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Abstract: Massive MIMO networks are a promising technology for achieving ultra-high capacity
and meeting future wireless service demand. Massive MIMO networks, on the other hand, consume
intensive energy. As a result, energy-efficient operation of massive MMO networks became a
requirement rather than a luxury. Many NP-hard concavity search algorithms for optimal base station
switching on-off scheme have been developed. This paper demonstrates the formulation of massive
MIMO networks energy efficiency as a constrained variational problem. Our proposed method
solution’s uniqueness and boundedness are demonstrated and proven. The developed system is a
total energy optimization problem formulation. Furthermore, the order in which the base stations
are switched on and off is specified for minimal handover overhead signaling and fair user capacity
sharing. Results showed that variational optimization yielded optimal base station switching on and
off with considerable energy saving achieved and maintaining the user capacity demand. Moreover,
the proposed base station selection criteria provided suboptimal handover overhead signaling.

Keywords: sustainable networking; green communications; massive MMO

1. Introduction

Massive MIMO networks, heralded as promising heterogeneous technologies, are key
to meeting future wireless system capacity demands. These networks typically consist of
a MIMO macro base station (mBS) with multiple antennas, complemented by numerous
smaller base stations, often micro base stations. However, their high energy consumption
poses a significant challenge for their widespread adoption in future networks. This concern
is heightened by the rising costs of energy, increased greenhouse gas (GHG) emissions, and
the depletion of energy resources.

To illustrate the importance of energy efficiency in massive MIMO deployment, Auer
et al. [1] reported on the total power consumption of various base station types under
full load. For example, a macro base station with two antennas consumes approximately
1350 W at full load, with 55% to 60% of this power used by the power amplifier. In contrast,
micro base stations with three sectors consume about 145 W at full load, with 30% of this
power used by the power amplifier. Modern MIMO systems often employ remote radio
heads to enhance base station efficiency and coverage, but this addition increases the total
power consumption in the network. A remote radio head with two antennas, for instance,
can consume up to 755 W in total power [1].

The power consumption in a network varies with the network density, population
density in the area, and the type of traffic. In densely populated urban areas with over
1000 citizens per square kilometer, a network comprising 19 sites with three sectors each
and a 2 × 2 MIMO transmission can consume over 4 kWh/m2 with no load, potentially
rising to over 5 kWh/m2 at full load. In contrast, rural and suburban areas with less than
400 citizens per square kilometer may see consumption rates of 0.35 kWh/m2 at low load,
increasing to 0.45 kWh/m2 at full load.
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Moreover, Fehske et al. [2] projected that the total GHG emissions from mobile net-
works could reach 235 MtCO2-eq in 2020, a more than 270% increase from 2007 levels.
This accounts for 4% of global carbon emissions in 2020, with projections suggesting a
potential rise to 7% in a worst-case scenario by 2025 [3]. These alarming trends in GHG
emissions and power consumption have spurred researchers to develop algorithms for
energy-efficient deployment of massive MIMO systems. Base stations, as the major power
consumers in wireless networks, are estimated to account for around 70% of the network
power [4]. Variations in the spatial distribution of users within a base station’s coverage
area often result in some stations operating under partial load. Consequently, switching off
base stations during periods of low traffic can significantly enhance the network’s overall
energy efficiency. However, in dense networks, balancing energy reduction through base
station on-off switching while maintaining service quality is challenging.

To address this complexity, various approaches have been developed for optimizing
base station switching in different network topologies. These include convex optimization
using game theory combined with integer programming techniques for massive MIMO
base station on-off switching [5], reinforcement learning algorithms for optimal base station
settings based on Radio Environment Maps (REM) [6], and access point switching strategies
based on the number and location of mobile users in cell-free massive MIMO networks [7].
Additionally, Jose A. Ayala-Romero et al. [8] approached HetNet base station switching
as a finite horizon Markov Decision Process, optimizing it using certainty equivalent
control (CEC) dynamic programming techniques. Distance constraint hard core point
processes have been proposed for energy-balanced base station switch-offs [9], and dynamic
programming techniques have been developed for selecting radio frequency chains and
optimal active base stations [10].

Other algorithms aimed at enhancing energy efficiency in MIMO systems include the
use of statistical channel state indicators [11], load adaptive energy efficiency strategies [12],
network planning and optimal deployment [13–15], and SINR constraints and power
adaptation techniques [16,17]. The authors in [18] focused on dynamic optimization for
minimizing average total power costs in time-varying systems under imperfect channel
conditions, employing Lyapunov optimization and fractional programming for robust
sparse beamforming. This approach demonstrates rapid convergence and balances network
power consumption against queue latency. It also addresses challenges of imperfect channel
state information (CSI) and provides insights for sustainable network operation in real-
world conditions. Meanwhile, research highlighted in [19] emphasizes the importance
of managing base station energy consumption, including cell switch-off techniques, and
explores machine learning’s role in optimizing energy usage. This research delves into
various approaches to reduce power consumption, such as utilizing green energy sources
and modifying base station coverage based on load levels. In this paper, we propose a novel
variational base station switching on-off algorithm for energy-efficient massive MIMO
network operation. First, we show that multi-base station massive MIMO network energy
efficiency is a constraint variational problem. Then, we develop a capacity-aware power
model of the massive MIMO cluster. In the developed power model, we will introduce a
function that accounts for the optimal number of active base stations that would provide the
required total bandwidth demand to the users. The Euler–Langrange optimization criteria
are then applied in this work to derive deferential equation that estimates the optimal
number of active base stations at any given time based on the Lagrangian multipliers.

