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Abstract: Global warming is influenced by an increase in greenhouse gas (GHG) concentration in
the atmosphere. Consequently, Net Ecosystem Exchange (NEE) is the main factor that influences the
exchange of carbon (C) between the atmosphere and the soil. As a result, agricultural ecosystems
are a potential carbon dioxide (CO2) sink, particularly rice paddies (Oryza sativa). Therefore, a static
chamber with a portable CO2 analyzer was designed and implemented for three rice plots to monitor
CO2 emissions. Furthermore, a weather station was installed to record meteorological variables. The
vegetative, reproductive, and maturation phases of the crop lasted 95, 35, and 42 days post-sowing
(DPS), respectively. In total, the crop lasted 172 DPS. Diurnal NEE had the highest CO2 absorption
capacity at 10:00 a.m. for the tillering stage (82 and 89 DPS), floral primordium (102 DPS), panicle
initiation (111 DPS), and flowering (126 DPS). On the other hand, the maximum CO2 emission at
82, 111, and 126 DPS occurred at 6:00 p.m. At 89 and 102 DPS, it occurred at 4:00 and 6:00 a.m.,
respectively. NEE in the vegetative stage was −25 µmolCO2 m2 s−1, and in the reproductive stage,
it was −35 µmolCO2 m2 s−1, indicating the highest absorption capacity of the plots. The seasonal
dynamics of NEE were mainly controlled by the air temperature inside the chamber (Tc) (R = −0.69),
the relative humidity inside the chamber (RHc) (R = −0.66), and net radiation (Rn) (R = −0.75). These
results are similar to previous studies obtained via chromatographic analysis and eddy covariance
(EC), which suggests that the portable analyzer could be an alternative for CO2 monitoring.

Keywords: sensors; infrared detectors; camera trapping; crop monitoring; rice fields

1. Introduction

The increase in the concentration of carbon dioxide (CO2) in the atmosphere is one
of the main factors responsible for global warming. Currently, CO2 levels are at 419 ppm;
this represents 150% of the values in the 18th century [1]. This increase is mainly due to
anthropogenic activities such as intensive agriculture and changes in land use, among
others [2]. Rice (Oryza sativa) cultivation extends from tropical to temperate regions [3].
It is the second most important staple food in the world, with an annual production of
740 Mt [4]. It covers 114 countries and an area of 153 Mha in total, or 11% of the world’s
arable land [5]. In 2021, Peru produced 3.5 Mt of rice in an area of 417,000 ha [6]. Currently,
90% of rice production is obtained through flood irrigation [7], making it a significant source
of methane (CH4). Furthermore, nitrous oxide (N2O) is mainly generated by nitrification
and denitrification processes, which are closely related to soil moisture [8]. Both gases
represent approximately 30% and 11%, respectively, of global agricultural emissions [9].
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Net Ecosystem Exchange (NEE) is one of the main processes that influence CO2
concentration in the atmosphere. Agricultural ecosystems, particularly rice paddies, play a
crucial role in carbon absorption. Therefore, it is important to understand their function in
carbon (C) flux [10]. For example, Chatterjee et al. [11] monitored lowland paddy fields for
one year (dry and wet seasons) using eddy covariance (EC) to evaluate variations in NEE
and find a suitable model for the better partitioning of NEE with respect to its components,
such as gross primary production (GPP) and ecosystem respiration (Reco). Kumar et al. [12]
calculated NEE in rice and wheat systems in the northwest Indo-Gangetic plains. This was
the first estimation in a rice–wheat spring sequence using EC. Neogi et al. [13] investigated
the characterization of CO2 fluxes in tropical lowland rice paddy ecosystems using EC to
better understand the environmental impact in terms of C budget in submerged soil.

The land–atmosphere exchange of matter and energy is recorded using EC [14], widely
used given its solid theoretical basis. However, it is expensive, difficult to manipulate [15],
and susceptible to information gaps [16]. On the other hand, static chambers are used to
complement the deficiencies of EC. Nevertheless, they require long monitoring periods [17].
Additionally, the cost of chromatographic analysis for collected gases is high. In this regard,
infrared sensors represent an opportunity to solve these challenges. They utilize the non-
dispersive infrared (NDIR) principle to measure the concentration of CO2 instantly [18]. In
addition, they are easy to acquire, manipulate, and program. An automatic estimation and
sampling method based on sensors that can replace the conventional methods mentioned
and simultaneously increase the efficiency in estimating greenhouse gas (GHG) fluxes is
necessary [19].

