Flicker Noise in Resistive Gas Sensors—Measurement Setups and Applications for Enhanced Gas Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Resistive Gas Sensors
2.2. Mechanisms and Intensity of Low-Frequency Noise in Selected 2D Materials
2.3. Low-Frequency Noise Measurement Setups
2.4. Monitoring of Gas Exposure Conditions
3. Results
3.1. Noise Power Spectral Densities of Selected Materials
3.2. Classification Algorithms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamazoe, N.; Shimanoe, K. New perspectives of gas sensor technology. Sens. Actuators B 2009, 138, 100–107. [Google Scholar] [CrossRef]
- Galstyan, V.; Moumen, A.; Kumarage, G.W.; Comini, E. Progress towards chemical gas sensors: Nanowires and 2D semiconductors. Sens. Actuators B 2022, 357, 131466. [Google Scholar] [CrossRef]
- Llobet, E. Gas sensors using carbon nanomaterials: A review. Sens. Actuators B 2013, 179, 32–45. [Google Scholar] [CrossRef]
- Zakrzewska, K. Mixed oxides as gas sensors. Thin Solid Film 2001, 391, 229–238. [Google Scholar] [CrossRef]
- Nadargi, D.Y.; Umar, A.; Nadargi, J.D.; Lokare, S.A.; Akbar, S.; Mulla, I.S.; Suryavanshi, S.S.; Bhandari, N.L.; Chaskar, M.G. Gas sensors and factors influencing sensing mechanism with a special focus on MOS sensors. J. Mater. Sci. 2023, 58, 559–582. [Google Scholar] [CrossRef]
- Dziedzic, A.; Kolek, A.; Licznerski, B.W. Noise and nonlinearity of gas sensors–preliminary results. In Proceedings of the 22nd International Spring Seminar on Electronics Technology, Dresden-Freital, Germany, 18–20 May 1999. [Google Scholar]
- Kish, L.B.; Vajtai, R.; Granqvist, C.G. Extracting information from noise spectra of chemical sensors: Single sensor electronic noses and tongues. Sens. Actuators B 2000, 71, 55–59. [Google Scholar] [CrossRef]
- Ederth, J.; Smulko, J.M.; Kish, L.B.; Heszler, P.; Granqvist, C.G. Comparison of classical and fluctuation-enhanced gas sensing with PdxWO3 nanoparticle films. Sens. Actuators B 2006, 113, 310–315. [Google Scholar] [CrossRef]
- Shin, W.; Hong, S.; Jeong, Y.; Jung, G.; Park, J.; Kim, D.; Choi, K.; Shin, H.; Koo, R.-H.; Kim, J.-J.; et al. Low-frequency noise in gas sensors: A review. Sens. Actuators B 2023, 383, 133551. [Google Scholar] [CrossRef]
- Ayhan, B.; Kwan, C.; Zhou, J.; Kish, L.B.; Benkstein, K.D.; Rogers, P.H.; Semancik, S. Fluctuation enhanced sensing (FES) with a nanostructured, semiconducting metal oxide film for gas detection and classification. Sens. Actuators B 2013, 188, 651–660. [Google Scholar] [CrossRef]
- Yu, X.; Kish, L.B.; Seguin, J.L.; King, M.D. Ternary Fingerprints with Reference Odor for Fluctuation-Enhanced Sensing. Biosensors 2020, 10, 93. [Google Scholar] [CrossRef]
- Kotarski, M.M.; Smulko, J.M. Hazardous gases detection by fluctuation-enhanced gas sensing. Fluct. Noise Lett. 2010, 9, 359–371. [Google Scholar] [CrossRef]
- Hooge, F.N. 1/ƒ noise is no surface effect. Phys. Lett. A 1969, 29, 139–140. [Google Scholar] [CrossRef]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef] [PubMed]
- Balandin, A.A. Low-frequency 1/f noise in graphene devices. Nat. Nanotechnol. 2013, 8, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Drozdowska, K.; Rehman, A.; Sai, P.; Stonio, B.; Krajewska, A.; Dub, M.; Kacperski, J.; Cywiński, G.; Haras, M.; Rumyantsev, S.; et al. Organic vapor sensing mechanisms by large-area graphene back-gated field-effect transistors under UV irradiation. ACS Sens. 2022, 7, 3094–3101. [Google Scholar] [CrossRef] [PubMed]
- Degler, D.; Weimar, U.; Barsan, N. Current understanding of the fundamental mechanisms of doped and loaded semiconducting metal-oxide-based gas sensing materials. ACS Sens. 2019, 4, 2228–2249. [Google Scholar] [CrossRef] [PubMed]
