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Abstract: Regular inspection of the insulator operating status is essential to ensure the safe and stable
operation of the power system. Unmanned aerial vehicle (UAV) inspection has played an important
role in transmission line inspection, replacing former manual inspection. With the development of
deep learning technologies, deep learning-based insulator defect detection methods have drawn
more and more attention and gained great improvement. However, former insulator defect detection
methods mostly focus on designing complex refined network architecture, which will increase
inference complexity in real applications. In this paper, we propose a novel efficient cross-modality
insulator augmentation algorithm for multi-domain insulator defect detection to mimic real complex
scenarios. It also alleviates the overfitting problem without adding the inference resources. The
high-resolution insulator cross-modality translation (HICT) module is designed to generate multi-
modality insulator images with rich texture information to eliminate the adverse effects of existing
modality discrepancy. We propose the multi-domain insulator multi-scale spatial augmentation
(MMA) module to simultaneously augment multi-domain insulator images with different spatial
scales and leverage these fused images and location information to help the target model locate
defects with various scales more accurately. Experimental results prove that the proposed cross-
modality insulator augmentation algorithm can achieve superior performance in public UPID and
SFID insulator defect datasets. Moreover, the proposed algorithm also gives a new perspective for
improving insulator defect detection precision without adding inference resources, which is of great
significance for advancing the detection of transmission lines.

Keywords: transmission line inspection; insulator defect detection; unmanned aerial vehicle (UAV);
deep learning

1. Introduction

The safe and stable operation of the power grid has a significant impact on social
production and daily life, and ensuring the stable operation of the power system is
an important prerequisite for power transmission. The three major channels of west-
to-east power transmission implemented by the state grid connect the electricity of five
provinces tightly through high-voltage transmission lines. The abundant energy in west-
ern provinces is converted into electrical energy resources and then transmitted to the
power-scarce eastern coastal areas through high-voltage transmission lines, improving the
power grid’s disaster resistance and reduction capabilities. Insulators are an indispensable
component in transmission lines that support the line and provide insulation, among other
functions. The most commonly used insulators for transmission lines on the power grid are
glass disk-type suspension insulators and composite insulators (also known as synthetic
insulators). Insulators are subjected to long-term load operation in transmission lines and
are greatly affected by natural factors and climate. Insulating materials are highly suscepti-
ble to environmental and material aging, resulting in varying degrees of damage. When
insulators have self-explosion defects, if they are not handled in a timely manner, they may

Sensors 2024, 24, 428. https://doi.org/10.3390/s24020428 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24020428
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0009-5963-1767
https://orcid.org/0000-0002-9996-711X
https://doi.org/10.3390/s24020428
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24020428?type=check_update&version=1


Sensors 2024, 24, 428 2 of 15

lead to insulator fractures, impacting insulators such as towers, affecting the reliability
of transmission lines, and even causing widespread power outages in the power grid,
resulting in significant economic losses [1]. Therefore, the timely detection and accurate
positioning of the status of insulator defects [2–5] are important means to ensure the normal
operation of transmission lines.

The traditional manual inspection model has low work efficiency, and the surrounding
area of high-voltage transmission lines has harsh environmental conditions and inconve-
nient transportation, which requires a large risk and cannot fully meet the needs of China’s
intelligent power grid construction. With the rapid development of smart grids, as well as
the widespread use of computers and intelligent devices, the inspection model using power
vision technology for visual processing and analysis of transmission lines has gradually
become mainstream [6,7]. Therefore, as a low-cost, short-cycle, and highly maneuverable
inspection method, drones are receiving increasing attention in power transmission line
inspection [8–10]. By processing the images of transmission lines obtained through un-
manned aerial vehicle (UAV) inspection, it is possible to accurately detect hidden dangers
in transmission lines, reduce the incidence of accidents, and improve the reliability of the
power grid operating environment [11–13]. Processing and analyzing images captured by
UAVs can effectively detect the positions of electrical components and provide technical
support for autonomous inspections of transmission line components using UAVs, the au-
tonomous navigation of UAVs, the automatic focusing of cameras, and defect identification.
However, UAV inspections inevitably generate a massive amount of inspection images. To
further improve the automation level of transmission line inspection, it is necessary to study
the recognition and defect detection algorithms for electrical equipment in aerial photos of
the UAVs. In [14], a summary of popular deep learning-based insulator defect detection
methods is provided. Many effective detection methods are tested on self-built datasets,
making replication work complex and limiting the applicability of models, resulting in poor
generalization ability. Insulator defect detection models trained on public datasets perform
well only on the dataset mentioned in the literature. These datasets have a single-image
scale. When the input image size significantly differs from the training image size, the
model no longer has a high recognition rate, and its robustness is poor. The datasets used
for training only consider good detection results under clear weather conditions and ignore
the impact of weather changes on the detection model accuracy in real-world scenarios.