In this research, a CO2 analyzer was designed together with a static chamber to
monitor diurnal and nocturnal NEE in rice fields. The objective was to establish a novel,
efficient, and dependable method of making resource management decisions for sustainable
agricultural practices in Peru.

2. Materials and Methods
2.1. Site Description

This research was carried out in the “Experimental Irrigation Area” (AER) on the
campus of the National Agrarian University La Molina (UNALM), La Molina District, Lima
Province, Lima Region (12◦04′41′′ S, 76◦56′45′′ W, altitude: 246 m) (Figure 1). During the
study, the maximum, minimum, and average temperatures were 32.3, 15.6, and 23.24 ◦C,
respectively. The maximum precipitation was 2.6 mm with an average relative humidity of
77%. The meteorological data were recorded using the automatic station VANTAGE Pro2
Davis, Hayward, CA, USA, located at the AER (Figure 2). In addition, the physicochemical
characteristics of the soil are detailed in Table 1.

Table 1. Physicochemical characteristics of the soil in the study area.

Variables Value
Texture Loam

σ
(
dS m−1) 0.37

pH 7.96
C.I.C

(
mEq 100 g−1

)
10.40

S.O.M. (%) 3.65
Apparent density

(
g cm−3) 1.318

Real density
(
g cm−3) 2.74

Porosity (%) 51.89
Field capacity

(
cm3 cm−3) 19.91

Wilting point
(
cm3 cm−3) 13.91

CaCO3 (%) 4.02
P (ppm) 72.4

K+ (ppm) 208
Total N (%) 0.21

σ = electric conductivity, pH = hydrogen potential, C.I.C = cation exchange capacity, S.O.M. = soil organic matter,
CaCO3 = calcium carbonate, P = phosphorus, K+ = potassium ion, Total N = total nitrogen.
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2.2. Design of Portable Analyzer for CO2 Monitoring

A portable analyzer was designed for CO2 monitoring (Figure 3a). Its components
are as follows: (a) MHZ19B CO2 sensor from Winsen Electronics; its detection range is
0 to 5000 ± 50 ppm. It operates at optimal Ta and RH conditions of 0 to 50 ◦C and 0 to
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90%, respectively. (b) DHT22 Ta and RH sensor from Aosong Electronics. Its measurement
range for Ta is −40 to 80 ± 0.5 ◦C, and for RH, it is 0 to 100 ± 2%. (c) Real-time clock
(RTC) module “DS3231” from MMJ Smart Electronics. (d) microSD memory module from
Deeoee Electronics. (e) 16 × 2 LED display from Yuxian Electronics. The Arduino DUE
board (g) and “Arduino IDE”, both from Arduino CC, were selected as the microcontroller
unit and coding system, respectively. The components were soldered onto a multipurpose
board (f) to ensure connection with the ARDUINO board. Then, the system was placed in
a plastic box measuring 150 × 110 × 80 mm3. The device was powered by a PHILLIPS
4000 (mAh) portable battery with 5 V of output. The operational analyzer is shown in
Figure 3b.
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2.3. Static Transparent Chamber Design

The monitoring system consisted of a static chamber and a portable CO2 analyzer
(Figure 4a). The chamber is made of transparent 2 mm thick transparent acrylic, whose
dimensions are 1 × 0.5 × 0.5 m3. The gas-mixing system consisted of a portable battery (e)
and 2 fans (f), both connected through a Universal Serial Bus (USB) port (g). In addition,
the metal base, with dimensions of 0.5 × 0.5 × 0.15 m3, has a 2 mm thick slot. This was
installed 6 cm below the soil surface before transplanting permanently. In addition, the
analyzer is attached to one of the side faces using a support (h). The finished device is
shown in Figure 4b.
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2.4. Field Management