- Jain, K.; Pant, R.P.; Lakshmikumar, S.T. Effect of Ni doping on thick film SnO2 gas sensor. Sens. Actuators B 2006, 113, 823–829. [Google Scholar] [CrossRef]
- Bouchikhi, B.; Chludziński, T.; Saidi, T.; Smulko, J.; El Bari, N.; Wen, H.; Ionescu, R. Formaldehyde detection with chemical gas sensors based on WO3 nanowires decorated with metal nanoparticles under dark conditions and UV light irradiation. Sens. Actuators B 2020, 320, 128331. [Google Scholar] [CrossRef]
- Arul, C.; Moulaee, K.; Donato, N.; Iannazzo, D.; Lavanya, N.; Neri, G.; Sekar, C. Temperature modulated Cu-MOF based gas sensor with dual selectivity to acetone and NO2 at low operating temperatures. Sens. Actuators B 2021, 329, 129053. [Google Scholar] [CrossRef]
- Majhi, S.M.; Mirzaei, A.; Navale, S.; Kim, H.W.; Kim, S.S. Boosting the sensing properties of resistive-based gas sensors by irradiation techniques: A review. Nanoscale 2021, 13, 4728–4757. [Google Scholar] [CrossRef]
- Kim, J.H.; Mirzaei, A.; Sakaguchi, I.; Hishita, S.; Ohsawa, T.; Suzuki, T.T.; Kim, S.S.; Saito, N. Decoration of Pt/Pd bimetallic nanoparticles on Ru-implanted WS2 nanosheets for acetone sensing studies. Appl. Surf. Sci. 2023, 641, 158478. [Google Scholar] [CrossRef]
- Duan, X.; Jiang, Y.; Liu, B.; Duan, Z.; Zhang, Y.; Yuan, Z.; Tai, H. Enhancing the carbon dioxide sensing performance of LaFeO3 by Co doping. Sens. Actuators B 2023, 402, 135136. [Google Scholar] [CrossRef]
- Stankova, M.; Vilanova, X.; Calderer, J.; Llobet, E.; Brezmes, J.; Gràcia, I.; Cané, C.; Correig, X. Sensitivity and selectivity improvement of rf sputtered WO3 microhotplate gas sensors. Sens. Actuators B 2006, 113, 241–248. [Google Scholar] [CrossRef]
- Ionescu, R.; Espinosa, E.H.; Leghrib, R.; Felten, A.; Pireaux, J.J.; Erni, R.; Van Tendeloo, G.; Bittencourt, C.; Cañellas, N.; Llobet, E. Novel hybrid materials for gas sensing applications made of metal-decorated MWCNTs dispersed on nanoparticle metal oxides. Sens. Actuators B 2008, 131, 174–182. [Google Scholar] [CrossRef]
- Welearegay, T.G.; Diouani, M.F.; Österlund, L.; Ionescu, F.; Belgacem, K.; Smadhi, H.; Khaled, S.; Kidar, A.; Cindemir, U.; Laouini, D.; et al. Ligand-capped ultrapure metal nanoparticle sensors for the detection of cutaneous leishmaniasis disease in exhaled breath. ACS Sens. 2018, 3, 2532–2540. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, L.; Yang, Y.; Huang, Q.; Li, D.; Zeng, D. A review on two-dimensional materials for chemiresistive-and FET-type gas sensors. Phys. Chem. Chem. Phys. 2021, 23, 15420–15439. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ma, T.; Pinna, N.; Zhang, J. Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 2017, 27, 1702168. [Google Scholar] [CrossRef]
- Li, T.; Yin, W.; Gao, S.; Sun, Y.; Xu, P.; Wu, S.; Kong, H.; Yang, G.; Wei, G. The combination of two-dimensional nanomaterials with metal oxide nanoparticles for gas sensors: A review. Nanomaterials 2022, 12, 982. [Google Scholar] [CrossRef]
- Samnakay, R.; Jiang, C.; Rumyantsev, S.L.; Shur, M.S.; Balandin, A.A. Selective chemical vapor sensing with few-layer MoS2 thin-film transistors: Comparison with graphene devices. Appl. Phys. Lett. 2015, 106, 023115. [Google Scholar] [CrossRef]
- Lee, K.; Cho, I.; Kang, M.; Jeong, J.; Choi, M.; Young Woo, K.; Yoon, K.-J.; Cho, Y.-H.; Park, I. Ultra-low-power e-nose system based on multi-micro-led-integrated, nanostructured gas sensors and deep learning. ACS Nano 2022, 17, 539–551. [Google Scholar] [CrossRef]
