experiments also analyzed the Simple
Baseline [29], Lightweight [30], ViPNAS [31], Small HRNet [32], Lite-HRNet [32], Hour-
glass [33], and several other typical lightweight human pose estimation methods, and all
methods used the same size input for comparison. The networks and the corresponding
backbone networks are shown in Table 1.

Table 1. The networks and their corresponding backbones.

Method SimpleBaseline
[29]

Lightweight
[30] ViPNAS [31] SmallHRNet

[32]
Lite-HRNet

[32] Hourglass [33] Ours

Backbone MobileNetV2 MobileNetV3 MobileNetV3 HRNet-W16 Lite-HRNet-30 Stacked
Hourglass EL-HRNet-W32

3.1. Dataset Introduction
3.1.1. COCO2017

The COCO2017 dataset contains 200,000 images with 17 keypoints labeled for each
human example in the images. Training was performed on the COCO2017 training set,
which contains 57,000 images with 150,000 human examples, and validation and testing
were performed on the COCO2017 validation set, which contains 5000 images, and on the
test set, which contains 20,000 images, respectively.

The standard evaluation criterion is OKS:

OKS =
∑i exp

(
−d2

i /2s2k2
i
)
δ(vi > 0)

∑i δ(vi > 0)
(11)

where s is the object scale, ki is the constant controlling the decay of each keypoint, vi
denotes the visibility of the keypoint, and δ is the function that selects the visible keypoints
for calculation.

di is the Euclidean distance between the detected keypoints and their true values,

di =

√
(x1 − x2)

2 + (y1 + y2)
2 (12)

where x and y represent the coordinates of the points.
The model performance is characterized by average precision and recall, with the

following main metrics: AP50 (AP at OKS = 0.50), AP75, AP (average of AP scores at 10
different locations, OKS = 0.50, 0.55, . . ., 0.90, 0.95), APM (a metric to evaluate the accuracy
of detection of medium-scale objects), APL (a metric to evaluate the accuracy of detection
of large-scale objects), and AR (the average recall scores at OKS = 0.50, 0.55, . . . , 0.90, and
0.95, respectively).

3.1.2. MPII

The MPII dataset contains images of various types of activities from the real world,
with full-body annotation of the human body in each image. The dataset contains
25,000 images with 40,000 human instances, of which the test set contains 12,000 human
instances, and the rest are all in the training set.

Evaluation criterion: The PCKh metric is used to judge the performance of the model,
i.e., the head-normalized probability of correct keypoints, and a keypoint is correctly
detected if the position of the detected keypoint falls within a specified threshold. The
calculation formula is as follows:

PCKh =
∑p δ

(
dpi

dh
p
≤ Tk

)
∑p 1

(13)
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where p denotes the p-th person, i denotes the i-th keypoint, dpi denotes the Euclidean
distance between the predicted value and the true value of the i-th keypoint of the p-th
person, dh

p denotes the head scale factor of the p-th person, i.e., the current head diameter
of the person (60% of the Euclidean distance between the upper left point and the lower
right point of the rectangular box of the head) is used as the scale factor, T is an artificially
set threshold, k denotes the k-th threshold, and if the bracketed condition holds, then δ is 1;
otherwise, it is 0. The metrics used in this paper are PCKh@0.5 (PCKh value at Tk = 0.5).

3.2. Experimental Setup and Dataset Results

In this section, the experimental settings and results on the COCO2017 dataset and
MPII dataset are presented. The results are compared with those of other network models
to illustrate the validity of our model.

Training setup in COCO2017: The human detection box was expanded to a height-to-
width ratio of 4:3, and then the box was cropped from the image and resized to 256 × 192.
Data enhancement included random rotation ([−45◦, 45◦]), random scale transformation
([0.65, 1.35]), and flipping. The model was trained on an NVIDIA 1050Ti graphics card with
4G memory, with the batch size set to 16 and using the Adam optimizer; the initial learning
rate was set to 0.001 and dropped by a factor of 10 in epochs 120, 170, 200, and 260, for a
total of 300 training epochs.