In this paper, we summarize the current status of insulator defect detection tasks
based on unmanned aerial vehicles (UAVs) inspection in recent years and propose that
there are problems of insufficient detection capability of multi-domain insulators based
on visual inspection and missed detection in multi-scale long-range vision. Therefore,
we propose a novel efficient cross-modality insulator augmentation algorithm for multi-
domain insulator defect detection, which simulates real complex scenarios to compensate
for the shortcomings of existing datasets and insulator defect recognition. The algorithm
considers multiple perspectives across real-world scenarios in multiple domains, improving
the model’s robustness and generalization ability without increasing inference resources.

The main contributions of our paper can be summarized as follows:

1. We explore a novel cross-modality insulator augmentation for a multi-domain insula-
tor defect detection task, which gives a new perspective to improve insulator defect
detection precision even in diverse weather conditions.

2. The high-resolution insulator cross-modality translation (HICT) module is designed
to generate multiple modality insulator images with diverse weather conditions (e.g.,
snowy, foggy weather), which can retain rich texture information with high resolution
to increase data diversity to mimic real scenarios.

3. The multi-domain insulator multi-scale spatial augmentation (MMA) module is pro-
posed to augment hybrid domain insulator images by fusing both images and bound-
ing boxes in different spatial scales. It can help the detection model locate multi-scale
defects more accurately.
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4. Experimental results on several public insulator defect datasets (UPID and SFID
dataset) illustrate the superior performance of the proposed method compared with
comparison methods.

The remainder of this article is organized as follows. Section 2 provides a brief
overview of the current state of insulator defect detection and system frameworks. In
Section 3, we describe in detail the high-resolution insulator cross-modality translation
(HICT) model and multi-domain insulator multi-scale spatial augmentation (MMA) model.
Section 4 presents experimental results and analysis. Conclusions are drawn in Section 5.

2. Related Work

In the real world, insulators operate outdoors for long periods of time, and weather
changes have a significant impact on the operation of transmission line insulators. There-
fore, it is very important to conduct drone inspections of insulators promptly [6]. However,
due to the confidentiality of power data, there are issues such as the small quantity and
imbalance of insulator defect data in the insulator defect detection model, which cannot
produce satisfactory results. Data augmentation, as a key technology in image recognition
deep learning tasks, can effectively alleviate the data scarcity scenario in insulator defect
detection tasks. Liu et al. [15] used noise addition and image rotation to change the style
of the original image. Wei et al. [16] extended the images of insulator defects through
flipping, translation, and rotation. Li et al. [17] used methods such as rotation, mirroring
flipping, contrast, brightness adjustment, and noise pixel generation to address problems of
insufficient data quantity and sample imbalance. Liu et al. [18] employed techniques such
as cutout, flipping, and color jittering to prevent overfitting. Li et al. [19] used methods such
as mirroring flipping, rotation, affine transformation, Gaussian white noise, brightness, and
color conversion to address data imbalance issues. Wang et al. [9] proposed an insulator
abnormal state detection method for small data samples. Zhang et al. [20], Xin et al. [21]
and Liu et al. [22] considered the problem of insulator detection in multiple domains, but
they only considered insulator detection in foggy weather and did not deeply investigate
insulator detection in other weather conditions. Zhang et al. [20] proposed a fog and clear
weather insulator detection model based on a modified Yolov5 network. Liu et al. [22]
generated a simulated insulation dataset for foggy weather using the dark channel prior
algorithm and improved target detection accuracy in foggy weather environments based
on the CenterNet network.

However, in real-world scenarios, natural data exist under various conditions that
cannot be explained by these simple methods, such as the season in which the photos
were taken, which greatly affects the important features displayed in the photos. Detection
models may mistakenly label the target or fail to recognize the target. Therefore, we cannot
ignore the impact of season on the model. Currently, the existing datasets have limited
reference values in this regard, and multi-domain insulator defect detection [23–25] remains
an effective topic. Enhancing the insulator data in real-world scenarios remains a problem
that needs to be addressed and explored.