- Jaeschke, C.; Glöckler, J.; El Azizi, O.; Padilla, M.; Mitrovics, J.; Mizaikoff, B. An innovative modular eNose system based on a unique combination of analog and digital metal oxide sensors. ACS Sens. 2019, 4, 2277–2281. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Wu, Y.; Hua, Z.; Lu, N.; Sun, W.; Zhang, J.; Fan, S. Humidity compensation based on power-law response for MOS sensors to VOCs. Sens. Actuators B 2021, 334, 129601. [Google Scholar] [CrossRef]
- Aurora, A. Algorithmic correction of MOS gas sensor for ambient temperature and relative humidity fluctuations. IEEE Sens. J. 2022, 22, 15054–15061. [Google Scholar] [CrossRef]
- Bhattacharyya, P. Fabrication strategies and measurement techniques for performance improvement of graphene/graphene derivative based FET gas sensor devices: A review. IEEE Sens. J. 2021, 21, 10231–10240. [Google Scholar] [CrossRef]
- Hayasaka, T.; Lin, A.; Copa, V.C.; Lopez, L.P.; Loberternos, R.A.; Ida, L.; Ballesteros, M.; Kubota, Y.; Liu, Y.; Salvador, A.A.; et al. An electronic nose using a single graphene FET and machine learning for water, methanol, and ethanol. Microsyst. Nanoeng. 2020, 6, 50. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Wang, Q.; Wallace, R.M.; Gong, C. Understanding and optimization of graphene gas sensors. Appl. Phys. Lett. 2021, 119, 013104. [Google Scholar] [CrossRef]
- Noyce, S.G.; Doherty, J.L.; Zauscher, S.; Franklin, A.D. Understanding and mapping sensitivity in MoS2 field-effect-transistor-based sensors. ACS Nano 2020, 14, 11637–11647. [Google Scholar] [CrossRef]
- Kim, T.; Lee, T.H.; Park, S.Y.; Eom, T.H.; Cho, I.; Kim, Y.; Kim, C.; Lee, S.A.; Suh, J.M.; Hwang, I.-S.; et al. Drastic gas sensing selectivity in 2-dimensional MoS2 nanoflakes by noble metal decoration. ACS Nano 2023, 17, 4404–4413. [Google Scholar] [CrossRef]
- Smulko, J.; Drozdowska, K.; Rehman, A.; Welearegay, T.; Österlund, L.; Rumyantsev, S.; Cywiński, G.; Stonio, B.; Krajewska, A.; Filipiak, M.; et al. Low-frequency noise in Au-decorated graphene–Si Schottky barrier diode at selected ambient gases. Appl. Phys. Lett. 2023, 122, 211901. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Q.; Cui, T. Ultra-sensitive suspended graphene nanocomposite cancer sensors with strong suppression of electrical noise. Biosens. Bioelectron. 2012, 31, 105–109. [Google Scholar] [CrossRef]
- Elkamel, B.; Hamdaoui, N.; Mezni, A.; Ajjel, R.; Beji, L. Effects of plasmon resonance on the low-frequency noise and optoelectronic properties of Au/Cu codoped ZnO based photodetectors. Opt. Quantum Electron. 2023, 55, 148. [Google Scholar] [CrossRef]
- Varghese, S.S.; Lonkar, S.; Singh, K.K.; Swaminathan, S.; Abdala, A. Recent advances in graphene based gas sensors. Sens. Actuators B 2015, 218, 160–183. [Google Scholar] [CrossRef]
- Loh, H.A.; Graves, A.R.; Stinespring, C.D.; Sierros, K.A. Direct ink writing of graphene-based solutions for gas sensing. ACS Appl. Nano Mater. 2019, 2, 4104–4112. [Google Scholar] [CrossRef]
- Smulko, J.; Chludziński, T.; Çindemir, U.; Granqvist, C.G.; Wen, H. UV light-modulated fluctuation-enhanced gas sensing by layers of graphene flakes/TiO2 nanoparticles. J. Sens. 2020, 2020, 5890402. [Google Scholar] [CrossRef]
- Yi, J.; Lee, J.M.; Park, W.I. Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors. Sens. Actuators B 2011, 155, 264–269. [Google Scholar] [CrossRef]
- Kooti, M.; Keshtkar, S.; Askarieh, M.; Rashidi, A. Progress toward a novel methane gas sensor based on SnO2 nanorods-nanoporous graphene hybrid. Sens. Actuators B 2019, 281, 96–106. [Google Scholar] [CrossRef]
- Yu, X.; Lin, D.; Li, P.; Su, Z. Recent advances in the synthesis and energy applications of TiO2-graphene nanohybrids. Sol. Energy Mater. Sol. Cells 2017, 172, 252–269. [Google Scholar] [CrossRef]