Three ponds of 3 × 4 × 0.6 m3 were installed and lined with geomembrane (Figure 5a,b).
The seedbed was prepared on 11 November 2022 and transplanted 35 days post-sowing
(DPS). The distribution was five rice seedlings per hill, spaced 20 cm × 20 cm each. The
vegetative, reproductive, and maturation phases lasted 95, 35, and 42 DPS, respectively.
In total, the crop lasted 172 DPS (Figure 5c). The water regime maintained soil moisture
between saturation and a 5 cm depth. Irrigation water came from the Rimac River and was
stored in a 25 m3 tank. Its physicochemical characteristics are described in Table 2. The
NPK fertilization dose was 230-60-90. In total, 100% of P and K and 50% of N were applied
during transplanting. The remaining N was distributed during tillering, floral primordium,
and flowering (Figure 5d). The nitrogen sources were urea, diammonium phosphate (DAP),
and “Basacote plus 3M”.
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Table 2. Physicochemical characteristics of water.

Variables Value

pH 8.2
σ
(
dS m−1) 0.67

Ca2+
(

meq L−1
)

4.38

Mg2+
(

meq L−1
)

0.68

Na+
(

meq L−1
)

1.76

K+
(

meq L−1
)

0.17

Cl−1
(

meq L−1
)

1.57

CO3
2−

(
meq L−1

)
0.10

HCO3
2−

(
meq L−1

)
3.01

SO4
2−

(
meq L−1

)
2.13

pH = hydrogen potential, σ = electric conductivity, Ca2+ = calcium ion, Mg2+ = magnesium ion, Na+ = sodium ion,
K+ = potassium ion, Cl−1 = chloride ion, CO3

2− = carbonate ion, HCO3
2− = bicarbonate, ion SO4

2− = sulfate ion.

2.5. Sensor Calibration

The MHZ19B sensor was calibrated with an automatic reference of 400 ppm by the
manufacturer [20]. The DHT22 sensor was calibrated by relating its readings to the hourly
data obtained by the automatic weather station for 24 h (Figure 6).
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Ta is air temperature, Ts is the air temperature reading by the sensor, RH is relative
humidity, and RHs is the relative humidity reading by the sensor.

2.6. Monitoring and Data Collection

Diurnal CO2 monitoring in rice plots begins at tillering, the stage of maximum leaf
growth. There were 5 days that lasted 24 h each and were carried out simultaneously in
the three plots. The preparatory phase began with the attachment of the static camera
to the metal base. Then, a water seal was made on the coupling to prevent gas leakage.
The analyzer was then placed and turned on in the chamber so that the CO2, Ta, and RH
readings stabilized for 30 min. Monitoring per se began with closing the chamber and
turning on the fans during the first 30 min of each hour. The opposite action was carried
out during the remaining 30 min.
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2.7. Data Processing

Emission fluxes were calculated based on CO2 concentration changes (ppm min−1).
Firstly, linear regression analysis was performed on 30 data [21,22]. Secondly, the CO2
emission flux (µmol m−2 d−1) was calculated with Equations (1)–(3).

Flux(CO2) = K × S (1)

K =
86400 × P

106 × R × Tc
× V

A
(2)

S =
∆C
∆t

(3)

where K is the accumulation factor of the chamber (mol min ppm−1 m−2 d−1); S is the
rate of change in CO2 concentration (ppm min−1); P is barometric pressure (mbar); R
is the ideal gas constant, 0.0831451 (bar L K−1 mol−1); Tc is the temperature inside the
chamber (K); V is the net volume of the chamber (m3); and A is the net area of the chamber
entrance (m2).

Thirdly, the Michaelis–Menten rectangular hyperbola model was used to calculate
NEE [23]. The equation used was (4).

