
Citation: Lin, S.; Cui, L.; Ke, N.

End-to-End Encrypted Message

Distribution System for the Internet of

Things Based on Conditional Proxy

Re-Encryption. Sensors 2024, 24, 438.

https://doi.org/10.3390/s24020438

Academic Editor: Jian Li

Received: 29 November 2023

Revised: 1 January 2024

Accepted: 2 January 2024

Published: 10 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

End-to-End Encrypted Message Distribution System for the
Internet of Things Based on Conditional Proxy Re-Encryption
Shi Lin 1 , Li Cui 2 and Niu Ke 1,*

1 School of Cryptographic Engineering, Engineering University of PAP, Xi’an 710000, China; slshilin@126.com
2 School of Information and Communication, National University of Defense Technology,

Wuhan 430000, China; lc_licui17@nudt.edu.cn
* Correspondence: niuke@163.com

Abstract: In light of the existing security vulnerabilities within IoT publish–subscribe systems, our
study introduces an improved end-to-end encryption approach using conditional proxy re-encryption.
This method not only overcomes limitations associated with the reliance on a trusted authority and the
challenge of reliably revoking users in previous proxy re-encryption frameworks, but also strengthens
data privacy against potential collusion between the broker and subscribers. Through our innovative
encryption protocol, unauthorized re-encryption by brokers is effectively prevented, enhancing secure
communication between publisher and subscriber. Implemented on HiveMQ, an open-source MQTT
platform, our prototype system demonstrates significant enhancements. Comparison to the state-
of-the-art end-to-end encryption work, encryption overhead of our scheme is comparable to it, and
the decryption cost is approximately half of it. Moreover, our solution significantly improves overall
security without compromising the asynchronous communication and decentralized authorization
foundational to the publish–subscribe model.

Keywords: Internet of Things; end-to-end encryption; conditional proxy re-encryption; message
broker; HiveMQ

1. Introduction

To realize data communication among a large number of entities, large-scale Internet
of Things (IoT) system generally uses the publish–subscribe (pub/sub) paradigm for data
distribution. The most commonly used protocols which work in the pub/sub paradigm are
Message Queuing Telemetry Transport (MQTT) [1], Advanced Message Queuing Protocol
(AMQP) [2], etc. The subscribers can subscribe to a “message topic”, and publisher can
publish messages to the “message topic”. All subscribers will receive the publisher’s
message through the routing of the message broker between the publisher and subscribers.
The pub/sub paradigm decouples the senders and receivers in time and space. They do
not need to be directly connected or online simultaneously. It is more flexible, efficient, and
scalable than the point-to-point data exchange mode. A typical pub/sub-based IoT system
includes three types of components: IoT devices, a message broker, and a user management
application. The device and the management application serve as the publisher and
subscriber, respectively. The device publishes the data collected by its sensor to a specific
topic, and the authorized user of the device subscribes to that topic through the application.
The message broker in the middle routes the data to all the authorized users.

At present, Transport Layer Security (TLS) [3,4] is widely used in the industry to
protect the data between the client (publisher or subscriber) and the message broker.
The broker decrypts the ciphertext from the publisher to obtain the plaintext, encrypts
the plaintext again with the key negotiated with each subscriber, and then forwards the
corresponding ciphertext to the subscriber. However, the broker can obtain all the data
generated by the client and has complete control over the user’s data [5]. Furthermore, the
message broker maintained by IoT manufacturers is not completely trusted. Recent research

Sensors 2024, 24, 438. https://doi.org/10.3390/s24020438 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24020438
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0002-0040-2504
https://doi.org/10.3390/s24020438
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24020438?type=check_update&version=1

Sensors 2024, 24, 438 2 of 16

shows that no-security policies are implemented by a large number of accessible message
brokers, which allows anyone to receive data or inject messages [6]. Some researchers
investigated a specific traffic monitoring system and discovered that the MQTT message
broker was disclosing the traffic flow conditions in a specific area of Mexico City [7]. Even
if the message broker deploys a security policy, users need to totally trust the broker.
Currently, the message broker in pub/sub-based IoT system are deployed either by IoT
device manufacturers based on existing commercial message servers (such as EMQX [8],
HiveMQ [9] or Solace [10]), or based on the IoT cloud platform provided by third-party
cloud computing manufacturers (such as Alibaba cloud [11], Amazon AWS cloud [12]).
The message broker is established and maintained by the IoT device manufacturer or the
IoT cloud platform [13]. These manufacturers are not entirely reliable. If the administrator
operates incorrectly or is bribed by a spy, or if the manufacturer is for profit purposes, user
data are likely to be abused or shared with unauthorized entities, which poses a threat to
the security of user data.

In addition, at present, most pub/sub-based IoT systems are constructed based on
MQTT protocol, which is not designed for hostile environments. Jia Yan et al. [14] found
that the MQTT protocol has serious defects. The platform using this protocol can enable
adversaries to steal users’ private information and forge users’ device status.

In order to prevent the threats brought by malicious message brokers, PICADOR [15]
uses proxy re-encryption (PRE [16]) technology to provide end-to-end encryption from
publishers to subscribers. In PRE, given a re-encryption key to the semi-trusted proxy, the
proxy can convert the ciphertext encrypted with the public key of user A into the ciphertext
encrypted with the public key of user B without obtaining any plaintext information from

the ciphertext. The proxy re-encryption process can be described as: E(pkA, m)
rkA→B→

E(pkB, m)]; here, rkA→B is the re-encryption key from A to B.
In PICADOR, the publisher encrypts its message with its public key. The broker

re-encrypts the published message using the re-encryption key of each subscriber and
then sends the corresponding ciphertext to each subscriber. The subscriber can decrypt
the ciphertext with their private key. PICADOR needs a trusted authority to generate the
re-encryption key for each subscriber according to the publisher’s private key and each
subscriber’s public key. When revoking the authorization of a subscriber, the simplest way
is that the broker no longer re-encrypts messages for the revoked subscribers. However,
the broker is not entirely trusted. If it is compromised and still re-encrypts for the revoked
user, then the revoked user can still receive the latest message. Therefore, depending on
the broker for user revocation is not completely reliable. If we do not rely on the broker to
revoke users, then we can only change the public–private key pair of the publisher once
revocation is required and regenerate the re-encryption key for all the remaining authorized
users, which would result in frequent changes to the public–private key pair of the publisher.
The long-term public–private key of the user is usually used for authentication either, both
between users and between users and brokers. If the user’s public–private key pair changes
frequently, then there will be inconveniences encountered during authentication.