- Rumyantsev, S.; Liu, G.; Stillman, W.; Shur, M.; Balandin, A.A. Electrical and noise characteristics of graphene field-effect transistors: Ambient effects, noise sources and physical mechanisms. J. Phys. Condens. Matter 2010, 22, 395302. [Google Scholar] [CrossRef]
- Xu, G.; Torres, C.M.; Zhang, Y.; Liu, F.; Song, E.B.; Wang, M.; Zhou, Y.; Zeng, C.; Wang, K.L. Effect of spatial charge inhomogeneity on 1/f noise behavior in graphene. Nano Lett. 2010, 10, 3312–3317. [Google Scholar] [CrossRef]
- Drozdowska, K.; Rumyantsev, S.; Smulko, J.; Kwiatkowski, A.; Sai, P.; Prystawko, P.; Krajewska, A.; Cywiński, G. The effects of gas exposure on the graphene/AlGaN/GaN heterostructure under UV irradiation. Sens. Actuators B 2023, 381, 133430. [Google Scholar] [CrossRef]
- Kumar, R.; Zheng, W.; Liu, X.; Zhang, J.; Kumar, M. MoS2-based nanomaterials for room-temperature gas sensors. Adv. Mater. Technol. 2020, 5, 1901062. [Google Scholar] [CrossRef]
- Park, J.; Mun, J.; Shin, J.S.; Kang, S.W. Highly sensitive two-dimensional MoS2 gas sensor decorated with Pt nanoparticles. R. Soc. Open Sci. 2018, 5, 181462. [Google Scholar] [CrossRef] [PubMed]
- Annanouch, F.E.; Alagh, A.; Umek, P.; Casanova-Chafer, J.; Bittencourt, C.; Llobet, E. Controlled growth of 3D assemblies of edge enriched multilayer MoS2 nanosheets for dually selective NH3 and NO2 gas sensors. J. Mater. Chem. C 2022, 10, 11027–11039. [Google Scholar] [CrossRef]
- Reddeppa, M.; Park, B.G.; Murali, G.; Choi, S.H.; Chinh, N.D.; Kim, D.; Yang, W.; Kim, M.-D. NOx gas sensors based on layer-transferred n-MoS2/p-GaN heterojunction at room temperature: Study of UV light illuminations and humidity. Sens. Actuators B 2020, 308, 127700. [Google Scholar] [CrossRef]
- Pham, T.; Li, G.; Bekyarova, E.; Itkis, M.E.; Mulchandani, A. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 2019, 13, 3196–3205. [Google Scholar] [CrossRef] [PubMed]
- Renteria, J.; Samnakay, R.; Rumyantsev, S.L.; Jiang, C.; Goli, P.; Shur, M.S.; Balandin, A.A. Low-frequency 1/f noise in MoS2 transistors: Relative contributions of the channel and contacts. Appl. Phys. Lett. 2014, 104, 153104. [Google Scholar] [CrossRef]
- Pal, A.N.; Ghatak, S.; Kochat, V.; Sneha, E.S.; Sampathkumar, A.; Raghavan, S.; Ghosh, A. Microscopic mechanism of 1/f noise in graphene: Role of energy band dispersion. ACS Nano 2011, 5, 2075–2081. [Google Scholar] [CrossRef]
- Kaverzin, A.A.; Mayorov, A.S.; Shytov, A.; Horsell, D.W. Impurities as a source of 1/f noise in graphene. Phys. Rev. B 2012, 85, 075435. [Google Scholar] [CrossRef]
- Rumyantsev, S.L.; Shur, M.S.; Liu, G.; Balandin, A.A. Low frequency noise in 2D materials: Graphene and MoS2. In Proceedings of the International Conference on Noise and Fluctuations (ICNF), Vilnius, Lithuania, 20–23 June 2017. [Google Scholar]
- Rehman, A.; Notario, J.A.D.; Sanchez, J.S.; Meziani, Y.M.; Cywiński, G.; Knap, W.; Balandin, A.A.; Levinshtein, M.; Rumyantsev, S. Nature of the 1/f noise in graphene—Direct evidence for the mobility fluctuation mechanism. Nanoscale 2022, 14, 7242–7249. [Google Scholar] [CrossRef]
- Kwon, H.J.; Kang, H.; Jang, J.; Kim, S.; Grigoropoulos, C.P. Analysis of flicker noise in two-dimensional multilayer MoS2 transistors. Appl. Phys. Lett. 2014, 104, 083110. [Google Scholar] [CrossRef]
- Xie, X.; Sarkar, D.; Liu, W.; Kang, J.; Marinov, O.; Deen, M.J.; Banerjee, K. Low-frequency noise in bilayer MoS2 transistor. ACS Nano 2014, 8, 5633–5640. [Google Scholar] [CrossRef] [PubMed]