To address this problem, we propose a novel efficient cross-modality insulator aug-
mentation algorithm for multi-domain insulator defect detection to mimic real complex
scenarios. The high-resolution insulator cross-modality translation (HICT) module is
designed to generate multi-modality insulator images with rich texture information to
eliminate adverse effects of existing modality discrepancy, and the multi-domain insulator
multi-scale spatial augmentation (MMA) module is designed to simultaneously augment
multi-domain insulator images with different spatial scales and leverage these fused images
and location information to help the target model locate defects with various scales more
accurately. This algorithm improves the model’s robustness and generalization ability
in real-world scenarios without increasing inference resources, which can inspire more
researchers to focus on this field.
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3. The Proposed Method

The confidentiality of power systems makes the insulator dataset have difficulties
such as small data volume, imbalanced data samples, and difficulty in acquisition. It is
not practical to collect insulator images under different weather conditions in the same
scenario. However, deep learning-based detection networks require a large amount of
training resources. Therefore, data augmentation methods are key technologies for solving
various challenging deep-learning tasks. In this paper, we propose a novel efficient cross-
modality insulator augmentation algorithm for multi-domain insulator defect detection to
mimic real complex scenarios. In this section, we will provide a detailed introduction to the
proposed cross-modal insulator enhancement algorithm for multi-domain insulator defect
detection. The multi-domain insulator defect detection framework is shown in Figure 1. The
proposed cross-modal insulator enhancement algorithm is implemented by two modules:
the high-resolution insulator cross-modal transformation (HICT) model and the multi-
domain insulator multi-scale space enhancement (MMA) model. The HICT module aims
to generate multi-modal insulator images with rich texture information to eliminate the
adverse effects of existing modal differences. The MMA module is used to enhance multi-
domain insulator images at different spatial scales simultaneously and utilizes these fused
images and location information to help the target model more accurately locate defects
of various scales. This algorithm improves the accuracy of multi-domain insulator defect
detection without increasing inference resources, providing a new perspective for insulator
defect detection in real-world scenarios.

HICT Module
MMA Module

Multi-domain Insulator Defect Detection Framework

Insulator Image

High-resolution Insulator Cross-modality Translation (HICT) Module

Snowy Insulator

Foggy Insulator

256×256
400×400

800×800

Targeting

Defect

InsulatorsHigh-resolution 

cross-modality Insulator

1200×800

Input 

Upscaler

High-resolution 

Image

… +

High-resolution Insulator 

Generator

Conv Layer (3x3) Degradation-aware 

Block

Figure 1. The framework of multi-domain insulator defect detection. The insulator images collected
from transmission line UAV inspection are enhanced by the HICT module and MMA module and
then input into the detection model for training. The resulting model has the ability for multi-domain
insulator defect detection to mimic real complex scenarios.

3.1. The Definition of Multi-Domain Insulator Defect Detection

Insulators for transmission lines operating in outdoor environments are susceptible to
failures caused by weather changes [2,26,27]. Using unmanned aerial vehicles to detect in-
sulation defects can effectively and accurately assess the insulation condition. Most existing
deep learning-based insulation defect detection models are trained using insulator images
taken on sunny days, which may not be suitable for insulator detection tasks with diverse
weather conditions. Compared to sunny days, insulators in foggy weather may suffer
from poor lighting due to the blocking of light by fog, resulting in reduced image clarity.
This may cause difficulties in using inspection models to detect insulators. During snowy
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weather, the surface of the insulator may condense water vapor or snowflakes, changing its
shape and affecting the recognition ability of the detection model. In addition, heavy snow
may cover the insulator, causing the model to fail to detect the target. Therefore, we cannot
ignore the impact of season on the model. Many researchers have not incorporated this
factor into insulator detection models, and existing datasets have limited reference value in
this regard. To address these issues, we still need to use adversarial generative networks
for style transfer to expand the types of data.

3.2. High-Resolution Insulator Cross-Modality Translation Module

Through using the insulator defect detection methods, it possible to quickly and
accurately detect insulators and their defects in images, greatly saving manpower and
material resources and improving maintenance efficiency. This is significant for ensuring
the safe and effective operation of power grids. The early research on the formation
mechanism of rain and fog was based on the method of establishing complex mathematical
models to add noise to images. For example, references [20,22] used the dark channel
prior to constructing foggy weather data. However, real weather conditions are very
complex and diverse, and these traditional methods are not sufficient to simulate rich
weather condition information, so it is difficult to achieve ideal results. Recently, the
image translation approaches based on generative adversarial networks (GANs) [28,29]
have achieved great success [30–33]. These methods aim to convert specific features of
an image at the pixel level, achieving the transformation from the source domain to the
target domain.

We propose a high-resolution insulator cross-modality translation (HICT) module
designed to generate multi-modality insulator images with rich texture information to
eliminate adverse effects of existing modality discrepancy, simulate real complex scenarios,
and improve the robustness of insulation defect detection models under various weather
conditions, thereby ensuring the accuracy and effectiveness of UAVs inspection.

As shown in Figure 2, the weather conditions of the image range from clear skies to
foggy conditions and then to snowy conditions, with the migration of the cross-modality
translation insulator and subsequent pixel reconstruction resulting in high-resolution multi-
domain insulator images. It is noted that the mentioned HICT module is a cascaded
architecture (as shown in Figure 1), which mainly contains two models: a cross-modality
generator and a high-resolution generator. We will give more details about them as follows.