Training setup in MPII: To compare with other methods, the input size was cropped
to size 256 × 256. The network was trained using an NVIDIA 1050Ti graphics card with
4 G memory and a batch size of 8. The total number of training epochs was 210, and the
initial learning rate was 0.001, which was reduced by a factor of 10 at epochs 170 and 200.
The test procedure used the provided human detection box instead of the detected human
detection box.

3.2.1. COCO2017 Dataset Validation and Test Results

The EL-HRNet human pose estimation model proposed in this paper was compared
with other lightweight models in terms of the number of parameters, computation, and
AP and AR accuracy metrics. As shown in Table 2, on the COCO2017 validation set, the
EL-HRNet model result is 0.6% higher than that of ViPNAS [30] in the medium-scale
human detection metric APM and slightly (by 0.7%) lower than that of the ViPNAS method
in AP metrics; although the number of parameters is 2.2 M more than ViPNAS and the
amount of computation is 1.31 G more, the model still achieves a better balance between
complexity and accuracy. Except for the Lite-HRNet method with Lite-HRNet-30 as the
backbone network and the ViPNAS method, the other lightweight models have a slight
advantage in the number of parameters and computation volume, but all of their accuracy
indexes are lower than those of the model in this paper. Also, using the MobileNetV3
network backbone, the ViPNAS network parameter number and accuracy are excellent,
but EL-HRNet is higher in the medium-scale human detection index of accuracy. It is well
known that medium-scale human detection in daily and industrial scenarios is more widely
used. Moreover, compared with the best-performing ScaleNAS model, our number of
parameters is far smaller, and our FLOPS is only a quarter of that of the ScaleNAS. Overall,
the experimental results demonstrate that the study of the HRNet network structure still
has its significance.

As shown in Table 3, on the COCO2017 test-dev dataset, the accuracy indicators
of the proposed model all perform well. Compared with the Lite-HRNet method, with
Lite-HRNET-30 as the main backbone network, the indexes of AP, AP50, AP75, APM,
APL, and AR in this paper are 1.0%, 0.8%, 0.6%, 1.6%, 0.3%, and 1.6% higher, respectively.
The number of parameters is 3.2 M higher, and the calculation amount is 1.69 G higher.
Compared with the Hand-Crafted model, although the accuracy is slightly decreased, our
model only needs 5.0 M parameters, which is far less than the 34.0 M parameters of the
Hand-Crafted model.
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Table 2. Comparison of EL-HRNet with other lightweight human pose estimation models on the
COCO2017 validation set.

Method Backbone Input
Size #Params FLOPs AP (%) AP50 (%) AP75 (%) APM (%) APL (%) AR (%)

SimpleBaseline
[29] MobileNetV2 256 × 192 9.6 M 1.59 G 64.6 87.4 72.3 61.1 71.2 70.7

SimpleBaseline
[29] MobileNetV3 256 × 192 8.7 M 1.47 G 65.9 87.8 74.1 62.6 72.2 72.1

SimpleBaseline
[29] ShuffleNetV2 256 × 192 7.6 M 1.37 G 59.9 85.4 66.3 56.5 66.2 66.4

Lightweight
[30] MobileNetV3 256 × 192 3.1 M 0.58 G 65.8 87.7 74.1 62.6 72.4 72.1

ViPNAS [31] MobileNetV3 256 × 192 2.8 M 0.69 G 67.8 87.2 76.0 64.7 74.0 75.2
SmallHRNet

[32] HRNet-W16 256 × 192 1.3 M 0.54 G 55.2 83.7 62.4 52.3 61.0 62.1

Lite-HRNet
[32] Lite-HRNet-30 256 × 192 1.8 M 0.31 G 67.2 88.0 75.0 64.3 73.1 73.3

Lite-HRNet
[32] Lite-HRNet-18 256 × 192 1.1 M 0.20 G 64.8 86.7 73.0 62.1 70.5 71.2

ScaleNAS [34] ScaleNet-P2 256 × 192 35.6 M 8.0 G 75.2 90.4 82.4 71.6 81.9 80.4
Ours EL-HRNet-W32 256 × 192 5.0 M 2.00 G 67.1 86.4 74.2 65.3 72.0 74.9

Table 3. Comparison of the effects of EL-HRNet and other lightweight human pose estimation models
on the COCO2017 test set.