- Stolyarov, M.A.; Liu, G.; Rumyantsev, S.L.; Shur, M.; Balandin, A.A. Suppression of 1/f noise in near-ballistic h-BN-graphene-h-BN heterostructure field-effect transistors. Appl. Phys. Lett. 2015, 107, 023106. [Google Scholar] [CrossRef]
- McWorther, A.L. 1/f noise and germanium surface properties. In Semiconductor Surface Physics; Kingston, R.H., Ed.; University of Pennsylvania: Philadelphia, PA, USA, 1957; pp. 207–228. [Google Scholar]
- Rumyantsev, S.L.; Jiang, C.; Samnakay, R.; Shur, M.S.; Balandin, A.A. 1/f noise characteristics of MoS2 thin-film transistors: Comparison of single and multilayer structures. IEEE Electron Dev. Lett. 2015, 36, 517–519. [Google Scholar] [CrossRef]
- Scandurra, G.; Ciofi, C.; Smulko, J.; Wen, H. A review of design approaches for the implementation of low-frequency noise measurement systems. Rev. Sci. Instrum. 2022, 93, 111101. [Google Scholar] [CrossRef]
- Kwiatkowski, A.; Chludziński, T.; Smulko, J. Portable exhaled breath analyzer employing fluctuation-enhanced gas sensing method in resistive gas sensors. Metrol. Meas. Syst. 2018, 25, 551–560. [Google Scholar] [CrossRef]
- Williams, J.; Owen, T. Performance verification of low noise, low dropout regulators. Analog. Circuit Des. 2011, 83, 250–266. [Google Scholar]
- Morita, G. Noise sources in low dropout (LDO) regulators. Analog. Devices 2011, AN-1120, 1–12. [Google Scholar]
- Scandurra, G.; Cannatà, G.; Giusi, G.; Ciofi, C. Programmable, very low noise current source. Rev. Sci. Instrum. 2014, 85, 125109. [Google Scholar] [CrossRef]
- Talukdar, D.; Chakraborty, R.K.; Bose, S.; Bardhan, K.K. Low noise constant current source for bias dependent noise measurements. Rev. Sci. Instrum. 2011, 82, 013906. [Google Scholar] [CrossRef]
- Routoure, J.-M.; Wu, S.; Barone, C.; Méchin, L.; Guillet, B. A low-noise and quasi-ideal DC current source dedicated to four-probe low-frequency noise measurements. IEEE Trans. Instrum. Meas. 2020, 69, 194–200. [Google Scholar] [CrossRef]
- Ivanov, V.E.; Chye, E.U. Simple programmable voltage reference for low frequency noise measurements. J. Phys. Conf. Ser. 2018, 1015, 052011. [Google Scholar] [CrossRef]
- Scandurra, G.; Giusi, G.; Ciofi, C. A very low noise, high accuracy, programmable voltage source for low frequency noise measurements. Rev. Sci. Instrum. 2014, 85, 044702. [Google Scholar] [CrossRef] [PubMed]
- Harrison, L.T. Current Sources and Voltage References; Elsevier: Oxford, UK, 2005; p. 137. [Google Scholar]
- Scandurra, G.; Cannatà, G.; Giusi, G.; Ciofi, C. Applications of integrated solar cells in low noise instrumentation. In Proceedings of the 22nd International Conference on Noise and Fluctuations (ICNF), Montpellier, France, 24–28 June 2013. [Google Scholar]
- Scandurra, G.; Ciofi, C. R–βR ladder networks for the design of high-accuracy static analog memories. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2003, 50, 605–612. [Google Scholar] [CrossRef]
- Scandurra, G.; Ciofi, C.; Giusi, G.; Castano, M.; Cannata, G. Design and Realization of High-Accuracy Static Analog Memories (SAMs) Using Low-Cost DA Converters. IEEE Trans. Instrum. Meas. 2006, 55, 2275–2280. [Google Scholar] [CrossRef]
- Scandurra, G.; Ciofi, C. Supercapacitors in bias systems for low frequency noise measurements. In Proceedings of the 21st International Conference on Noise and Fluctuations (ICNF), Toronto, ON, Canada, 12–16 June 2011. [Google Scholar]
- Achtenberg, K.; Mikołajczyk, J.; Ciofi, C.; Scandurra, G.; Bielecki, Z. Low-noise programmable voltage source. Electronics 2020, 9, 1245. [Google Scholar] [CrossRef]
- Texas Instruments OPAx140 Datasheet. Available online: https://www.interfet.com/jfet-datasheets/jfet-if3601-interfet.pdf (accessed on 29 October 2023).