Insulator Image
Multi-domain insulator

High-resolution Insulator Cross-modality Translation Module

Snowy insulator

Foggy Insulator

𝑮𝑺

High-resolution insulator

𝐷𝑌𝑆

256×256 256×256

1𝟏𝟓𝟐 ×864

1𝟏𝟓𝟐 ×864 1𝟏𝟓𝟐 ×864

256×256𝑮𝑭

𝐷𝑌𝐹

Figure 2. The high-resolution cross-modal translational model of insulators is divided into two parts.
The original image of the insulator in the dataset is 1152 × 864 pixels, and a cross-modal translation
model is used to output a 256 × 256 pixel multi-domain insulator image. Through high-resolution
pixel reconstruction, an image of cross-modality translation insulators with the same size as the
original image is obtained.

In the first stage, the designed cross-modality generator aims to translate the raw
insulator image into different weather-conditioned insulator images. The different weather-
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conditioned mapping function is denoted as GN : X → YN , N ∈ {Snow, Fog} and
F : YN → X. The source domain and the target domain are represented by X and Y,
Snow and Fog mean snowy and foggy weather, respectively, and the two mappings are rep-
resented by G and F. Here, we choose the foggy weather as a representative for description
convenience. Inspired by related work [29], we are given one set of images in domain X
such as sunny weather insulators and a different set in domain Y such as foggy weather
insulators. We may train a mapping G : X → Y such that the output ŷ = G(x), x ∈ X is
indistinguishable from images y ∈ Y by an adversary trained to classify ŷ apart from y.
The data x from the X domain are passed through the optimal generator G to obtain Fake
Ŷ. Fake Ŷ is passed through the inverse generator F to obtain the reconstructed result Fake
X̂. DY and DX are associated adversarial discriminators. DY encourages G to translate X
into outputs indistinguishable from domain Y and vice versa for DX and F.

Our goal is to learn a mapping GN : X → YN , N ∈ {Snow, Fog} such that the distribu-
tion of images from G(x) is indistinguishable from the distribution Y using
an adversarial loss. Because this mapping is highly under-constrained, we couple it
with an inverse mapping F : YN → X, N ∈ {Snow, Fog} and introduce a cycle consis-
tency loss to enforce F(G(x)) ≈ x (and G(F(y)) ≈ y). To further regularize the map-
pings, we introduce two cycle consistency losses that capture the intuition that if we
translate from one domain to the other and back again, we should arrive at where we
started: (1) forward cycle-consistency loss: x → G(x) → F(G(x)) ≈ x; (2) backward
cycle-consistency loss: y → F(y) → G(F(y)) ≈ y. The objective contains two types of
terms: adversarial losses [28] for matching the distribution of generated images to the data
distribution in the target domain and cycle consistency losses [29] to prevent the learned
mappings G and F from contradicting each other. The original adversarial loss formula is
as follows:

LGAN(G, DY, X, Y) = Ey∼pdata(y) [logDY(y)]

+ Ex∼pdata(x) [log(1 − DY(G(x))],
(1)

where G tries to generate images G(x) that look similar to images from domain Y, while
DY aims to distinguish between translated samples G(x) and real samples y. G aims to
minimize this objective against adversary D that tries to maximize it. We introduce a similar
adversarial loss for the mapping function F : Y → X and its discriminator DX as well.

For the image x from domain X, the image translation cycle should be able to bring
x back to the original image, such as the forward cycle-consistency loss: x → G(x) →
F(G(x)) ≈ x. Similarly, for the image y from domain Y, the image translation cycle should
be able to bring y back to the original image, such as the backward cycle-consistency loss:
y → F(y) → G(F(y)) ≈ y. For the mechanism to train stably, the cycle-consistency loss
formula needs to be calculated as follows:

Lcyc(G, F) = Ex∼pdata(x) [∥F(G(x))− x∥1]

+ Ey∼pdata(y) [∥G(F(y))− y∥1].
(2)

To make the generated results consistent with the expected target category, we add
identity loss to the discriminator. For the image x from domain X, we want the generated
result to have both the visual effects of the target domain and the correct target category,
that is F(x) ≈ x. The identity loss is calculated for better performance as follows:

Lid(G, F) = Ex∼pdata(x) [∥F(x)− x∥1]

+ Ey∼pdata(y) [∥G(y)− y∥1].
(3)

As a consequence, the final loss formula of our model is presented as follows:

Ltotal(G, DY, F, DX , ) = E[logDY(y)] + E[log(1 − DY(G(x))] + E[logDX(x)]
+ E[log(1 − DX(G(Y))] + λLcyc + Lid.