The reason of the problem in PICADOR is that traditional proxy re-encryption allows
the proxy to convert all ciphertexts without restriction [17]. As long as the proxy possesses
the re-encryption key from A to B (rkA→B), the proxy can convert all ciphertexts encrypted
with the public key of A into ciphertexts which could be decrypted using the private key
of B. This all-or-nothing feature is not suitable for applications that need fine-grained
authorization of decryption capability. Based on this, Weng et al. proposed the concept of
Conditional Proxy Re-encryption (CPRE) [18], which allows for the conditional conversion
of ciphertext. In CPRE, when generating ciphertext using user A’s public key, a condition
value is introduced at the same time, and the re-encryption key from A to B are also related
to a condition value. Only when the condition value used for generating the ciphertext
is equal to the condition value related to the re-encryption key, the proxy can convert
the ciphertext encrypted with the public key of A into the ciphertext encrypted with the
public key of B. A can prevent the proxy from performing unauthorized re-encryption

Sensors 2024, 24, 438 3 of 16

by controlling the change of condition value [17]. The process of conditional proxy re-

encryption can be described as: E(pkA, m, ω)

rk
Aω

′
→B→ E(pkB, m)

(
ω = ω

′
)

.
Because CPRE has significant advantages over PRE in fine-grained authorization, this

paper introduces CPRE for the first time to realize end-to-end encryption in pub/sub-
based IoT system to prevent broker from performing unauthorized re-encryption. We
investigate a large number of existing conditional proxy re-encryption schemes. According
to the principles of low computing and communication overhead and high security, the
conditional proxy re-encryption algorithm proposed by Weng et al. in 2009 [19] is selected
in our system.

In our system, the publisher uses its private key, conditional value, and subscriber’s
public key to generate the conditional re-encryption key for each subscriber, and sends the
conditional re-encryption key to the broker. When publishing a message, the publisher
encrypts the message with its public key and condition value and sends the ciphertext
to the broker. The broker uses the re-encryption key of each subscriber to re-encrypt
the message and then sends the re-encrypted ciphertext to the corresponding subscriber.
Finally, the subscriber can obtain the plaintext by decrypting the message with their private
key. When a subscriber is revoked, the publisher updates the condition value and generates
new condition re-encryption keys for each remaining subscriber. Specifically, the main
contributions of our system are as follows:

(1) The conditional proxy re-encryption (CPRE) algorithm is introduced to solve the end-
to-end encryption problem in the pub/sub-based IoT system. the re-encryption key is
associated with a condition value. By changing the condition value, the publisher can
ensure that the proxy can not perform unauthorized re-encryption, thereby achieving
reliable revocation of subscribers.

(2) By using an open-source MQTT message server, HiveMQ, we implement a prototype
end-to-end encryption system for a pub/sub-based IoT system based on CPRE, and
further enhance the system’s performance through hybrid encryption and hash chain.
Moreover, the performance of the system is tested, which shows that our system is
not only easy to implement on existing commercial message servers, but also has
high performance.

2. Related Works
2.1. End-to-End Encryption in IoT

At present, a large number of scholars have studied the end-to-end security in
pub/sub-based systems [20,21]. This section survey the current research status of end-to-
end encryption schemes according to the technology used.

The scheme based on a trusted message broker: Jia Yan [14] proposed MOUCON
to solve access control issues in MQTT, the MQTT broker in MOUCON is responsible for
verifying each client’s access to the message. Clients must fully trust the broker and cannot
resolve the security threat to user data caused by an untrusted broker.

The scheme based on the trusted key server: Markus et al. [5] propose an end-to-
end security scheme for Cyber–Physical Systems (CPS). The scheme relies on trusted key
servers to distribute topic keys for publishers and subscribers. The key server stores the
global authorization information of the system and the encryption key. If the key server
is compromised by the adversary, all the account information, authorization information,
and the encryption keys of the system will be exposed.

The scheme based on identity-based encryption (IBE): JEDI [20] realizes the end-to-
end encryption between devices and users in IoT, facilitates asynchronous communication,
and supports decentralized authorization for the key. The scheme does not require any
modifications to the message broker, which is convenient for deployment. However, this
method uses the identity-based encryption algorithm with wildcards (WKD-IBE) [21],
the algorithm has a high computational complexity, making it unsuitable for resource-
constrained IoT devices.

Sensors 2024, 24, 438 4 of 16

The scheme based on secret sharing: Sana Belguith et al. [22] proposed an efficient
and revocable secure publish–subscribe system. The system divided the broker into three
parts to handle the functions of topic matching, routing, and message sending separately.
As long as the adversary does not simultaneously break all three brokers, the solution
remains secure. However, this solution requires the customization of a special message
broker, which is inconvenient to deploy.

The scheme based on special hardware: Segarra et al. [23] restrict the broker to
run only in a trusted execution environment (TEE) [24], thus ensuring that the broker
functions as intended by the deployer. However, the installation and deployment of TEE
requires professional management, as well as its maintenance, which results in high costs.
In addition, there are security attacks against the current mainstream TEE [25], so TEE still
has some security risks.

The scheme based on proxy re-encryption: PICADOR [15] implements end-to-end
encryption between publishers and subscribers using proxy re-encryption. As can be
inferred from the above analysis, this scheme depends on a trusted authorization center
to generate re-encryption keys and relies on the broker to revoke users. However, this
approach has the drawback of unreliable revocation.

2.2. Conditional Proxy Re-Encryption Schemes

Mambo and Okamoto [26] first introduced the concept of decryption capability autho-
rization, which has higher performance than the method of decrypting and then encrypting
the ciphertext. In 1998, Blaze, Bleuner, and Strauss formally introduced the concept of
proxy re-encryption (PRE) [16], and since then, lots of research has been carried out around
PRE. PRE allows a semi-trusted agent to transform the decryption capability of a cipher-
text without obtaining any valid information about the ciphertext, and is widely used in
encrypted email transmission, secure distributed file systems, and encrypted spam filter-
ing, etc. PRE can be categorized according to different criteria. Based on the direction of
re-encryption, PRE can be categorized into one-way PRE and two-way PRE. Additionally,
based on the number of re-encryptions allowed, it can be categorized into single-hop PRE
and multi-hop PRE.

Traditional proxy re-encryption is unable to provide fine-grained authorization of
decryption capabilities. In response, Weng et al. introduced the concept of conditional
proxy re-encryption (CPRE) [18] and developed the first CPRE scheme. The re-encryption
key of the scheme consists of two parts: the re-encryption key and the conditional key.
However, the scheme only considered the security of the second ciphertext layer and not the
first ciphertext layer. Weng [27] pointed out that the scheme described in the literature [18]
is vulnerable to Chosen-Ciphertext Attacks (CCAs). Weng [27] redefined a more stringent
security model for CPRE and proposed a new efficient CPRE scheme. Both Shao [28]
and Liang [29] proposed CCA-secure identity-based CPRE under the DBDH (Decisional
Bilinear Diffie–Hellman Problem) assumption. However, the literature [30] points out that
the scheme given by Liang [29] is insecure.

Fang et al. [31] proposed an anonymous CPRE scheme that enables keyword search.
Subsequently, Jae Woo Seo et al. [32] proposed a type-based privacy requirement engi-
neering (Type-based PRE) scheme, where “type” refers to a keyword that is equivalent to
“condition” in CPRE. Thus, this scheme is essentially similar to the CPRE scheme, which
achieves fine-grained authorization of user decryption capabilities. Son et al. [33] proposed
a CPRE for big data sharing on cloud platforms by outsourcing the re-encryption key
generation and decryption to the servers. Qiu et al. [19] and Liang et al. [34] proposed CCA-
secured CPREs, respectively. Ge et al. [35] proposed an identity-based CPRE scheme. The
authors proposed an identity-based CPRE scheme that enables contingent gate computation
on conditionals. Hu Xiong et al. [36] introduced a unidirectional multi-hop identity-based
CPRE scheme that facilitates flexible and efficient data authorization in cloud computing
environments and demonstrated its security in the standard model. Arinjita et al. [37] pre-
sented a conditional proxy re-encryption scheme that does not require pairwise operations.