- Levinzon, F.A. Ultra-low-noise high-input impedance amplifier for low-frequency measurement applications. IEEE Trans. Circuits Syst. 2008, I55, 1815–1822. [Google Scholar] [CrossRef]
- Neri, B.; Pellegrini, B.; Saletti, R. Ultra low-noise preamplifier for low-frequency noise measurements in electron devices. IEEE Trans. Instrum. Meas. 1991, 40, 2–6. [Google Scholar] [CrossRef]
- Cannatà, G.; Scandurra, G.; Ciofi, C. An ultra low noise preamplifier for low frequency noise measurements. Rev. Sci. Instr. 2009, 80, 114702. [Google Scholar] [CrossRef]
- Giusi, G.; Cannatà, G.; Scandurra, G.; Ciofi, C. Ultra-low-noise large-bandwidth transimpedance amplifier. Wiley Int. J. Circ. Theor. Appl. 2015, 43, 1455–1473. [Google Scholar] [CrossRef]
- Ciofi, C.; Crupi, F.; Pace, C.; Scandurra, G.; Patanè, M. A new circuit topology for the realization of very low-noise wide-bandwidth transimpedance amplifier. IEEE Trans. Instrum. Meas. 2007, 56, 1626–1631. [Google Scholar] [CrossRef]
- Ferrari, G.; Sampietro, M. Wide bandwidth transimpedance amplifier for extremely high sensitivity continuous measurements. Rev. Sci. Instrum. 2007, 78, 094703. [Google Scholar] [CrossRef] [PubMed]
- Ciofi, C.; Scandurra, G.; Merlino, R.; Cannatà, G.; Giusi, G. A new correlation method for high sensitivity current noise measurement. Rev. Sci. Instrum. 2007, 78, 114702. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, G.; Sampietro, M. Correlation spectrum analyzer for direct measurement of device current noise. Rev. Sci. Instrum. 2002, 73, 2717–2723. [Google Scholar] [CrossRef]
- Serrano-Finetti, E.; Pallas-Areny, R. Noise reduction in AC-coupled amplifiers. IEEE Trans. Instrum. Meas. 2014, 63, 1834–1841. [Google Scholar] [CrossRef]
- Scandurra, G.; Cannatà, G.; Giusi, G.; Ciofi, C. A new approach to DC removal in high gain, low noise voltage amplifiers. In Proceedings of the 24th International Conference on Noise and Fluctuations (ICNF), Vilnius, Lithuania, 20–23 June 2017. [Google Scholar]
- Scandurra, G.; Achtenberg, K.; Bielecki, Z.; Mikołajczyk, J.; Ciofi, C. On the use of supercapacitors for DC blocking in transformer-coupled voltage amplifiers for low-frequency noise measurements. Electronics 2022, 11, 2011. [Google Scholar] [CrossRef]
- Scaringelli, F.P.; O’Keeffe, A.E.; Rosenberg, E.; Bell, J.P. Preparation of known concentrations of gases and vapors with permeation devices calibrated gravimetrically. Anal. Chem. 1970, 42, 871–876. [Google Scholar] [CrossRef]
- Veldscholte, L.B.; de Beer, S. OpenHumidistat: Humidity-controlled experiments for everyone. HardwareX 2022, 11, e00288. [Google Scholar] [CrossRef]
- Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef]
- Macku, R.; Smulko, J.; Koktavy, P.; Trawka, M.; Sedlak, P. Analytical fluctuation enhanced sensing by resistive gas sensors. Sens. Actuators B 2015, 213, 390–396. [Google Scholar] [CrossRef]
- Chang, H.C.; Kish, L.B.; King, M.D.; Kwan, C. Fluctuation-enhanced sensing of bacterium odors. Sens. Actuators B 2009, 142, 429–434. [Google Scholar] [CrossRef]
- Gomri, S.; Contaret, T.; Seguin, J.-L. A new gases identifying method with MOX gas sensors using noise spectroscopy. IEEE Sens. J. 2018, 16, 6489–6496. [Google Scholar] [CrossRef]
- Gutierrez-Osuna, R. Pattern analysis for machine olfaction: A review. IEEE Sens. J. 2002, 2, 189–202. [Google Scholar] [CrossRef]
- Chen, H.; Huo, D.; Zhang, J. Gas recognition in E-nose system: A review. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 169–184. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Hwang, J.; Park, H.D.; Choi, J.H.; Lee, J.S. Classifying Gas Data Measured Under Multiple Conditions Using Deep Learning. IEEE Access 2022, 10, 68138–68150. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, S.; Zhou, Y.; Hu, J. Several ML Algorithms and Their Feature Vector Design for Gas Discrimination and Concentration Measurement with an Ultrasonically Catalyzed MOX Sensor. ACS Sens. 2023, 8, 665–672. [Google Scholar] [CrossRef]
- Giovannini, G.; Haick, H.; Garoli, D. Detecting COVID-19 from breath: A game changer for a big challenge. ACS Sens. 2021, 6, 1408–1417. [Google Scholar] [CrossRef]