(4)
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Here, λ controls the relative importance of G and F, which means that the generator G
should achieve the transfer from X to Y as much as possible, and the generator F should
achieve the transfer from Y to X as much as possible. At the same time, it is hoped that the
two generators can achieve reciprocity: that is, they can iteratively return to themselves.
We only select G as the cross-modality insulator generator model, which can translate the
raw images into different weather-conditioned insulator images.

In the second training stage, we aim to leverage the high-resolution insulator generator
to enrich the texture and location information for better detection performance. Based
on the network architecture of cross-modality translation, the output image size is only
256× 256 pixels. Motivated by the work [34], we train the super-resolution model with extra
public datasets (DIV2K dataset and Flickr2K dataset). With the same training protocols,
we utilize the mentioned degradation-aware block (as shown in Figure 1) to fuse learned
degradation representation and the ∥·∥1 loss to constrain high-quality generated images.
The pre-trained super-resolution model is chosen as the high-resolution insulator generator
Φ. Finally, we can generate high-quality cross-modality insulator images through the
inference Φ(G(x)).

3.3. Multi-Domain Insulator Multi-Scale Spatial Augmentation Module

After the former mentioned HICT module, we can convert a sunny original insulator
image x into a high-quality multi-domain insulator image Φ(G(x)). In other words, the
original domain X can be translated into the hybrid domain H, which contains sunny,
snowy, and foggy weather domains. In this section, we will perform multi-domain insulator
multi-scale spatial augmentation based on the multi-domain insulator data transformed
by the HICT module, which can help improve the model’s recognition ability in small
target detection. In the field of object recognition, data augmentation can be constructed by
flipping, rotating, and scaling the original samples. Different from them, the multi-domain
insulator multi-scale spatial augmentation module is proposed as shown in Figure 3. It
reduces the model’s reliance on noisy samples to minimize the impact of noisy samples on
the model.

Multi-domain Insulator Image

Multi-scale insulator

Multi-domain Insulator Multi-scale Spatial Augmentation Module

1𝟏𝟓𝟐 ×864

2𝟓𝟔 ×256

4𝟎𝟎 ×400

2𝟒𝟎𝟎 ×1200

…

Random selection of multi-domain insulator images

… …

Figure 3. Schematic illustration of multi-domain insulator multi-scale spatial augmentation module.
Randomly select two images from the multi-domain insulator datasets, fusing both images and
bounding boxes in different spatial scales.

The fusion formula for augmentation samples is as follows:

h̃ = αhi + (1 − α)hj, where h ∈ H, i ̸= j.

b̃ = [bi, bj], where i ̸= j.
(5)

Here, b means the bounding boxes for insulator images. The parameter α is set as
0.5 as default. The bicubic interpolation operation is utilized to generate different-scale
augmented data. We aim to fuse different scale insulator images (as shown in Figure 3) in
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the hybrid domain to improve the generalization ability in scale variance and modality
variance scenarios. In the MMA module, we select 30% of the insulator images for data
augmentation by scaling and mix-up. We choose the different scale at 256 × 256, 400 × 400,
800 × 800, 600 × 800, 1200 × 800, and 2400 × 1200 to construct a new dataset for multi-
domain insulator defect detection.

In general, we propose the high-resolution insulator cross-modality translation (HICT)
module designed to generate multi-modality insulator images with rich texture information
to eliminate adverse effects of existing modality discrepancy. The multi-domain insulator
multi-scale spatial augmentation (MMA) module simultaneously augments multi-domain
insulator images with different spatial scales and leverages these fused images and location
information to help the target model locate defects with various scales more accurately.
The method addresses the lack of research on data augmentation strategies in the task of
insulator defect detection. It also alleviates the overfitting problem without increasing the
inference resources. Finally, we can choose a suitable lightweight object detection model as
follows. This efficient cross-modality insulator augmentation algorithm can be used for
multi-domain insulator defect detection and is more suitable for real complex scenarios.

3.4. The System of Evaluation Indicator in Insulator Defect Detection Model

In target detection algorithms [22,35,36], we use commonly used evaluation metrics
such as average precision (AP) and mean average precision (mAP) as evaluation metrics in
this article. The calculation formula is as follows:

AP =
1
m

m

∑
i

Pi

=
1

m
∗ P1 +

1
m

∗ P2 + . . . +
1

m
∗ Pm

=
∫

P(R)dR ,

(6)

where R is recall, and P is precision; AP is the average precision for a certain class of
n samples, assuming it has m positive examples, each positive example corresponds to
a recall R value

(
1
m , 2

m , . . . , 1
)

, and the maximum precision P is calculated for each recall.
Then, the mean of these P values is taken. The mean of all AP for each class in the dataset
is taken to obtain mAP:

mAP =
1
C

C

∑
j

APj (7)

where P is precision, AP is the average precision of a class of samples, and mAP is the
average precision of the dataset. The evaluation indicators used in this article are mAP@50 :
95, mAP@50, and mAP@75. mAP@50 : 95 refers to the mAP calculated with Intersection
over Union (IoU) values ranging from 50% to 95% with a step size of 5%. mAP@50, and
mAP@75 represent the mAP values with IoU of 0.5 and 0.75, respectively.