Method Backbone Input
Size #Params FLOPs AP (%) AP50 (%) AP75 (%) APM (%) APL (%) AR (%)

SimpleBaseline
[29] MobileNetV2 256 × 192 9.6 M 1.59 G 64.1 89.4 71.8 60.8 69.8 70.1

SimpleBaseline
[29] ShuffleNetV2 256 × 192 7.6 M 1.37 G 59.5 87.4 66.0 56.6 64.7 66.0

Lightweight
[30] MobileNetV3 256 × 192 3.1 M 0.58 G 65.3 89.7 73.4 62.6 70.4 71.3

Lite-HRNet
[32] Lite-HRNet-18 256 × 192 1.1 M 0.20 G 63.7 88.6 71.1 61.1 68.6 69.7

Lite-HRNet
[32] Lite-HRNet-30 256 × 192 1.8 M 0.31 G 66.7 88.9 74.9 63.9 71.9 72.7

Hand-Crafted
[29] SBL-50 256 × 192 34.0 M 8.90 G 70.0 90.9 77.9 66.8 75.8 75.6

Ours EL-HRNet-W32 256 × 192 5.0 M 2.00 G 67.7 89.7 75.5 65.5 72.2 74.4

3.2.2. MPII Dataset Validation Results

Table 4 shows the comparison between our method and several typical lightweight
human posture estimation methods on the MPII validation set. The input of all methods is
the same, and their backbone networks are different. The parameters, computation amount,
and PCKh@0.5 accuracy index are compared. Compared with the Lite-HRNet method with
the Lite-HRNet-30 backbone network, our method led to increases of 0.4%, 0.1%, 0.6%,
1.6%, 1.1%, 0.4%, and 0.9%, respectively, in the PCKh@0.5 indexes of the head, shoulder,
elbow, wrist, hip, knee, and ankle. The average PCKh@0.5mean increased by 0.7%, while
the number of parameters was only 3.2 M higher, and the computation amount was only
2.18 G higher. Compared with the Hourglass network model, our model performs better
in terms of the average accuracy and parameter number. The average PCKh@0.5mean
is increased by 0.2%, while the number of parameters is reduced by 20.1 M. Compared
to the best-performing Hourglass + U-Net model, our accuracy performance is not as
good, but the number of parameters is 26 M, while the number of our model parameters
is only 5.0 M, much lower than the 26 M of the Hourglass + U-Net model. Meanwhile,
our calculation quantity is only 2.66 G, which is much smaller than 33.5 G. Therefore, the
experimental results show that our proposed model has lower requirements for equipment
and computing power, has a higher computational cost, and is more suitable for peripheral
devices (e.g., robot control). The experimental results are compared with these models to
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prove the validity and rationality of the proposed model. In the future, we will continue
to optimize the structure of the model to reduce the number of parameters and improve
the precision.

Table 4. Comparison of the effects of EL-HRNet and other lightweight human pose estimation models
on the MPII validation set.

PCKh@0.5 (%)

Method Backbone #Params FLOPs Head Shoulder Elbow Wrist Hip Knee Ankle Mean

SimpleBaseline [29] MobileNetV2 9.6 M 2.12 G 95.3 93.5 85.8 78.5 85.9 79.3 74.4 85.4
SimpleBaseline [29] ShuffleNetV2 7.6 M 1.83 G 94.6 92.4 83.0 75.6 82.8 75.9 69.2 82.8