Sensors 2024, 24, 438 5 of 16

The scheme is not reliant on the bilinear pair operation for construction and has lower
computational overhead. However, in this scheme, if the receiver conspires with the agent,
the agent can compute the sender’s private key as long as it possesses two conditional
re-encryption keys. Therefore, the scheme proposed by Arinjita et al. [37] is not able to
resist the conspiracy attack between the agent and the receiver.

The following compares various CPRE (Conditional Proxy Re-encryption) schemes, and
the results are presented in Tables 1 and 2. The schemes proposed in the literature [18,29,37]
exhibit security issues and are therefore not included in the comparison. Let |G| and |GT|
denote the bit lengths of elements in groups G and GT, respectively. |Zp| represents the
bit length of elements in the prime field |Zp|. |m| stands for the bit length of the plaintext.
tp and te represent the time required for a single bilinear pairing operation and a single
exponentiation operation, respectively. |σ| represents the bit length of the signature output
by a strongly unforgeable one-time signature algorithm. svk is the length of the verification
key for the strongly unforgeable one-time signature algorithm. tv is the time taken to verify
a strongly unforgeable one-time signature. t represents the size of the access tree, and w
denotes the size of attributes.

Table 1. Comparison of the computation overhead of each CPRE algorithm.

Scheme Re-Encryption Key Generation Encrypt Re-Encrypt Decrypt

[27] 4te 3te + tp 3tp 2te + tp
[28] 5te + tp 8te + tp 6tp 4te + 8tp
[31] 2te te+5tp + ts 2te + tp + tv te + tp
[32] te 5te + tp 5te+2tp 2te + 4tp
[33] 4te 3te+2tp te+2tp 3te+2tp
[19] 3te 4te + tp 4tp 2te + tp
[34] 9te + tp 5te + tp 6te+7tp 5te+12tp
[35] 8te + tp + ts 6te + tp + ts (9 + 2w + t)tp + tv te + 8tp + tv
[36] 6te 6te + 2tp te + 4tp + tv te + 3tp + tv

Table 2. Comparison of the communication overhead of each CPRE algorithm.

Scheme Initial Ciphertext Re-Encryption Key Ciphertext after Re-Encryption

[27] 2|G|+ |GT |+ |m| 2|G| 2|G|+ |GT |+ |m|
[28] 4|G|+ |GT |+ |Zp| 2|G|+ 2|GT|+2|Zp| 4|G|+ |GT |+ |m|
[31] |G|+ 3|GT |+ svk + |σ| 2|G|+ 2|Zp| 2|GT |+ svk + |m|
[32] 2|G|+ |GT |+ svk + |σ| |G|+ |Zp| 4|G|+ |GT |+ svk + |σ|
[33] |G|+ 2|GT| 2|G| 2|G|+ 2|GT|
[19] 2|G|+ |m| 2|G| |GT |+ |m|
[34] 4|G|+ |GT |+ svk + |σ| 6|G|+ |GT |+ svk + |σ| 3|G|+ |GT |+ svk + |σ|+ |m|
[35] (w + 4)|G|+ |GT |+ w + |σ|+ |m| 6|G|+ |GT |+ |σ|+ t (w + 6)|G|+ 2|GT |+ 2|σ|+ 2|m|
[36] 3|G|+ 2|GT |+ svk + |σ| 2|G|+ |Zp| 3|G|+ 2|GT |+ svk + |σ|

In the practical implementation of the CPRE algorithm, the re-encryption algorithm
is executed by a semi-trusted agent, which is generally deployed on servers or clouds
with more abundant resources. In contrast, the encryption and decryption operations are
typically performed by IoT devices or personal handheld electronic devices with signifi-
cantly smaller computational resources than the agent. Therefore, the overall principle in
selecting CPRE algorithms is to choose the scheme with lower computational and commu-
nication overhead. When computational and communication overheads are comparable,
the scheme with lower encryption and decryption overheads is chosen. In terms of security,
the schemes in the table are all provably CCA secure in either the standard model or the
stochastic prediction model. Although the schemes proven to be secure under the standard
model are theoretically more reliable, in this paper, we choose the schemes proven to be
secure under the stochastic prediction model. This is because the security of such security
schemes depends only on the hash function itself, and no practical attack has yet occurred

Sensors 2024, 24, 438 6 of 16

that can compromise a practical cryptographic algorithm proven to be secure under the
stochastic prediction model (excluding some carefully constructed counterexamples by
humans [38]). In addition, these security schemes are computationally more efficient and
have a wider range of applications.

Based on the aforementioned principles, this paper utilizes the conditional proxy
re-encryption algorithm proposed by Weng et al. [27] in 2009 to achieve the encryption of
the publish–subscribe system of this paper from the publisher side to the subscriber side.

3. Preliminaries

The conditional proxy re-encryption CPRE scheme includes the following algorithms,
and its workflow is given in Figure 1:

Setup

ji

rk

→

the Public

Parameter params

the security

parameter l

(pki, ski)

ReKeyGen

ski

skj

the receiver jthe sender i

condition

value

Enc

pki

m

ReEnc

CTi, CTj m or⊥ m or⊥
Dec

(pkj, skj)

pkj

KeyGen

Figure 1. Workflow of CPRE.

Setup
(

λk
)

: Input the security parameter λk, and the algorithm outputs the public
parameter params.

KeyGen
(

λk
)

: Each entity uses this randomized key generation algorithm to generate
a public–private key pair (pki, ski).

ReKeyGen
(
ski, ω, pk j

)
: Input the private key ski of the sender, the condition value ω

and the public key pk j of the receiver, the re-encryption key generation algorithm outputs
the re-encryption key rki ω→j from sender i to receiver j.

Enc1(pki, m): Input the public key pki of the sender and plaintext m, the first layer encryp-
tion algorithm outputs the first layer ciphertext CTi. The ciphertext cannot be re-encrypted.

Enc2(pki, m, ω): Input the public key pki of the sender, the plaintext m and the condi-
tion value ω, the second-layer encryption algorithm will output the second-layer ciphertext
CTi,ω. This ciphertext can be re-encrypted using an appropriate re-encryption key into a
first-layer ciphertext for different recipients.

ReEnc
(

CTi,ω, rki ω→j

)
: Input the second-layer ciphertext CTi,ω, the re-encryption key

rki ω→j, the proxy runs the re-encryption algorithm to output the first-layer ciphertext CTj .

Sensors 2024, 24, 438 7 of 16

Dec1
(
CTj, sk j

)
: Input the first-layer ciphertext CTj and private key sk j, the first-layer

decryption algorithm outputs plaintext m or error symbol ⊥.
Dec2(CTi,ω, ski): Input the second-layer ciphertext CTi,ω and private key ski, the

second-layer decryption algorithm outputs the plaintext message m or error symbol ⊥.
By introducing a conditional value into the generation of the re-encryption key and the

second layer encryption algorithm, the conditional proxy re-encryption algorithm ensures
that the proxy cannot perform unauthorized re-encryption.