NEE =
(PPFD ×−Pmax)

Km + PPFD
− Reco (4)

where NEE is the net CO2 flux of the rice ecosystem
(
µmolCO2 m−2 s−1), PPFD is the

photosynthetic photon flux density
(
µmolphotons m−2 s−1), Pmax is the maximum pho-

tosynthetic rate, Km is an adjustment constant, and Reco is the respiration rate of the rice
ecosystems

(
µmolCO2 m−2 s−1). For this, PPFD, Pmax, and Km data from Yang et al. [21]

were used. The daily NEE for each phenological stage is the average of the fluxes from
three analyzers. To verify the normality of the data, the Anderson–Darling test was used,
which turned out to be non-parametric. Spearman correlation (R) was performed between
the environmental variables, NEE, and Reco. Additionally, the Mann–Whitney U test was
applied to assess significant differences between the results, at a significance level of 5%.

3. Results
3.1. Diurnal Variations in NEE

Figure 7 shows the diurnal behavior of NEE in the rice plots. The positive and
negative signs indicate the net emission and absorption of CO2, respectively. The maximum
CO2 emission at 89 and 102 DPS was at 4:00 and 6:00 a.m., whose values are 0.361 and
0.318 µmolCO2 m2 s−1. At 82, 111, and 126 DPS, it was at 18:00 with values of 0.68, 1, and
0.22 µmolCO2 m2 s−1. On the other hand, the maximum CO2 assimilation occurred at
10:00 a.m., with values of −9.51, −9.25, −13.63, −12.9, and −12.5 µmolCO2 m2 s−1 for 82,
89, 102, 111, and 126 DPS, respectively.

The total NEE was higher during the tillering stage on average (82 and 89 DPS),
with −25.07 µmolCO2 m2 s−1 on average. In floral primordium (102 DPS), it reached
the minimum at −36.14 µmolCO2 m2 s−1. Then, it progressively increased during the
spindle stage (111 DPS) at −34.98 µmolCO2 m2 s−1 and the flowering stage (126 DPS) at
−33.83 µmolCO2 m2 s−1. Likewise, the seasonal variations in NEE in the vegetative and
reproductive phases were −25.07 and −34.98 µmolCO2 m2 s−1, respectively (Table 3).
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Hour
PPFD

Yang et al. [20]
DPS

82 89 102 111 126

0 10 −0.061 ± 0.09 0.143 ± 0.25 −0.034 ± 0.17 0.081 ± 0.19 −0.084 ± 0.15
2 10 −0.069 ± 0.05 0.309 ± 0.29 −0.041 ± 0.05 0.194 ± 0.25 −0.065 ± 0.19
4 10 −0.041 ± 0.12 0.361 ± 0.39 −0.036 ± 0.04 0.313 ± 0.47 0.059 ± 0.4
6 10 −0.064 ± 0.03 0.171 ± 0.21 0.318 ± 0.3 0.290 ± 0.47 0.097 ± 0.5
8 200 −4.148 ± 0.17 −3.860 ± 0.54 −4.997 ± 0.59 −5.550 ± 0.36 −5.021 ± 0.28
10 600 −9.511 ± 0.08 −9.245 ± 0.54 −13.626 ± 0.54 −12.901 ± 1.52 −12.489 ± 1.12
12 400 −6.555 ± 0.53 −6.777 ± 0.91 −8.829 ± 1.29 −9.720 ± 0.32 −8.468 ± 0.35
14 300 −4.710 ± 0.9 −5.141 ± 0.63 −7.336 ± 0.48 −7.202 ± 0.36 −6.330 ± 0.28
16 100 −0.928 ± 0.24 −1.233 ± 0.77 −2.123 ± 0.73 −1.881 ± 0.69 −1.899 ± 0.8
18 10 0.686 ± 0.89 - 0.171 ± 0.21 1.003 ± 0.6 0.218 ± 0.42
20 10 0.015 ± 0.18 0.280 ± 0.28 0.110 ± 0.09 0.069 ± 0.21 0.074 ± 0.28
22 10 −0.014 ± 0.04 0.247 ± 0.21 0.282 ± 0.24 0.321 ± 0.52 0.069 ± 0.3