Lightweight [30] MobileNetV3 3.1 M 0.77 G 95.6 93.9 85.1 79.5 86.3 80.4 75.5 85.9
Lite-HRNet [32] Lite-HRNet-18 1.1 M 0.27 G 96.1 93.7 85.5 79.2 87.0 80.0 75.1 85.9
Lite-HRNet [32] Lite-HRNet-30 1.8 M 0.42 G 96.3 94.7 87.0 80.6 87.1 82.0 77.0 87.0
Hourglass [33] Stacked Hourglass 25.1 M 19.1 M 96.5 95.3 88.4 82.5 87.1 83.5 78.3 87.5

Hourglass + U-Net [35] Hourglass + U-Net 26 M 33.5 G 98.6 97.0 93.0 89.2 91.7 88.9 86.0 92.4
Ours EL-HRNet-W32 5.0 M 2.66 G 96.7 94.8 87.6 82.2 88.2 82.4 77.9 87.7

For the SimpleBaseline model using the MobileNetV2 or ShuffleNetV2 backbone
network, our parameter number and accuracy are more advantageous. For the lightweight
model using the MobileNetV3 backbone network, the number of parameters is larger,
but the accuracy is higher. For the ViPNAS network, our model still has some room for
improvement. For the Hourglass model and the Hand-Crafted model, our parameter
numbers have great advantages. For the Lite-HRNet network model, which also adopts the
HRNet structure, the accuracy is greatly improved, although the number of parameters is
quite large. For the Hourglass + U-Net model and ScaleNAS model, with the best accuracy,
our number of parameters and computations greatly reduce the computational cost. These
comparative results illustrate the validity and rationality of our modified method. By
training, validating, and testing it on the COCO2017 dataset and MPII dataset, the EL-
HRNet model is demonstrated to have a good performance in human pose estimation tasks.

4. Conclusions

In this paper, a lightweight approach to human pose estimation is presented. Based on
the HRNet network, a lightweight and effective human pose estimation model, EL-HRNet,
is proposed. Firstly, the Basicblock module is lightweight; specifically, the number of
feature graph channels of the Basicblock input is dimensionally reduced by using two-
dimensional conventional convolution with a convolution kernel of 1 × 1. Then, the feature
graph obtained from dimensionality reduction is obtained by using grouping convolution
with a convolution kernel of 3 × 3, thus obtaining the lightweight module L-Basicblock.
The CBAM attention mechanism with less overhead is added to L-Basicblock to improve
the modeling ability of the channel information and spatial information. Finally, the
LA-Basicblock module is constructed. The EL-HRNet model in this paper maintains the
information interaction ability of the original network between different channels but
reduces the parameter complexity of the Basicblock model. At the same time, it uses an
attention mechanism with low computational cost to ensure the accuracy of pose estimation.
It is an effective, lightweight human pose estimation model. Although the model in this
paper achieves a balance between the complexity and accuracy of human pose estimation,
there is still much room for improvement in the accuracy index of the model. Due to
the demand for human pose estimation networks on mobile terminals, the number of
algorithm parameters and calculations should be considered when estimating the pose on
mobile terminals, so a lightweight and accurate model is required. Therefore, the use of the
pose estimation model on mobile terminals will be further studied in the future, and how
to further improve the prediction accuracy and real-time detection effect of the network
model will be studied.



Sensors 2024, 24, 396 14 of 15

Author Contributions: Conceptualization, R.L. and S.Y.; methodology, R.L., D.H. and S.Y.; software,
R.L., A.Y. and D.H.; validation, R.L., D.H. and S.Y.; formal analysis, X.Z., H.L. and D.H.; investigation,
A.Y. and D.H.; resources, R.L., X.Z. and H.L.; data curation, A.Y., D.H. and X.Z.; writing—original
draft preparation, R.L., S.Y., A.Y. and D.H.; writing—review and editing, A.Y., D.H., R.L. and S.Y.;
visualization, H.L. and X.Z.; supervision, R.L., H.L. and S.Y.; project administration, S.Y. and R.L.;
funding acquisition, R.L. and S.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Open Foundation of the National Key Laboratory of UAV
Special Technology (Grant No. 2022-JCJQ-LB-071) and the China Postdoctoral Science Foundation
(Grant No. 2022MD723841).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available because, in order to adapt it to our study,
we processed the dataset.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as potential conflicts of interest.