4. End-to-End Encryption System Based on CPRE
4.1. System Framework

Our CPRE-based end-to-end encryption system consists of three types of entities: IoT
devices (referred to as the sender), message broker, and multiple authorized users (referred
to as the receiver).

Our system utilizes the conditional proxy re-encryption algorithm proposed by
Weng et al. [19] to achieve end-to-end encryption from the publisher to the subscribers in
pub/sub-based IoT system. The specific algorithm design can be found in the literature [19].
In our system, the device owner generates a re-encryption key for each authorized user
and send the re-encryption key to the Broker. The device acts as the sender and encrypts
the message with its public key and a condition value. The broker re-encrypts for each
subscriber using the corresponding re-encryption key. All authorized users can decrypt the
ciphertext using their private key. The framework of our system is shown in Figure 2.

The device
Broker

Owner of device

Other Authorized Users

Subscribe

Subscribe

Transfer of data information

Transferring re-encryption key information

The publisher P The subscriber S

𝑟𝑘
𝑃
𝜔0
ሱሮ𝑆𝑖

𝐶𝑇𝑃,𝜔 ൌ 𝐸𝑛𝑐2ሺ𝑝𝑘𝑃 ,𝑚,𝜔ሻ 𝐶𝑇𝑆𝑖 ൌ 𝑅𝑒𝐸𝑛𝑐ሺ𝐶𝑇𝑃,𝜔 , 𝑟𝑘𝑃𝜔
→𝑆𝑖

ሻ

Publish

Figure 2. The framework of IoT end-to-end encryption system.

CPRE differs from PRE in that its re-encryption key rkP ω→Si
and the second-layer

ciphertext CTP,ω are both associated with a condition value ω. If the authorization for
certain users need to be revoked, the device owner just need to generate a new condition
value ω

′
and send to the device. Then, the device owner generates a new re-encryption

key rk
Pω

′
→Si

for each remaining recipient with the device’s private key skP, the new condition

value ω
′
, and the public keys of the remaining authorized users pkSi . The owner no longer

generates re-encryption keys for the revoked users. The device uses the new condition
value ω

′
to generate the second layer ciphertext CTP,ω′ . The broker re-encrypts with the

new re-encryption key CTP,ω′ for the remaining authorized users, so that the remaining
legitimate users can decrypt the message correctly. Since the re-encryption key of the
revoked users is not updated, it is still associated with the previous condition value ω, and
the new ciphertext corresponds to the updated condition value ω

′
. Even if the broker is

compromised and still re-encrypts the message for the revoked users—as the condition
value in the re-encryption key and second layer ciphertext are not equal—the revoked user
cannot decrypt the re-encrypted ciphertext correctly with their private key.

Sensors 2024, 24, 438 8 of 16

4.2. System Workflow

Specifically, the workflow of our CPRE-based end-to-end encryption scheme includes
the following steps.

4.2.1. User Registration

When a user wants to utilize our system for device management or monitoring, he
must complete the user registration process through the client application. The algorithm
KeyGen

(
1k
)

of CPRE is integrated into the application, allowing the user to generate their

public and private key pairs
(

pkSi , skSi

)
. The user keeps their private key skSi secret.

4.2.2. Device Registration

When a user purchases a new IoT device, the user is the owner of the device and is
responsible for device registration and authorization control. Typically, a newly purchased
IoT device starts its life cycle with “device discovery” [3]. In this stage, the device owner
requests to add a device through the client APP, and the APP establishes a local connection
with the device to complete the device registration and the binding of the device and its
owner. We assumes that during the “device registration” phase, the device interacts with
the client APP of the device owner through a local connection, exchanging basic information
and performing mutual authentication. During the device registration process, the device
owner utilizes the built-in key generation algorithm KeyGen

(
1k) of the APP to generate

public and private key pairs (pkP, skP) for the device. Additionally, the owner generates a
random initial condition value ω0, and transfers the initial condition value ω0 and device’s
public–private key pair (pkP, skP) to the device through the “Local Connection” established
in registration phase. The device owner also keeps the private key skP of the device secretly,
which is used to generate the conditional re-encryption key for other authorized users.

4.2.3. Authorization Phase

When the device owner wants to authorize the access rights of the device to other
users, the device owner uses the private key skp of the device, the condition value ω0, and
the public key pkSi of each authorized user to generate a conditional re-encryption key rk

P
ω0→Si

for each authorized user, which will be sent to the broker of the publish–subscribe system.

4.2.4. Message Transmission Stage

The device runs the CPRE encryption algorithm, encrypts the collected informa-
tion with its public key pkP and condition value ω0 and obtain the ciphertext CTP,ω0 =
Enc2

(
pkp, m, ω0

)
, which will be sent to the broker. Then, the broker re-encrypts the cipher-

text according to the conditional re-encryption key rk
P

ω0→Si
of each authorized user and

sends the re-encrypted ciphertext CTSi = ReEnc
(

CTP,ω0 , rk
P

ω0→Si

)
to the corresponding autho-

rized user. Finally, each authorized user uses their private key skSi to decrypt the ciphertext
CTSi and obtains the plaintext m = Dec1

(
CTSi , skSi

)
.

4.2.5. Revocation Phase

When the device owner needs to revoke the access permission of one user, first, the
device owner randomly selects a new condition value ω1; then, the owner generates a new
conditional re-encryption key for each remaining authorized user with the user’s public
key pkSj , the device’s private key of skP, and the new condition value ω1. Furthermore,
the updated re-encryption keys are sent to the broker. Finally, the device owner encrypts
the new condition value with the public key of the device and sends the ciphertext to
the device.

The device decrypts with its private key skP to obtain the new condition value ω1,
it updates the condition value to the new one. Similarly, when the broker receives the
new conditional re-encryption key rk

P
ω1→Sj

distributed by the device owner, the conditional

Sensors 2024, 24, 438 9 of 16

re-encryption key will also be updated from rk
P

ω0→Si
to rk

P
ω1→Sj

. Then, the device encrypts the

message with the new condition value, and the broker re-encrypts with the new conditional
re-encryption key.

4.3. System Optimization
4.3.1. Hybrid Encryption

Most IoT devices are low-power devices with limited resources, so we use hybrid en-
cryption to further reduce device-side overhead. Before encrypting the collected messages,
the device first selects a random symmetric key k, encrypts the key with CPRE and sends to
the broker. Each authorized subscriber can decrypt the re-encrypted ciphertext with their
private key, thereby obtaining the same symmetric key k. Since then, subsequent commu-
nications between the device and each subscriber can be encrypted using the symmetric
key k.

4.3.2. Hash Chain

Whenever the set of authorized users changes (such as new users join or old users
are revoked), if CPRE is used to generate new conditional re-encryption keys for all
remaining authorized users, when the authorized user set changes frequently, generating
and transmitting conditional re-encryption keys imposes significant overhead on the device
owner. Therefore, when a new user joins, a symmetric key is distributed to the new user by
means of the hash chain [39]. The CPRE algorithm is used only when the user is revoked.