3.2. NEE Response to Environmental Factors

The results of the Anderson–Darling test verified the non-normality of the data, except
for Ts. Then, the correlations between the environmental factors, Reco, and NEE were
analyzed. Coefficients close to 1 and −1 indicate strong positive and negative correlations,
respectively (Figure 8). NEE was positively and significantly correlated with RHc (R = 0.66,
p < 0.05) and Ts (R = 0.26, p < 0.05). Furthermore, it showed a highly significant negative
correlation with Rn (R = −0.75, p < 0.05) and Tc (R = −0.69, p < 0.05). On the other hand,
Reco was highly positively associated with Tc (R = 0.7, p < 0.05) and Rn (R = 0.73, p < 0.05).
In addition, it showed a significant negative correlation with RHc (R = −0.55, p < 0.05) and
Ts (R = −0.4, p < 0.05).
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4. Discussion
4.1. Diurnal Variation in NEE

The NEE values during the study are represented in Figure 7. They are positive at
night and negative during the day. This behavior is consistent with the results obtained
by Bhattacharyya et al. [24], McMillan et al. [25], and Zhang et al. [26]. During daylight
hours, the ecosystem functioned as a carbon dioxide (CO2) sink, with higher levels of
absorption through photosynthesis compared with emissions through respiratory processes.
However, during the nighttime, the ecosystem acted as a source of CO2, primarily because
of Reco [27,28]. In the absence of sunlight, NEE is, on average, 58 times lower than the
results of Yang et al. [21] and Bhattacharyya et al. [29]. This decrease can be attributed
to the higher levels of RHc during the same period (Figure 9d). As a result, the sensor
did not perform at its optimal level. In contrast to portable analyzer technology, the EC
methodology used in the aforementioned studies employed open-path NDIR gas analyzers
such as the LI-7200, LI-7500, and EC-150. These are specifically designed to measure fluxes
in CO2, water vapor, and energy below the canopy. Therefore, their prices are excessively
higher compare with a portable analyzer. In this study, the “MHZ19B” NDIR sensor was
used, which differs in application, precision, and price. However, if optimal operating
conditions are guaranteed, the sensor has a high potential for accuracy and practicality.
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On the other hand, total NEE during the vegetative phase (−25.2 µmolCO2 m2 s−1) was
1.4 times lower than the minimum during the reproductive phase (−35 µmolCO2 m2 s−1).
Similarly, the maximum diurnal NEE during the reproductive stage (−13 µmolCO2 m2 s−1)
was 1.4 times higher than during the vegetative stage (−9.4 µmolCO2 m2 s−1). This is
consistent with Yang et al. [21], who determined that the maximum absorption during the
vegetative and maturation phase was approximately 1.5 times lower than in the reproduc-
tive phase. In the vegetative phase, CO2 assimilation is limited because the plant is in the
growth stage (Figure 10a,b). In the reproductive stage, complete development is observed,
leading to maximum absorption. In the maturation stage, senescent leaves fall and add
organic matter to the soil. Additionally, the plots are drained in preparation for the harvest
phase. These two processes gradually increase CO2 emissions until the crop is harvested
(Figure 10c,d). This behavior is similar to the results of Chen et al. [30].
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4.2. NEE, Reco, and Their Interactions with Environmental Variables

The results for Reco showed a strong positive correlation with Tc and Rn. It is worth
noting that these variables are strongly and positively related (R2 = 0.84). According to
previous studies, Tc is an important factor in CO2 emissions from agricultural ecosys-
tems [30,31]; the same applies to Rn. As Rn and Tc intensify throughout the day, root and
microbial activity emits CO2 into the atmosphere. The maximum Reco occurs at 12:00
p.m. Nevertheless, photosynthetic activity is higher than Reco. In comparison with Bao
et al. [27], it was observed that Reco had a weak negative correlation with Ts, possibly
influenced by soil texture, ecosystem type, and water regime. In contrast, the seasonal
variation in NEE was negatively related to Tc and Rn. Rn plays a crucial role as the primary
energy source for plant metabolism. Consequently, when there is an increase in available
energy, plants will absorb more CO2 (Figure 9c). These findings line up with the research
conducted by Liu et al. [31].