- Morati, N.; Contaret, T.; Gomri, S.; Fiorido, T.; Seguin, J.-L.; Bendahan, M. Noise spectroscopy data analysis-based gas identification with a single MOX sensor. Sens. Actuators B 2021, 334, 129654. [Google Scholar] [CrossRef]
- Smulko, J.M.; Ionescu, R.; Granqvist, C.G.; Kish, L.B. Determination of gas mixture components using fluctuation enhanced sensing and the LS-SVM regression algorithm. Metrol. Meas. Syst. 2015, 22, 341–350. [Google Scholar] [CrossRef]
- Krivetskiy, V.; Malkov, I.; Garshev, A.; Mordvinova, N.; Lebedev, O.I.; Dolenko, S.; Efitorov, A.; Grigoriev, T.; Rumyantseva, M.; Gaskov, A. Chemically modified nanocrystalline SnO2-based materials for nitrogen-containing gases detection using gas sensor array. J. Alloys Compd. 2017, 691, 514–523. [Google Scholar] [CrossRef]
- Yaqoob, U.; Younis, M.I. Chemical gas sensors: Recent developments, challenges, and the potential of machine learning—A review. Sensors 2021, 21, 2877. [Google Scholar] [CrossRef]
- Djeziri, M.A.; Djedidi, O.; Morati, N.; Seguin, J.-L.; Bendahan, M.; Contaret, T. A temporal-based SVM approach for the detection and identification of pollutant gases in a gas mixture. Appl. Intell. 2022, 52, 6065–6078. [Google Scholar] [CrossRef]
- Feng, S.; Farha, F.; Li, Q.; Wan, Y.; Xu, Y.; Zhang, T.; Ning, H. Review on smart gas sensing technology. Sensors 2019, 19, 3760. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, Z.; Song, Z.; Ye, W.; Fan, Z. Smart gas sensor arrays powered by artificial intelligence. J. Semicond. 2019, 40, 111601. [Google Scholar] [CrossRef]
- Cheng, L.; Meng, Q.H.; Lilienthal, A.J.; Qi, P.F. Development of compact electronic noses: A review. Meas. Sci. Technol. 2021, 32, 062002. [Google Scholar] [CrossRef]
- Gou, J.; Ma, H.; Ou, W.; Zeng, S.; Rao, Y.; Yang, H. A generalized mean distance-based k-nearest neighbor classifier. Expert Syst. Appl. 2019, 115, 356–372. [Google Scholar] [CrossRef]
- Maczák, B.; Vadai, G.; Dér, A.; Szendi, I.; Gingl, Z. Detailed analysis and comparison of different activity metrics. PLoS ONE 2021, 16, e0261718. [Google Scholar] [CrossRef] [PubMed]
- Jun-Hua, L.; Zhong-Ru, S. Drift reduction of gas sensor by wavelet and principal component analysis. Sens. Actuators B 2003, 96, 354–363. [Google Scholar] [CrossRef]
- Ziyatdinov, A.; Marco, S.; Chaudry, A.; Persaud, K.; Caminal, P.; Perera, A. Drift compensation of gas sensor array data by common principal component analysis. Sens. Actuators B 2010, 146, 460–465. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; He, Z.; Liu, J.; Deng, P.; Zhou, X. Anti-drift in E-nose: A subspace projection approach with drift reduction. Sens. Actuators B 2017, 253, 407–417. [Google Scholar] [CrossRef]
- Lentka, Ł.; Kotarski, M.; Smulko, J.; Cindemir, U.; Topalian, Z.; Granqvist, C.G.; Calavia, R.; Ionescu, R. Fluctuation-enhanced sensing with organically functionalized gold nanoparticle gas sensors targeting biomedical applications. Talanta 2016, 160, 9–14. [Google Scholar] [CrossRef]
- Moore, W.J. Statistical studies of 1/f noise from carbon resistors. J. Appl. Phys. 1974, 45, 1896–1901. [Google Scholar] [CrossRef]
- Mingesz, R.; Gingl, Z.; Makra, P. Level-crossing time statistics of Gaussian 1/fª noises. In Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems; SPIE: Bellingham, WA, USA, 2003; Volume 5110, pp. 312–319. [Google Scholar]
- Graff, G.; Graff, B.; Pilarczyk, P.; Jabłoński, G.; Gąsecki, D.; Narkiewicz, K. Persistent homology as a new method of the assessment of heart rate variability. PLoS ONE 2021, 16, e0253851. [Google Scholar] [CrossRef] [PubMed]
- Rich, A. Shielding and guarding. Analog. Dialogue 1983, 17, 8–13. [Google Scholar]
- Ma, D.; Lu, J.; Fang, X.; Dou, Y.; Wang, K.; Gao, Y.; Li, S.; Han, B. A novel low-noise Mu-metal magnetic shield with winding shape. Sens. Actuators A 2022, 346, 113884. [Google Scholar] [CrossRef]
- YSHIELD Magnetic Field Shielding Cobalt Foil. Available online: https://www.yshield.com/en/magnetic-field/ (accessed on 29 October 2023).