Specifically, the process of distributing a symmetric key to a new user by using a
hash chain is as follows: Assume that the symmetric key shared between the device and
each subscribing user is k before the new user joins. Before a new user joins, the device
owner uses k as the input of the one-way trapdoor function to obtain a new session key
k1 = Hash(k), and sends the new session key to the new joined user. At the same time, the
device owner broadcasts the key update command, so that the device and other legitimate
users can also update their shared key k to k1 through the one-way trapdoor function. Then,
the consistency of the shared session key between the device and all its authorized users
can be ensured.

4.4. System Analysis

Below, we analyze our CPRE-based end-to-end encryption system in IoT.

4.4.1. Satisfy Confidentiality

When a new user is authorized to join, the session key is updated through the hash
chain. Based on the unidirectionality of the hash function, the new user cannot deduce the
session key k before joining by using the session key k1.

When the user is revoked, the system uses CPRE to update the session key. The
device owner randomly selects a new condition value, and generates new conditional
re-encryption keys for the remaining users, but no longer generates new conditional re-
encryption keys for revoked users. Therefore, when the device uses CPRE encryption
to transmit a randomly selected new session key, the new condition value is used, and
the broker also uses the new conditional re-encryption key for re-encryption, so that the
remaining legitimate users can use their own private key to decrypt and obtain the new
session key. The conditional re-encryption key of the revoked user is also related to the
old condition value, even if the broker colludes with the revoked user, still re-encrypts
with the old conditional re-encryption key. As the condition value in the cipertext of the
device is not equal to the condition value in the revoked user’s re-encryption key, so the
revoked user cannot decrypt or obtain the new session key. Based on the above analysis,
the revoked user cannot obtain a new session key even if he colludes with the broker. In
addition, our scheme is constructed based on the CPRE algorithm, and the broker can
only use the re-encryption key to convert the ciphertext, and cannot obtain any plaintext
message of the ciphertext based on the security proof of CPRE in [19].

Sensors 2024, 24, 438 10 of 16

4.4.2. Support Asynchronous Communication

When a new user joins, the session key is updated through the hash chain, and the
offline user does not affect the session key update process between the online user and the
device. When the user is revoked, the update of the conditional re-encryption key involves
the device owner. As long as the device owner is online, the broker can obtain the latest
conditional re-encryption key, and the device can obtain the latest conditional value, offline
users do not affect the process. In short, offline users do not affect the key update process
of online users, and our scheme supports asynchronous communication.

4.4.3. Support Decentralized Authorization

In our scheme, the authorization and revocation of device access rights are only
controlled by its owner and do not rely on trusted third parties. If a device owner is
compromised by an adversary, only the security of the owner and its managed devices will
be affected, and the security of other devices and users will not be affected.

4.4.4. Support the Decoupling of Publishers and Subscribers

Our scheme is designed based on the CPRE scheme. The device uses its public key
to encrypt the data. The device does not need to encrypt for each authorized user, and
does not need to care about which users subscribed to its data. The broker completes the
conversion and distribution of the ciphertext sent by the device. Therefore, the publisher
(ie, device) and subscriber (ie, user) in our scheme are decoupled, and their relationship is
controlled and managed by the device owner.

5. Prototype Implementation and Performance Analysis

This section implements the above-mentioned IoT end-to-end encryption system and
tests the system’s performance.

5.1. Implementation of the Prototype System

We implement each module based on the Java language. Our prototype system
includes three types of entities: the publisher, multiple subscribers, and the message
broker which can perform re-encryption operations. The implementation of the CPRE
algorithm [19] is based on the JPBC (the Java Pairing-Based Cryptography Library) [40]. The
establishment of the message broker is based on the open-source MQTT server HiveMQ [9],
which supports customized function extensions. The development of the publisher and
the subscriber is based on the Eclipse Paho Java Client library [41]. The prototype system
runs on a laptop configured with an Intel Core i7-5600U 2.6GHZ CPU and 8G RAM (Intel,
Santa Clara, CA, USA). The computer operating system is Windows 7. The development
environment of the publisher, subscriber, and Broker is IntelliJ IDEA 2018.1.6. The functions
of the publisher and subscriber are simulated using a Java console program.

5.1.1. CPRE Implementation

The CPRE scheme used in our system is constructed based on the symmetric bilinear
group. Therefore, we use the configuration file “a.properties” provided by the JPBC library
to generate a type A symmetric bilinear group based on a prime-order elliptic curve
y2 = x3 + xmodp(p ≡ 3mod4), while the base field size is 512 bits, and the embedding
degree is 2.

5.1.2. Implementation of Message Broker

The construction of Broker is based on the open-source MQTT server HiveMQ Com-
munity Edition [42], which provides the SDK (HiveMQ Extension SDK) [43] that supports
extension development. Through this, users can develop custom business logic to extend
the functions of HiveMQ with the SDK, such as intercepting or controlling MQTT messages,
integrating other services, statistics, and adding fine-grained security solutions. We use the
core part of HiveMQ to implement message routing and forwarding, implements message

Sensors 2024, 24, 438 11 of 16

re-encryption in a customized extension, and re-encrypts the message payload for each
subscriber based on the re-encryption key of each subscriber.

HiveMQ includes multiple types of Interceptors, which provide convenience for
intercepting and modifying MQTT messages in extensions. Our customized extension is
implemented through HiveMQ Interceptors. The goal of our customized extension is to
re-encrypt the payload of the message according to the subscriber’s re-encryption key after
the message is routed, but before the message is forwarded to the subscriber. Therefore,
our customized extension is implemented using the Publish Outbound Interceptor in
HiveMQ, which allows the extension to intercept the PUBLISH message after the broker is
routed, and allows different modifications to the payload corresponding to each subscriber.

5.1.3. Implementation of the Client

The implementation of the publisher and the subscriber is relatively easy, which is
based on the Eclipse Paho Java Client library and the JPBC library is added to support the
encryption and decryption of the published and received messages based on CPRE.

5.2. Performance Analysis

This section tests the performance of each module of our system based on the prototype
system built in the previous section.

5.2.1. Overhead of Distributing Session Keys Using CPRE

When the device receives a new condition value, it will randomly generate a new
session key. The key will be encrypted with the device’s public key and the new condition
value, and then ciphertext will be sent to the Broker. The broker re-encrypts the ciphertext
for each subscriber and sends the re-encrypted ciphertext to each subscriber. Each sub-
scriber decrypts the re-encrypted ciphertext with its private key, and obtains the session
key. When the device uses CPRE to transmit an AES (Advanced Encryption Standard) [44]
key (128 bits), the computational overhead of each module (device, broker, and subscriber)
in our system is shown in Figure 3.

2 4 6 80

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

Co
mp

uta
tio

n O
ver

hea
d(m

s)

N u m b e r o f U s e r

 U s e r
D e v i c e
 B r o k e r

Figure 3. Computation overhead of each module to distribute session key based on CPRE.