Regarding Tc, the results are consistent with those of Bhattacharyya et al. [29] and
Morales [32]. They found an inverse relationship between temperature and CO2 assim-
ilation after surpassing 34 ◦C. This is because the rubisco enzyme, which is essential in
CO2 fixation, is susceptible to thermal stress. Thus, the temperature inside the chamber
exceeded this threshold at 82 DPS between 10:00 a.m. and 3:00 p.m. This may be a factor in
why NEE is at its maximum throughout the season. Additionally, between 2:00 p.m. and
6:00 p.m., there is a 3.9-fold increase in CO2 emissions (Figure 9a). There is a weak positive
correlation between NEE and Ts. Ts, in turn, has a weak negative correlation with Tc. This
partially agrees with Liu et al. [31], as they did find a significantly high effect between Tc
and Ts.

4.3. Comparison with Previous Studies

Information about the environmental and field management conditions from other
authors is summarized in Table 4, as they influence CO2 absorption (Chen et al. [30] and Li
et al. [33]).

Table 4. Main environmental characteristics of the studies involved.

Site Köppen–Geiger Climate
Classification Field Management Soil Texture Reference

Cuttack, India Tropical savanna
(Aw)

Flood irrigation.
Water depth: 8 cm. Sandy clay loam Chatterjee et al. [11]

Delhi, India Warm semiarid
(Bsh) Conventional puddling. Loam Kumar et al. [12]

Cuttack, India Tropical savanna
(Aw)

Flood irrigation.
Water depth: 7–10 cm. Sandy clay loam Neogi et al. [13]

Lima, Peru Hot desert
(Bwh)

Conventional puddling.
Water depth: 5 cm. Loam -

The results (Figure 11, Tables A1–A4) indicate a lower capacity for CO2 absorption
than Chatterjee et al. [11], Kumar et al. [12], and Neogi et al. [13]; possibly influenced by
climatic conditions. The study was under the conditions of a hot desert (Bwh) climate
because of the permanent presence of the South Pacific anticyclone in northern Chile. On
the other hand, Chatterjee et al. [11] and Neogi et al. [13] carried out their studies at the
ICAR—National Rice Research Institute (NRRI) in India; they recorded climatic conditions
typical of the tropical savanna type (Aw). For their part, Kumar et al. [12] at the Indian
Agricultural Research Institute (IARI) in Dehli, India, were under hot semiarid climate
conditions (Bsh).
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Regarding pp during the rice season, a total of 13.4 mm was recorded, despite the
influence of the cyclone “Yaku,” which coincided with 111 and 126 DPS (Figure 2d). In
comparison with Chatterjee et al. [11] and Neogi et al. [13], whose average annual pp was
1500 mm. 75 and 80% was happened between June and September. Kumar et al. [12],
whose studies were carried out in Delhi, recorded 1198 mm during the kharif season
for rice cultivation when most of the rains occur from July to September because of the
southwest monsoon.

Regarding Tc, it ranged from 21.82 to 33.9 ◦C on average. On the other hand, Ts
fluctuated between 24.95 and 25.51 ◦C on average. This study was carried out in the
months of February to May during the summer season when the cold phase of the El Niño
Southern Oscillation (ENSO) is also influential. Chatterjee et al. [11] recorded average
annual maximum and minimum temperatures of 39.2 and 22.5 ◦C. Kumar et al. [12]
recorded Ta and Ts values between 31.8 to 38.2 ◦C and 27.7 to 28.9 ◦C, respectively. Neogi
et al. [13] recorded a progressive increase in temperature as the vegetative cycle of rice
continued. From the vegetative stage to harvest, the average temperatures were 23.6 to
33.5 ◦C, respectively.

However, there were variations in the irrigation techniques used. This study had
a maximum water depth of 5 cm during the entire study period. Chatterjee et al. [11]
used a higher water regime in three units. Kumar et al. [12] irrigated their crops only
when the moisture content fell below the saturation level. In turn, the irrigation regime
of Neogi et al. [13] resulted in a sheet of 7–10 cm. According to Yang et al. [22], NEE is
sensitive to field management strategies, with water management being one of the most
important factors. In addition, soil CO2 emissions decrease when flooded with water, as
this reduces the diffusivity of the upper layer of soil [34]. These anoxic conditions decrease
soil biological activity, as mentioned by Bao et al. [27] and Liu et al. [31]. The result obtained
from the Mann–Whitney U test shows that the NEE values did not present a significant
difference between the analyzed studies (p > 0.05). Therefore, the CO2 analyzer generally
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performed optimally throughout the 24 h of monitoring and throughout the entire study
period. However, more research is needed to consider it a reference method (Table 5).