4. Experiments

In this section, we evaluated the proposed multi-domain insulator defect detection
on several public insulator databases: the Unifying Public Insulator Datasets (UPID)
dataset [37], the Synthetic Foggy Insulator Dataset (SFID) dataset [20]. We compared other
popular methods, and the experimental results prove that our method achieved satisfactory
performance in the multi-domain insulator defect detection task. Then, we investigate
the effect of different parameters on the recognition performance. Finally, we conduct the
ablation study to evaluate the effectiveness of the proposed HICT and MMA modules.

4.1. Databases

The CPLID dataset [38] is provided by the State Grid Corporation of China and ob-
tained from real transmission line scenarios using drone inspection. It contains 600 images
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of normal insulators and 248 images of insulator defects. The UPID dataset is obtained
by Andrea et al. [37] through methods such as random affine transformation, Gaussian
blurring, and lossless transformation. It consists of 6860 training and testing images; we
randomly selected 80% of the insulator images as the training set, and the remaining ones
were used as the testing set. The SFID dataset [20] contains 13,718 images including syn-
thetic foggy images and uses random brightness and fog thickness to enhance the UPID
dataset. We randomly selected 80% of the insulator images as the training set, and the
remaining ones were used as the testing set.

In the following experiments, the original data we used were insulator images obtained
from drone inspections in real scenes. Some of them were from the CPLID dataset and
SFID dataset, and some were provided by relevant power workers. There were a total of
10,974 original images. Example insulator images are shown in Figure 4. Then, we used
the HITC model and MMA module for cross-modality data augmentation to generate
multi-modality insulator images. During model training, we found that as the amount
of generated data increases, the accuracy of the detection model also increases. To avoid
overfitting, we used twice as much generated data as the original data. The final obtained
images of 21,097, the training, validation, and test sets for the network model were trained
according to a ratio of 7:2:1.

Figure 4. The illustration of public representative transmission line insulator databases.

4.2. Implementation Details

This paper carries out the experiments in this study on a platform using an Ubuntu18.04
system, Nvidia RTX 3060 GPU with a memory of 24G. We utilize the Faster R-CNN
model [39] as the backbone network in the multi-domain insulator defect detection module.
The method is implemented based on the PyTorch deep learning platform. The multi-
domain insulator defect defection model is trained on a limited 100 epochs with a batch
size of 16 and a learning rate of 0.001.

In the HITC model for cross-modal data augmentation to generate multi-modality
insulator images with rich texture information, the dataset contained insulator images in
sunny weather conditions, insulator images in foggy weather conditions, and insulator
images in snowy weather conditions, eliminating the adverse effects of existing modal
differences. All images were adjusted to 256 × 256, and all networks were trained from
scratch using the Adam solver [29,40] with a batch size of 1 and a learning rate of 0.0002.
We keep the same learning rate for the first 100 epochs and linearly decay the rate to zero
over the next 100 epochs. In the cyclic consistency loss (Section 3.2), we set λ = 10 in
Formula (4). Specifically, in the HICT module, we use the SFID dataset to train the fog
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weather transformation model for insulator migration and the summer2winter dataset
for insulator-style transfer in snowy weather. In the MMA module, we select 30% of
the insulator images for data enhancement at 256 × 256, 400 × 400, 800 × 800, 600 × 800,
1200× 800, and 2400× 1200 scales, and then we input all the images into the training model
for further evaluation to simultaneously augment multi-domain insulator images with
different spatial scales and leverage these fused images and location information to help
the target model locate defects with various scales more accurately.

4.3. Comparison Experiment

The insulator and defect detection results of different frameworks are shown in Table 1.

Table 1. A comparison of the insulator defect detection algorithms.

Train Data Model mAP@50 (%) mAP@75 (%) mAP@50:95 (%)

SFID [20]

Mask RCNN [41] 91.39 86.21 75.19
Rentinanet [42] 92.57 84.93 73.62
Fast RCNN [43] 92.15 84.53 72.27

Faster RCNN [39] 91.98 86.96 77.43
YOLOv5 [44] 96 81.1 69.1
YOLOv8 [45] 91.7 87.1 76.7

CMIA Ours 98.48 * 94.45 * 96.17 *
* means the best detection result in Table 1.