The computation overhead of the device is approximately 46 ms. The overhead of the
subscriber to is approximately 35 ms. The processing time required by the broker increases
linearly with the number of users. As shown in Figure 3, for each additional user, the
processing time of the Broker increases by approximately 9 ms. The Broker is generally
deployed on a server or cloud platform with rich resources, which can easily cope with

Sensors 2024, 24, 438 12 of 16

this overhead increase. The computation overhead of the device and users does not change
with the number of users, making it suitable for IoT devices with limited resources.

5.2.2. Overhead of Secure Communication

After the device and the subscriber have established a shared symmetric key, the
communication between the device and the subscribers are encrypted by the symmetric
encryption algorithm AES. We compare the computation overhead of the publisher and
subscriber when they use AES for message transmission than when they transmit in
plaintext.

For multiple message sizes (128 B, 512 B, 1 KB, 2 KB), Figure 4 shows that encrypted
transmission between the publisher and the subscriber incurs an increased overhead of
approximately 0.2–0.3 ms per message. Therefore, the use of symmetric keys for secure
transmission brings only a slightly increase in computation cost.

1 2 8 B 5 1 2 B 1 K B 2 K B0 . 0

0 . 1

0 . 2

0 . 3

Inc
rea

sed
 co

pu
tati

on
al o

ver
hea

d (
ms

)

M e s s a g e B l o c k S i z e

 P u b l i s h e r
 S u b s c r i b e r

Figure 4. Increased computation overhead for encrypted transfers.

5.2.3. Comparison with Related Schemes

Table 3 compares the current end-to-end encryption schemes in IoT in terms of secu-
rity, whether it supports decentralized authorization, whether it is convenient to deploy,
and performance.

Table 3. Comparison of existing end-to-end encryption scheme.

Scheme Confidentiality Decentralization Authorization Easy Deploy Performance

[14] No No Yes -

[5] Yes No Yes Fast

[22] Yes No No -

[23] Yes No No -

[15] Yes No Yes Comparable to [20]

[20] Yes Yes Yes Slow (encrypt ≈ 42 ms,
decrypt ≈ 62 ms)

Our scheme Yes Yes Yes Faster than [20] (encrypt ≈ 46 ms,
decrypt ≈ 35 ms)

Note: - represents the performance of these schemes was not evaluated on our prototype.

Sensors 2024, 24, 438 13 of 16

• Security: The message brokers in most IoT systems are not completely trusted. In a
scheme that completely relies on the message broker, the broker can obtain all the
information of the user, which does not meet the confidentiality requirements.

• Support decentralized authorization: If relying on a third-party trusted key server, the
authorization and revocation of device access rights must be completed through the
key server, and decentralized authorization is not supported. PICADOR relies on a
trusted authority to generate re-encryption keys for all users of the system and does
not support decentralized authorization too.

• Easy to deploy: Reference [22] divides the functions of a broker into multiple ones,
and new brokers need to be customized to meet the corresponding functions. Refer-
ence [39] needs to install special hardware, which is difficult to deploy.

• Performance: The schemes that rely on trusted brokers do not meet the confidentiality
requirements, and the literature [22,23] is difficult to deploy. Therefore, these schemes
are not re-implemented on our experimental platform. Ref. [5] relies on a trusted
key server, the scheme uses symmetric key to establish session key, so [5] distributes
symmetric keys faster than our scheme. However, in the secure communication stage,
the overhead of using symmetric keys to encrypt and transmit messages is equal to
our scheme. Ref. [20] implements the scheme of PICADOR, whose performance is
comparable to [20]. In order to have a fair comparison with [20], we re-implement the
WKD-IBE algorithm in [20] using our crypto library. In [20], the encryption algorithm
takes almost 42 ms to encrypt 128 bits of data, and the decryption algorithm takes
about 62 ms to decrypt and obtain the plaintext (the decryption time contains the
time to generate a decryption key for the encrypted pattern and time to decrypt the
ciphertext. When testing the computation overhead, we use a pattern of 20 attributes
representing the URI and the last six attributes representing the time.). The encryption
overhead of our scheme is comparable to that presented in [20], while the decryption
cost is approximately half that presented in [20].

Above all, some existing schemes rely on the trustworthiness of the broker, and their
security assumptions are strong, which cannot meet the confidentiality requirements; some
schemes rely on a third-party trusted server for authorization and revocation, and do not
support decentralized authorization; some solutions need a customized broker or rely on
special hardware, which is inconvenient to deploy. Ref. [20] is a solution with good security
and deployability. However, it relies on the more complex WKD-IBE algorithm, and its
performance is lower compared to our proposed solution.

6. Conclusions

In the publish–subscribe-based IoT system, the communication between devices and
users is not one-to-one direct communication, but one-to-many asynchronous communi-
cation and forwarded by the broker located in the middle. Currently, TLS is commonly
employed to safeguard the security of data transmission between the device and the broker.
However, the broker has the ability to access the plaintext of all messages, rendering this
method ineffective in preventing the security and privacy risks posed by untrustworthy
brokers to device data. We present and implement a new end-to-end encryption system
based on conditional proxy re-encryption. Theoretical analysis and experimental results
demonstrate that our proposed scheme is not only theoretically safe, but also highly practi-
cal, feasible, and efficient in practice. However, our system cannot efficiently revoke users,
which will form the focus of our future research.

Author Contributions: Conceptualization, S.L. and L.C.; methodology, S.L. and N.K.; software, S.L.;
validation, S.L., L.C. and N.K.; writing—original draft preparation, L.C.; writing—review and editing,
S.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Sensors 2024, 24, 438 14 of 16

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are included in
this article.

Acknowledgments: We thank anonymous reviewers for their useful comments.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of Things
CPRE conditional proxy re-encryption
MQTT Message Queuing Telemetry Transport
AMQP Advanced Message Queuing Protocol
TLS Transport Layer Security
PRE proxy re-encryption
CPS Cyber–Physical Systems
WKD-IBE identity-based encryption with wildcards
JPBC The Java Pairing Based Cryptography Library
SDK HiveMQ Extension SDK
AES Advanced Encryption Standard

References
1. Banks, A.; Briggs, E.; Borgendale, K.; Gupta, R. MQTT, Version 5.0; Technical Report, OASIS Standard; OASIS: Burlington, MA,

USA,2019.
2. Godfrey, R.; Ingham, D.S.R. Advanced Message Queuing Protocol (AMQP), Version 1.0; Technical Report, OASIS Standard; OASIS:

Burlington, MA, USA, 2012.
3. Zhou, W.; Jia, Y.; Yao, Y.; Zhu, L.; Guan, L.; Mao, Y.; Liu, P.; Zhang, Y. Discovering and Understanding the Security Hazards in the

Interactions between IoT Devices, Mobile Apps, and Clouds on Smart Home Platforms. In Proceedings of the 28th USENIX
Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, 14–16 August 2019; Heninger, N., Traynor, P., Eds.; USENIX
Association: Berkeley, CA, USA, 2019; pp. 1133–1150.