Table 5. Mann–Whitney U test for the values obtained compared with Chatterjee et al. [11], Kumar
et al. [12], and Neogi et al. [13]. “**” indicates that there is no significant difference at the 0.05 level
(p ≥ 0.05).

References
Tillering Floral Primordium Spindle State Bloom

82 DPS 89 DDS 102 DPS 111 DPS 126 DPS

Chatterjee et al. [11] 96 ** 98 ** 99 ** 88 ** 90 **
Kumar et al. [12] 83 ** 85 ** 75 ** 76 ** 89 **
Neogi et al. [13] 87 ** 88 ** 89 ** 96 ** 94 **

4.4. Portable Analyzer Performance

The MHZ19B sensor has a response time of less than 60 s, so the analyzer was pro-
grammed with a response time of one minute to perform a better analysis. On the other
hand, open-path analyzers such as LI—7500A and LI—7550 have selectable response times
of 0.1, 0.05, and 0.0025 s [35]. In addition, a regression analysis was performed between NEE
fluxes calculated from data collected with the portable analyzer and NEE fluxes calculated
using EC by Chatterjee et al. [11], Kumar et al. [12], and Neogi et al. [13]. The determination
coefficients have values of 0.661, 0.7873, and 0.5943, respectively (Figure 12). These values
can be improved if an additional calibration method is taken into consideration and by
improving the Tc and RHc conditions. Furthermore, the sensitivity of the sensors is also
an important factor to consider since the MHZ19B has a sensitivity of ±50 ppm compared
with LI—7500A, with ±0.11 ppm [35].
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5. Conclusions

A static chamber with a portable CO2 analyzer was designed and implemented. It is
an economical, simple, and effective alternative to traditional NEE calculation methods. It
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is a useful tool for making decisions about resource management in agricultural practice
in Peru. Rice plots acted as a CO2 sink from 6:00 a.m. to 6:00 p.m. and as a CO2 source
during the remaining period. The minimum NEE values at 82, 89, 102, 111, and 126 DPS
were −9.51, −9.25, −13.63, −12.9, and −12.5 µmolCO2 m2 s−1; the maximum NEE values
for the same dates were 0.68, 0.36, 0.32, 1, and 0.22 µmolCO2 m2 s−1, respectively.

The total seasonal NEE values were −25.2 and −34.98 µmolCO2 m2 s−1 for the growth
and reproductive stages, respectively. This represents a difference of 1.4 times between the
mentioned stages. On the other hand, NEE was mainly influenced by Rn (R = −0.75), Tc
(R = −0.69), and RHc (R = 0.66). NEE was negative throughout the rice growth period,
demonstrating that the rice field acted as a net CO2 sink. The results did not show a
significant difference compared with previous studies, indicating the optimal performance
of the analyzer. Furthermore, differences in CO2 absorption can primarily be attributed to
the type of crop, irrigation management, and climatic and soil conditions. These results are
similar to previous studies obtained via chromatographic analysis and eddy covariance
(EC), which suggests that the portable analyzer could be an alternative for CO2 monitoring.
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Appendix A

Table A1. Comparison of the diurnal variation in NEE (µmolCO2 m2 s−1) in tillering.

Hour
PPFD

Yang et al. [21]
DPS References

82 89 Chatterjee et al. [11] Kumar et al. [12] Neogi et al. [13]