- Zhang, Y.; Jiang, Y.; Yuan, Z.; Liu, B.; Zhao, Q.; Huang, Q.; Li, Z.; Zeng, W.; Duan, Z.; Tai, H. Synergistic effect of electron scattering and space charge transfer enabled unprecedented room temperature NO2 sensing response of SnO2. Small 2023, 19, 2370406. [Google Scholar] [CrossRef]
- Zhang, D.; Yu, S.; Wang, X.; Huang, J.; Pan, W.; Zhang, J.; Meteku, B.E.; Zeng, J. UV illumination-enhanced ultrasensitive ammonia gas sensor based on (001) TiO2/MXene heterostructure for food spoilage detection. J. Hazard. Mater. 2022, 423, 127160. [Google Scholar] [CrossRef]
- Chizhov, A.; Kutukov, P.; Gulin, A.; Astafiev, A.; Rumyantseva, M. UV-activated NO2 gas sensing by nanocrystalline ZnO: Mechanistic insights from mass spectrometry investigations. Chemosensors 2022, 10, 147. [Google Scholar] [CrossRef]
Algorithm Name | Limitations and Strengths |
---|---|
Principal Component Analysis (PCA) | Popular, efficient for linear data, and less for long vector data [108]. |
Support Vector Machine (SVM) | Efficient for high dimensional data, including non-linear relation, requires more complicated computing and selection of kernel function with the adjusted parameters [106,110]. |
k-Nearest Neighbor (k-NN) | The method is gaining popularity as it combines ease of application with the ability to solve non-linear problems. Popular for mixed gases detection [112,113]. |
Artificial Neural Networks (ANN) | Accurate methods require adjusting the number of network layers. Easily computed using low-cost hardware. Numerous versions of ANN exist and can be applied [101,112]. These methods have the potential to become widespread. |
Level crossing statistics | Operates on the recorded noise time series, easily realized with comparators and with low computation cost [114]. It can be applied for flicker noise with non-normal distribution. |
Fingerprint methods in PSD analysis | Utilizes bandwidths and local slope of PSD [97,109,110]. It requires simple computing but can be used for the FES method only. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smulko, J.; Scandurra, G.; Drozdowska, K.; Kwiatkowski, A.; Ciofi, C.; Wen, H. Flicker Noise in Resistive Gas Sensors—Measurement Setups and Applications for Enhanced Gas Sensing. Sensors 2024, 24, 405. https://doi.org/10.3390/s24020405
Smulko J, Scandurra G, Drozdowska K, Kwiatkowski A, Ciofi C, Wen H. Flicker Noise in Resistive Gas Sensors—Measurement Setups and Applications for Enhanced Gas Sensing. Sensors. 2024; 24(2):405. https://doi.org/10.3390/s24020405
Chicago/Turabian StyleSmulko, Janusz, Graziella Scandurra, Katarzyna Drozdowska, Andrzej Kwiatkowski, Carmine Ciofi, and He Wen. 2024. "Flicker Noise in Resistive Gas Sensors—Measurement Setups and Applications for Enhanced Gas Sensing" Sensors 24, no. 2: 405. https://doi.org/10.3390/s24020405
APA StyleSmulko, J., Scandurra, G., Drozdowska, K., Kwiatkowski, A., Ciofi, C., & Wen, H. (2024). Flicker Noise in Resistive Gas Sensors—Measurement Setups and Applications for Enhanced Gas Sensing. Sensors, 24(2), 405. https://doi.org/10.3390/s24020405