To verify the effectiveness of the proposed method in this article, we conducted
comparative experiments using different detection models under the same conditions
on the detectron2 framework. Table 1 demonstrates the comparative experiments of this
method with popular object detection algorithms in the past five years in terms of multi-
domain insulator target detection capabilities. In the experiments, we found that when
using the SFID dataset containing insulator data from sunny and foggy weather conditions
for training, the YOLOv5 detection model achieved the best detection accuracy of 96%
in terms of mAP@50 for multi-domain insulators. YOLOv8 and Faster R-CNN detection
models had similar mAP@50 accuracy rates of over 91%. The Faster R-CNN model had
a higher detection accuracy in terms of mAP@50 : 95 with a rate of 77.43%. Although the
YOLOv5 detection model had the best detection accuracy in terms of mAP@50, the model
had lower accuracy rates in both mAP@50 and mAP@50 : 95 compared to other models.
Therefore, we selected Faster R-CNN as the main network for this experiment. When we
use the same Faster R-CNN backbone as the detection model for testing, the results show
that the cross-modality insulator augmentation (CMIA) algorithm proposed in this paper
can effectively improve the ability of the detection model to detect insulators in a multi-
domain environment, the mAP@50 metric increased from 91.98% to 98.48%, surpassing the
accuracy of YOLOv5 detection model and reaching the best accuracy. The mAP@75 metric
increased from 86.96% to 94.45%, and the mAP@50 : 95 metric increased from 77.43% to
96.17%. The results show that using the cross-modality insulator augmentation algorithm
proposed in this paper, the multi-domain insulator defect detection model can achieve
a prediction accuracy of over 98%, effectively improving the model’s recognition rate of
insulators under extreme weather conditions, making it more valuable in the real world.

4.4. Ablation Study

The proposed multi-domain insulator defect detection framework mainly contains two
designed modules: the high-resolution insulator cross-modality translation (HICT) module
and the multi-domain insulator multi-scale spatial augmentation (MMA) module. To reveal
how each module contributes to performance improvement, we conduct a comprehensive
ablation study to analyze them on the UPID insulator dataset, as shown in Table 2.
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Table 2. The ablation study on the UPID dataset where the baseline utilizes a pure Faster
RCNN model.

Baseline HICT MMA mAP@50
(%)

mAP@75
(%) mAP@50 : 95 (%) mAP@50 : 95 Insulator (%) mAP@50 : 95 Defect (%)

✓ - - 90.52 87.79 77.42 80.32 74.52
✓ ✓ - 98.34 94.41 81.51 82.95 80.04
✓ ✓ ✓ 98.48 * 96.17 * 86.33 * 88.39 * 84.27 *

✓ means the module utilized in the experiment; * means the best detection result in Table 2.

The performance of the proposed method variants is summarized in Table 2 on the
UPID dataset containing only sunny weather condition insulator data. We utilize the
pure Faster RCNN algorithm as the baseline method for a fair comparison. Because of
the limited weather mode gap in the insulator dataset, the baseline performance of the
insulator defect detection model task is poor. However, through the designed HICT model,
the mAP@50 metric increased from 90.52% to 98.34%, and the mAP@75 metric significantly
increased from 87.79% to 94.41%. This is because our designed HICT model generates
multi-modality insulator images with rich texture information to eliminate adverse effects
of existing modality discrepancy. When the additional MMA strategy is used, the Insulator
mAP@50 : 95 accuracy increases from 80.32% to 88.39%, and the Defect mAP@50 : 95
accuracy increases from 74.52% to 84.27%, achieving the best recognition performance
for insulator defects. This benefits from the simple MMA algorithm to simultaneously
augment multi-domain insulator images with different spatial scales and leverage these
fused images and location information to help the target model locate defects with various
scales more accurately.

Through ablation study analysis, these important theoretical findings are proved as
follows: 1. We found that using the HITC model can effectively improve the detection
accuracy of the detection model for multi-domain insulators. As the amount of generated
data increases, the accuracy of the detection model also increases. 2. We found that using
the MMA model can further improve the detection accuracy of the model, especially for
the detection of small target defects in the manuscript. When the amount of generated
data is increased to double the original data, the accuracy still increases. 3. We believe that
appropriately increasing the amount of generated data can effectively alleviate overfitting
and improve the detection accuracy of the model.

4.5. Cross-Dataset Evaluation

The analysis of the ablation study in the previous section shows that high-quality
multi-domain and multi-scale insulator models not only make the detection model more
robust but also improve overall performance. In this section, we test the performance of the
proposed method on the SFID and UPID test sets. SFID is a single-scale test set with foggy
conditions, including 4318 insulators and 760 self-explosion defects. UPID is a single-scale
test set containing only data on insulators in clear weather, including 4318 insulators and
760 self-explosion defects. These models are trained in a limited 100 periods.