0 10 −0.061 ± 0.09 0.143 ± 0.25 3.439 1.84 2.459
2 10 −0.069 ± 0.05 0.309 ± 0.29 1.186 1.58 2.295
4 10 −0.041 ± 0.12 0.361 ± 0.39 0.593 2.91 2.459
6 10 −0.064 ± 0.03 0.171 ± 0.21 0.356 0.53 2.787
8 200 −4.148 ± 0.17 −3.860 ± 0.54 −1.660 −5.55 −4.754
10 600 −9.511 ± 0.08 −9.245 ± 0.54 −4.387 −7.93 −13.607
12 400 −6.555 ± 0.53 −6.777 ± 0.91 −6.759 −7.14 −18.852
14 300 −4.710 ± 0.9 −5.141 ± 0.63 −5.929 −7.40 −20.164
16 100 −0.928 ± 0.24 −1.233 ± 0.77 −2.016 −4.36 −7.213
18 10 0.686 ± 0.89 - 1.660 −0.66 1.967
20 10 0.015 ± 0.18 0.280 ± 0.28 2.253 0.40 2.459
22 10 −0.014 ± 0.04 0.247 ± 0.21 0.711 2.51 2.623
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Table A2. Comparison of the diurnal variation in NEE (µmolCO2 m2 s−1) in floral primordium.

Hour
PPFD

Yang et al. [21]
DPS References

102 Chatterjee et al. [11] Kumar et al. [12] Neogi et al. [13]

0 10 −0.034 ± 0.17 0.891 2.03 2.956
2 10 −0.041 ± 0.05 1.040 1.50 3.103
4 10 −0.036 ± 0.04 1.040 1.76 2.808
6 10 0.318 ± 0.3 0.149 1.24 2.956
8 200 −4.997 ± 0.59 −0.446 −9.68 −6.059
10 600 −13.626 ± 0.54 −5.792 −14.55 −15.517
12 400 −8.829 ± 1.29 −7.129 −13.23 −21.872
14 300 −7.336 ± 0.48 −6.238 −13.10 −22.611
16 100 −2.123 ± 0.73 −2.673 −8.23 −7.833
18 10 0.171 ± 0.21 1.782 −1.00 2.069
20 10 0.110 ± 0.09 1.485 −1.39 3.103
22 10 0.282 ± 0.24 1.634 3.60 3.103

Table A3. Comparison of the diurnal variation in NEE (µmolCO2 m2 s−1) in spindle state.

Hour
PPFD

Yang et al. [21]
DPS References

111 Chatterjee et al. [11] Kumar et al. [12] Neogi et al. [13]

0 10 0.081 ± 0.19 3.939 3.15 0.891
2 10 0.194 ± 0.25 3.788 3.28 1.040
4 10 0.313 ± 0.47 3.788 3.41 1.040
6 10 0.290 ± 0.47 2.727 3.41 0.149
8 200 −5.550 ± 0.36 −7.576 −14.14 −0.446
10 600 −12.901 ± 1.52 −18.333 −23.23 −5.792
12 400 −9.720 ± 0.32 −25.000 −24.75 −7.129
14 300 −7.202 ± 0.36 −20.000 −20.58 −6.238
16 100 −1.881 ± 0.69 −7.424 −11.36 −2.673
18 10 1.003 ± 0.6 3.636 −6.82 1.782
20 10 0.069 ± 0.21 4.394 2.65 1.485
22 10 0.321 ± 0.52 4.091 3.79 1.634

Table A4. Comparison of the diurnal variation in NEE (µmolCO2 m2 s−1) in bloom.

Hour
PPFD

Yang et al. [21]
DPS References

126 Chatterjee et al. [11] Kumar et al. [12] Neogi et al. [13]

0 10 −0.084 ± 0.15 3.750 2.82 2.513
2 10 −0.065 ± 0.19 3.750 2.69 2.932
4 10 0.059 ± 0.4 3.913 3.19 2.513
6 10 0.097 ± 0.5 3.098 2.44 1.675
8 200 −5.021 ± 0.28 −4.402 −10.26 −8.796
10 600 −12.489 ± 1.12 −13.207 −19.43 −8.168
12 400 −8.468 ± 0.35 −18.261 −19.69 −8.586
14 300 −6.330 ± 0.28 −17.446 −18.43 −8.168
16 100 −1.899 ± 0.8 −6.848 −2.84 −3.560
18 10 0.218 ± 0.42 1.793 3.44 1.885
20 10 0.074 ± 0.28 3.750 3.82 2.304
22 10 0.069 ± 0.3 3.587 1.06 2.094
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