4. Wilson, J.; Wahby, R.S.; Corrigan-Gibbs, H.; Boneh, D.; Levis, P.A.; Winstein, K. Trust but Verify: Auditing the Secure Internet of
Things. In Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services, MobiSys’17,
Niagara Falls, NY, USA, 19–23 June 2017; Choudhury, T., Ko, S.Y., Campbell, A., Ganesan, D., Eds.; ACM: New York, NY, USA,
2017; pp. 464–474. [CrossRef]

5. Dahlmanns, M.; Pennekamp, J.; Fink, I.B.; Schoolmann, B.; Wehrle, K.; Henze, M. Transparent End-to-End Security for
Publish/Subscribe Communication in Cyber-Physical Systems. In Proceedings of the SAT-CPS@CODASPY 2021, Proceedings
of the 2021 ACM Workshop on Secure and Trustworthy Cyber-Physical Systems, Virtual Event, 28 April 2021; Gupta, M.,
Abdelsalam, M., Mittal, S., Eds.; ACM: New York, NY, USA, 2021; pp. 78–87. [CrossRef]

6. Maggi, F.; Vosseler, R.; Quarta, D. The Fragility of Industrial IoT’s Data Backbone: Security and Privacy Issues in MQTT and CoAP
Protocols; Technical Report, Trend Micro Research; Trend Micro Inc.: Tokyo, Japan, 2018.

7. Huq, N.; Vosseler, R.; Swimmer, M. Cyberattacks against Intelligent Transportation Systems; Technical Report, Trend Micro
Research; 2017.

8. EMQ. EMQX Broker Docs; v4.3; Technical report; EMQ: Hong Kong, China, 2021.
9. HiveMQ. HiveMQ Documentation; v4.7; Technical Report; HiveMQ: Landshut, Germany, 2021.
10. Solace. Solace Cloud; Technical Report; Solace: Ottawa, ON, Canada, 2021.
11. Alibaba. Alibaba Cloud Iot Platform; Technical report; Alibaba: Hangzhou, China, 2021.
12. Amazon. Aws Iot Core; Technical Report; Amazon: Bellevue, WA, USA, 2021.
13. Henze, M.; Matzutt, R.; Hiller, J.; Mühmer, E.; Ziegeldorf, J.H.; van der Giet, J.; Wehrle, K. Complying With Data Handling

Requirements in Cloud Storage Systems. IEEE Trans. Cloud Comput. 2022, 10, 1661–1674. [CrossRef]
14. Jia, Y.; Xing, L.; Mao, Y.; Zhao, D.; Wang, X.; Zhao, S.; Zhang, Y. Burglars’ IoT Paradise: Understanding and Mitigating Security

Risks of General Messaging Protocols on IoT Clouds. In Proceedings of the 2020 IEEE Symposium on Security and Privacy, SP
2020, San Francisco, CA, USA, 18–21 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 465–481. [CrossRef]

15. Borcea, C.; Gupta, A.D.; Polyakov, Y.; Rohloff, K.; Ryan, G.W. PICADOR: End-to-end encrypted Publish-Subscribe information
distribution with proxy re-encryption. Future Gener. Comput. Syst. 2017, 71, 177–191. [CrossRef]

http://doi.org/10.1145/3081333.3081342
http://dx.doi.org/10.1145/3445969.3450423
http://dx.doi.org/10.1109/TCC.2020.3000336
http://dx.doi.org/10.1109/SP40000.2020.00051
http://dx.doi.org/10.1016/j.future.2016.10.013

Sensors 2024, 24, 438 15 of 16

16. Blaze, M.; Bleumer, G.; Strauss, M. Divertible Protocols and Atomic Proxy Cryptography. In Proceedings of the Advances in
Cryptology-EUROCRYPT’98, International Conference on the Theory and Application of Cryptographic Techniques, Espoo,
Finland, 31 May–4 June 1998; Nyberg, K., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1998;
Volume 1403, pp. 127–144. [CrossRef]

17. Lee, E. Improved Security Notions for Proxy Re-Encryption to Enforce Access Control. In Proceedings of the Progress in
Cryptology-LATINCRYPT 2017-5th International Conference on Cryptology and Information Security in Latin America, Havana,
Cuba, 20–22 September 2017; Revised Selected Papers; Lange, T., Dunkelman, O., Eds.; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2017; Volume 11368, pp. 66–85. [CrossRef]

18. Weng, J.; Deng, R.H.; Ding, X.; Chu, C.; Lai, J. Conditional proxy re-encryption secure against chosen-ciphertext attack. In
Proceedings of the 2009 ACM Symposium on Information, Computer and Communications Security, ASIACCS 2009, Sydney,
Australia, 10–12 March 2009; Li, W., Susilo, W., Tupakula, U.K., Safavi-Naini, R., Varadharajan, V., Eds.; ACM: New York, NY,
USA, 2009; pp. 322–332. [CrossRef]

19. Qiu, J.; Hwang, G.; Lee, H. Efficient Conditional Proxy Re-encryption with Chosen-Ciphertext Security. In Proceedings of the
Ninth Asia Joint Conference on Information Security, AsiaJCIS 2014, Wuhan, China, 3–5 September 2014; Computer Society; IEEE:
Piscataway, NJ, USA, 2014; pp. 104–110. [CrossRef]

20. Kumar, S.; Hu, Y.; Andersen, M.P.; Popa, R.A.; Culler, D.E. JEDI: Many-to-Many End-to-End Encryption and Key Delegation for
IoT. In Proceedings of the 28th USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, 14–16 August 2019;
Heninger, N., Traynor, P., Eds.; USENIX Association: Berkeley, CA, USA, 2019; pp. 1519–1536.

21. Abdalla, M.; Catalano, D.; Dent, A.W.; Malone-Lee, J.; Neven, G.; Smart, N.P. Identity-Based Encryption Gone Wild. In
Proceedings of the Automata, Languages and Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy, 10–14 July
2006; Bugliesi, M., Preneel, B., Sassone, V., Wegener, I., Eds.; Proceedings, Part II; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2006; Volume 4052, pp. 300–311. [CrossRef]

22. Belguith, S.; Cui, S.; Asghar, M.R.; Russello, G. Secure publish and subscribe systems with efficient revocation. In Proceedings of
the 33rd Annual ACM Symposium on Applied Computing, SAC 2018, Pau, France, 9–13 April 2018; Haddad, H.M., Wainwright,
R.L., Chbeir, R., Eds.; ACM: New York, NY, USA, 2018; pp. 388–394. [CrossRef]

23. Segarra, C.; Delgado-Gonzalo, R.; Schiavoni, V. MQT-TZ: Secure MQTT Broker for Biomedical Signal Processing on the Edge. In
Proceedings of the Digital Personalized Health and Medicine-Proceedings of MIE 2020, Medical Informatics Europe, Geneva,
Switzerland, 28 April–1 May 2020; Pape-Haugaard, L.B., Lovis, C., Madsen, I.C., Weber, P., Nielsen, P.H., Scott, P., Eds.; Studies in
Health Technology and Informatics; IOS Press: Amsterdam, The Netherlands, 2020; Volume 270, pp. 332–336. [CrossRef]

24. Maene, P.; Götzfried, J.; de Clercq, R.; Müller, T.; Freiling, F.C.; Verbauwhede, I. Hardware-Based Trusted Computing Architectures
for Isolation and Attestation. IEEE Trans. Comput. 2018, 67, 361–374. [CrossRef]

25. Sabt, M.; Achemlal, M.; Bouabdallah, A. Trusted Execution Environment: What It is, and What It is Not. In Proceedings of
the 2015 IEEE TrustCom/BigDataSE/ISPA, Helsinki, Finland, 20–22 August 2015; IEEE: Piscataway, NJ, USA, 2015; Volume 1,
pp. 57–64. [CrossRef]

26. Mambo, M.; Okamoto, E. Proxy Cryptosystems: Delegation of the Power to Decrypt Ciphertexts (Special Section on Cryptography
and Information Security). IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 1997, 80, 54–63.