The performance of our proposed method on different datasets is shown in Table 3.
The results show that the performance of our proposed method is better in the more
complex weather scenarios, and its performance on the test set SFID with foggy weather is
better than that of the UPID test set with only sunny data. On the test set SFID, it achieves
mAP@50 : 95, mAP@50, and mAP@75 scores of 98.48%, 96.17%, and 86.33%, respectively,
which are higher than the UPID metrics for the test set. The experimental results show
that the proposed multi-domain insulator defect detection algorithm can also achieve
satisfactory recognition performance on other test sets.
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Table 3. Cross-database testing accuracies (%) of the proposed approach using UPID and SFID.

Testing Classes Number mAP@50
(%)

mAP@75
(%) mAP@50 : 95 (%)

UPID
insulator 2076 - - 84.91

defect 371 - - 80.72
average 2447 97.38 94.95 82.82

SFID
insulator 4318 - - 88.39

defect 760 - - 84.27
average 5078 98.48 96.17 86.33

4.6. Algorithm Analysis

We tested a set of insulator detection models under different weather conditions, as
shown in Figure 5. The first column on the left shows the original test images, which
simulate three different weather scenarios, including cloudy, foggy, and snowy. The second
column on the left shows the detection results recorded by the model during UPID training.
The second column on the right is the detection results recorded by the model during SFID
training; the right column 1 is the test results of the PTID training method proposed in
this article. The results in Figure 5 show that the model trained using the SFID dataset
is superior to the model trained using the UPID dataset for insulator detection in foggy
conditions. However, the model trained using the SFID dataset cannot detect overlapping
insulators and distant insulator strings in close-up views under cloudy conditions, and
its detection capability is significantly lower than that of the model trained using the
dataset proposed in this paper. The model trained using the dataset proposed in this
paper produces the best detection results, especially in cloudy and snowy scenes with
stronger advantages.

Through the above experimental analysis, we found that using the high-resolution
insulator cross-modality translation (HICT) module can effectively improve the detection
accuracy of the detection model for multi-domain insulators, and using the multi-domain
insulator multi-scale spatial augmentation (MMA) module can effectively alleviate the
problem of missed insulator detections in multi-scale scenarios. As the amount of generated
data increases, the accuracy of the detection model also increases. When the generated data
continue to increase to double the original data, the accuracy still increases. Appropriately
increasing the amount of generated data can effectively alleviate overfitting and improve
the detection accuracy of the model.

(a) Original (b) UPID (c) SFID (d) Ours

(e) Original (f) UPID (g) SFID (h) Ours

Figure 5. Cont.
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(i) Original (j) UPID (k) SFID (l) Ours

Figure 5. Detection results of insulator detection models on different datasets. The first row shows
the insulator detection results under overcast conditions using the UPID, SFID, and our training
sets, respectively. The second row displays the insulator detection results under foggy conditions
using the UPID, SFID, and our training sets, respectively. The last row presents the insulator defect
detection results under snowy conditions using the UPID, SFID, and our training sets, respectively.

5. Conclusions

Transmission line insulators operate outdoors and are prone to damage from various
weather conditions. Therefore, the designed insulator defect detection model requires good
generalization ability to adapt multi-domain insulator processing. The paper proposes a
novel efficient cross-modality insulator augmentation algorithm for multi-domain insulator
defect detection to mimic real complex scenarios. The proposed high-resolution insulator
cross-modality translation module can effectively generate high-quality insulator images
with various weather conditions (e.g., foggy and snowy), which can boost detection preci-
sion in a complex and unstable environment. Additionally, we design the multi-domain
insulator multi-scale spatial augmentation algorithm to fuse images and bounding boxes
with different scales to enhance the detection ability for various-scale insulator defects. It
has high detection accuracy on multiple public insulator datasets (UPID and SFID insulator
defect datasets), especially on the SFID dataset, where the insulator defect detection accu-
racy is as high as 98.48%, which is 6.78% higher than that of the insulator defect detection
algorithm based on Yolov8. This experimental result demonstrates the superior insulator
defect detection performance of our method. In the future, we will evaluate the proposed
method’s performance on more complex multi-domain insulator datasets and explore
better robustness to mimic real-world scenarios.
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Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
SCNN Siamese Convolutional Neural Network
SSD Single-Shot MultiBox Detector
Faster R-CNN Faster Region-Based Convolutional Neural Network
YOLO You Only Look Once
CNN Convolutional Neural Network
UPID Unifying Public Insulator Datasets
SFID Synthetic Foggy Insulator Dataset
CPILD Chinese Power Line Insulator Dataset
MMA Multi-Domain Insulator Multi-Scale Spatial Augmentation
HICT High-Resolution Insulator Cross-Modality Translation
CMIA Cross-Modality Insulator Augmentation
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