References
1. Zheng, C.; Wenhan, W.; Taojiannan, Y.; Sijie, Z.; Chen, C.; Ruixu, L.; Ju, S.; Nasser, K.; Mubarak, S. Deep Learning-Based Human

Pose Estimation: A Survey. Acm Comput. Surv. 2019, 56, 1–37. [CrossRef]
2. Dang, Q.; Yin, J.; Wang, B.; Zheng, W. Deep learning based 2D human pose estimation: A survey. Tsinghua Sci. Technol. 2019, 24,

663–676. [CrossRef]
3. Schmidtke, L.; Vlontzos, A.; Ellershaw, S.; Lukens, A.; Arichi, T.; Kainz, B. Unsupervised Human Pose Estimation through

Transforming Shape Templates. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Nashville, TN, USA, 20–25 June 2021; pp. 2484–2494.

4. Yang, Y.; Ramanan, D. Articulated pose estimation with flexible mixtures-of-parts. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011; pp. 1385–1392.

5. Gkioxari, G.; Arbeláez, P.; Bourdev, L.; Malik, J. Articulated pose estimation using discriminative armlet classifiers. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 3342–3349.

6. Toshev, A.; Szegedy, C. Deep Pose: Human Pose Estimation via Deep Neural Networks. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1653–1660.

7. Chen, Y.; Wang, Z.; Peng, Y.; Zhang, Z.; Yu, G.; Sun, J. Cascaded Pyramid Network for Multi-person Pose Estimation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 7103–7112.

8. Li, W.; Wang, Z.; Yin, B.; Peng, Q.; Du, Y.; Xiao, T.; Yu, G.; Lu, H.; Wei, Y.; Sun, J. Rethinking on multi-stage networks for human
pose estimation. arXiv 2019, arXiv:1901.00148.

9. Cai, Y.; Wang, Z.; Luo, Z.; Yin, B.; Du, A.; Wang, H.; Zhang, X.; Zhou, X.; Zhou, E.; Sun, J. Learning Delicate Local Representations
for Multi-person Pose Estimation. In Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK,
23–28 August 2020; Volume 12348, pp. 455–472.

10. Kan, Z.; Chen, S.; Li, Z.; He, Z. Self-Constrained Inference Optimization on Structural Groups for Human Pose Estimation. In
Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 729–745.

11. Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep High-Resolution Representation Learning for Human Pose EstimationIn. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp.
5686–5696.

12. Cheng, B.; Xiao, B.; Wang, J.; Shi, H.; Huang, T.S.; Zhang, L. Higher HRNet: Scale-Aware Representation Learning for Bottom-Up
Human Pose Estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA,
USA, 13–19 June 2020; pp. 5385–5394.

13. Yang, S.; Quan, Z.; Nie, M.; Yang, W. TransPose: Keypoint Localization via Transformer. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 11782–11792.

14. Xu, Y.; Zhang, J.; Zhang, Q.; Tao, D. Vitpose: Simple vision transformer baselines for human pose estimation. Adv. Neural Inf.
Process. Syst. 2022, 35, 38571–38584.

15. Wang, Y.; Li, M.; Cai, H.; Chen, W.; Han, S. Lite Pose: Efficient Architecture Design for 2D Human Pose Estimation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp.
13116–13126.

16. Groos, D.; Ramampiaro, H.; Ihlen, E.A. Efficient Pose: Scalable single-person pose estimation. Appl. Intell. 2020, 51, 2518–2533.
17. Li, Y. Human Pose Estimation Based on Lightweight Convolutional Neural Networks. In Proceedings of the 2022 China

Automation Congress, Xiamen, China, 25–27 November 2022; Volume 34, pp. 2937–2942.

https://doi.org/10.1145/3603618
https://doi.org/10.26599/TST.2018.9010100


Sensors 2024, 24, 396 15 of 15

18. Li, Q.; Zhang, Z.; Xiao, F.; Zhang, F.; Bhanu, B. Dite-HRNet: Dynamic Lightweight High-Resolution Network for Human Pose
Estimation. arXiv 2022, arXiv:2204.10762.

19. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

20. De Santana Correia, A.; Colombini, E.L. Attention, please! A survey of neural attention models in deep learning. Artif. Intell. Rev.
2022, 55, 6037–6124. [CrossRef]

21. Chaudhari, S.; Polatkan, G.; Ramanath, R.; Mithal, V. An attentive survey of attention models. ACM Trans. Intell. Syst. Technol.
2021, 12, 1–32. [CrossRef]

22. Liu, H.; Dai, Z.; So, D.; Le, Q. Pay attention to MLPs. Adv. Neural Inf. Process. Syst. 2021, 34, 9204–9215.
23. Zhuoran, S.; Mingyuan, Z.; Haiyu, Z.; Shuai, Y.; Hongsheng, L. Efficient Attention: Attention with Linear Complexities. In

Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Online, 5–9 January 2021.
24. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.
25. Li, X.; Wang, W.; Hu, X.; Yang, J. Selective Kernel Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 510–519.
26. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference

on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.
27. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L. Microsoft COCO: Common Objects in Context.

In Proceedings of the Computer Vision—ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; pp.
740–755.

28. Andriluka, M.; Pishchulin, L.; Gehler, P.; Schiele, B. 2D Human Pose Estimation: New Benchmark and State of the Art Analysis.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014.

29. Xiao, B.; Wu, H.; Wei, Y. Simple Baselines for Human Pose Estimation and Tracking. In Computer Vision—ECCV 2018, 15th
European Conference, Munich, Germany, September 8–14, 2018, Proceedings, Part VI; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2018; Volume 11210, pp. 472–487.

30. Li, S.; Xiang, X. Lightweight Human Pose Estimation Using Heatmap-Weighting Loss. arXiv 2022, arXiv:2205.10611.
31. Xu, L.; Guan, Y.; Jin, S.; Liu, W.; Qian, C.; Luo, P.; Ouyang, W.; Wang, X. ViPNAS: Efficient Video Pose Estimation via Neural

Architecture Search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN,
USA, 20–25 June 2021; pp. 16067–16076.

32. Yu, C.; Xiao, B.; Gao, C.; Yuan, L.; Zhang, L.; Sang, N.; Wang, J. Lite-HRNet: A Lightweight High-Resolution Network. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp.
10435–10445.

33. Newell, A.; Yang, K.; Deng, J. Stacked hourglass networks for human pose estimation. In Proceedings of the Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 483–499.

34. Cheng, H.P.; Liang, F.; Li, M.; Cheng, B.; Yan, F.; Li, H.; Chandra, V.; Chen, Y. Scalenas: One-shot learning of scale-aware
representations for visual recognition. arXiv 2020, arXiv:2011.14584.

35. Bulat, A.; Kossaifi, J.; Pantic, G.T.M. Toward fast and accurate human pose estimation via soft-gated skip connections. In
Proceedings of the 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), Buenos Aires,
Argentina, 16–20 November 2020; pp. 8–15.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10462-022-10148-x
https://doi.org/10.1145/3465055

	Introduction 
	Materials and Methods 
	HRNet Model 
	HRNet Model with the Introduction of a Lightweight Residual Module 
	Building the Lightweight Residual Module 
	Comparison of the Number of Parameters and Computations 

	EL-HRNet Model Incorporating CBAM Attention Mechanism 
	CBAM Attention Mechanism 
	EL-HRNet Model Incorporating Attention Mechanism 


	Experiment and Discussion 
	Dataset Introduction 
	COCO2017 
	MPII 

	Experimental Setup and Dataset Results 
	COCO2017 Dataset Validation and Test Results 
	MPII Dataset Validation Results 


	Conclusions 
	References