27. Weng, J.; Yang, Y.; Tang, Q.; Deng, R.H.; Bao, F. Efficient Conditional Proxy Re-encryption with Chosen-Ciphertext Security. In
Proceedings of the Information Security Conference, Pafos, Cyprus, 18–20 May 2009.

28. Shao, J.; Wei, G.; Ling, Y.; Xie, M. Identity-Based Conditional Proxy Re-Encryption. In Proceedings of the 2011 IEEE International
Conference on Communications (ICC), Kyoto, Japan, 5–9 June 2011; pp. 1–5.

29. Liang, K.; Liu, Z.; Tan, X.; Wong, D.S.; Tang, C. A CCA-Secure Identity-Based Conditional Proxy Re-Encryption without Random
Oracles. In Proceedings of the International Conference on Information Security and Cryptology, Seoul, Republic of Korea, 28–30
November 2012.

30. He, K.; Weng, J.; Deng, R.H.; Liu, J.K. On the security of two identity-based conditional proxy re-encryption schemes. Theor. Comput. Sci.
2016, 652, 18–27. [CrossRef]

31. Fang, L.; Susilo, W.; Ge, C.; Wang, J. Chosen-ciphertext secure anonymous conditional proxy re-encryption with keyword search.
Theor. Comput. Sci. 2012, 462, 39–58. [CrossRef]

32. Seo, J.W.; Yum, D.H.; Lee, P.J. Proxy-invisible CCA-secure type-based proxy re-encryption without random oracles. Theor. Comput. Sci.
2013, 491, 83–93. [CrossRef]

33. Son, J.; Kim, D.; Hussain, R.; Oh, H. Conditional proxy re-encryption for secure big data group sharing in cloud environment.
In Proceedings of the 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON,
Canada, 27 April–2 May 2014; pp. 541–546.

34. Liang, K.; Susilo, W.; Liu, J.K.; Wong, D.S. Efficient and Fully CCA Secure Conditional Proxy Re-Encryption from Hierarchical
Identity-Based Encryption. Comput. J. 2015, 58, 2778–2792. [CrossRef]

35. Ge, C.; Susilo, W.; Wang, J.; Fang, L. Identity-based conditional proxy re-encryption with fine grain policy. Comput. Stand. Interfaces
2017, 52, 1–9. [CrossRef]

36. Xiong, H.; Wang, Y.; Li, W.; Chen, C. Flexible, Efficient, and Secure Access Delegation in Cloud Computing. ACM Trans. Manag.
Inf. Syst. (TMIS) 2019, 10, 2. [CrossRef]

http://dx.doi.org/10.1007/BFb0054122
http://dx.doi.org/10.1007/978-3-030-25283-0_4
http://dx.doi.org/10.1145/1533057.1533100
http://dx.doi.org/10.1109/AsiaJCIS.2014.11
http://dx.doi.org/10.1007/11787006_26
http://dx.doi.org/10.1145/3167132.3167176
http://dx.doi.org/10.3233/SHTI200177
http://dx.doi.org/10.1109/TC.2017.2647955
http://dx.doi.org/10.1109/Trustcom.2015.357
http://dx.doi.org/10.1016/j.tcs.2016.08.023
http://dx.doi.org/10.1016/j.tcs.2012.08.017
http://dx.doi.org/10.1016/j.tcs.2012.11.026
http://dx.doi.org/10.1093/comjnl/bxv050
http://dx.doi.org/10.1016/j.csi.2016.12.005
http://dx.doi.org/10.1145/3318212

Sensors 2024, 24, 438 16 of 16

37. Paul, A.; Selvi, S.S.D.; Rangan, C.P. A Provably Secure Conditional Proxy Re-Encryption Scheme without Pairing. J. Internet Serv. Inf. Secur.
2019, 11, 1–21.

38. Katz, J.; Lindell, Y. Introduction to Modern Cryptography, 2nd ed.; Computer Science, Mathematics, 2014. Available online:
https://api.semanticscholar.org/CorpusID:9506320 (accessed on 28 November 2023).

39. Canetti, R.; Malkin, T.; Nissim, K. Efficient Communication-Storage Tradeoffs for Multicast Encryption. In Proceedings of the
Advances in Cryptology-EUROCRYPT’99, International Conference on the Theory and Application of Cryptographic Techniques,
Prague, Czech Republic, 2–6 May 1999; Stern, J., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany,
1999; Volume 1592, pp. 459–474. [CrossRef]

40. Caro, A.D.; Iovino, V. jPBC: Java pairing based cryptography. In Proceedings of the 16th IEEE Symposium on Computers and
Communications, ISCC 2011, Kerkyra, Corfu, Greece, 28 June–1 July 2011; IEEE Computer Society: Piscataway, NJ, USA, 2011;
pp. 850–855. [CrossRef]

41. e Foundation. Eclipse Paho Java Client; Technical Report; e Foundation: Paris, France, 2021.
42. HiveMQ. Hivemq-Community-Edition; Technical Report; HiveMQ: Landshut, Germany, 2021.
43. HiveMQSDK. HiveMQ Extension SDK 4.7.1 API; Technical Report; HiveMQSDK: Hongkong, China, 2021.
44. Dirk, F. AES; Datenschutz und Datensicherheit, Advanced Encryption Standard (AES). 1999. Available online: https://api.

semanticscholar.org/CorpusID:31476420 (accessed on 28 November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://api.semanticscholar.org/CorpusID:9506320
http://dx.doi.org/10.1007/3-540-48910-X_32
http://dx.doi.org/10.1109/ISCC.2011.5983948
https://api.semanticscholar.org/CorpusID:31476420
https://api.semanticscholar.org/CorpusID:31476420

	Introduction
	Related Works
	End-to-End Encryption in IoT
	Conditional Proxy Re-Encryption Schemes

	Preliminaries
	End-to-End Encryption System Based on CPRE
	System Framework
	System Workflow
	User Registration
	Device Registration
	Authorization Phase
	Message Transmission Stage
	Revocation Phase

	System Optimization
	Hybrid Encryption
	Hash Chain

	System Analysis
	Satisfy Confidentiality
	Support Asynchronous Communication
	Support Decentralized Authorization
	Support the Decoupling of Publishers and Subscribers

	Prototype Implementation and Performance Analysis
	Implementation of the Prototype System
	CPRE Implementation
	Implementation of Message Broker
	Implementation of the Client

	Performance Analysis
	Overhead of Distributing Session Keys Using CPRE
	Overhead of Secure Communication
	Comparison with Related Schemes

	Conclusions
	References