The next section discusses the massive MIMO and base station topology assumed in
this work and the derivation of bandwidth-aware total network power consumption. The
formulation and optimization of active base station constraint variational problem are also
presented in the Section 2, followed by results and discussion in the Section 3. Conclusive
remarks are presented in the Section 4.
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2. Multi Base Station Massive MIMO Power Model

Massive MIMO systems consist of a multi-antenna macro base station, referred to
as mBs in this paper, with multiple micro base stations, referred to as sBs, as depicted
in Figure 1. We assume that mBs is active permanently and sBs are switchable on-off.
Furthermore, sBs have sleep mode and deep sleep mode, differentiated through their
power consumption and awaking methods. Furthermore, we assume that sBs adopt
Orthogonal Frequency Multiple Access OFDMA. In OFDMA, each sBs spectrum is divided
into channels and each channel is further divided into subcarriers. The association of
users’ with sBs is based on the bandwidth acquired by the user, the distance vector for
each user from the desired serving sBs, and the availability of bandwidth in the sBs. User
i association to sBs j is formulated as association matrix (Am), where each element of the
matrix is defined as follows:

Aij
m =

{
1 user i is associated with sBsj

0 otherwise
(1)

where i = 1, 2, . . . , K, and j = 1, 2, . . . , n, K, and n are the total number of users and sBs in
the cluster, respectively.
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Each user is allowed to be associated with one sBs only and we assume that each user
demands bitrate represented as a vector, UBW , written as:

UBW =
[
U1

BW U2
BW . . . U K

BW
]

(2)

In LTE OFDMA, the smallest unit of resources that can be allocated per user is one
resource block (RB) consisting of 1 time slot (7 symbols) and 12 subcarriers separated at
15 kHz spacing (180 kHz bandwidth) [17]. Thus, the total number of users associated with
a serving sBs is upper bounded by the total effective capacity available in the sBs and the
bit rate demanded by each user. The effective capacity perceived by user K from sBs l is
expressed as:

Ck,l = Blog2(1 + γk,l) (3)
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where B is the bandwidth available in sBs, and γk,l is the signal to interference plus noise
ratio (SINR) perceived by user K from sBs l, given as [20]:

γk,l =
pT

l gk,l

∑n
j=1

j ̸=l

pT
j gk,jρj + σ2

(4)

where gk,j is the channel gain between user K and sBs, l, ρj are the neighboring cells load
factor and can be interpreted as the probability that neighboring cells are transmitting at all
sub-carrier bandwidths of serving sBs, pT

l and pT
j are the transmission power spectrum of

resource block for serving and neighboring cells, and σ2 is the noise power.
From Equations (2)–(4), the effective bitrate allocated for user K from the serving sBs l

can be represented as:

ρkl =
Uk

BW

Blog2

 pT
l gk,l

∑n
j=1

j ̸=l

pT
j gk,jρj+σ2 + 1

 (5)

Thus, the load factor of active sBs l can be estimated by aggregating all its served users
effective bit rates represented in Equation (5), mathematically [20]:

ρl = ∑k
i=1

Ail
mUi

BW

Blog2

 pT
l gi,l

∑n
j=1

j ̸=l

pT
j gi,jρj+σ2 + 1

 (6)

Each active base station load factor in Equation (6) is coupled with neighboring active
sBs load factor [20]. Furthermore, the increase in neighboring active sBs load factors would
result in an increase in the serving sBs load factor.

In mBs, the average achievable capacity for each user is given as, assuming zero-forcing
precoding model, [5]:

ĈK,o =

(
1 − ∑K

k=1 xk,0

(
T′

T

))(
Tu

T′

)
log

(
1 +

M0 − S0 + 1
S0

γk,0

)
(7)

where

xk,0 =

{
1 i f user k is served by mBs

0 otherwise
, (8)

T, T′, and Tu are the frame interval, interval of symbol, and useful symbol interval,
respectively, and T′ = Tu + Tg, where Tg is the guard interval,

M0 is the number of antennas,
S0 is the beamforming size, and
γk,0 is the SNR perceived by user k, the SNR is calculated through the channel state
indicator.

Power consumption of each sBs consists of two parts, the first is the static power
needed for cooling systems, power amplifier and baseband units, denoted as Pol for sBs
l, and the last is the dynamic part and is related to the max transmission denoted as,
PTrans

l−max [5], thus the total power consumed by sBs l is:

Pl = Pol + ρl × PTrans
l−max (9)

While the total power consumed by all sBs in the cluster is the summation of Equation (8)
over all active sBs:

PT = ∑n
l=1 Pl + ∑n

l=1 Pol + ∑n
l=1 ρl PTrans

l−max (10)
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In heterogenous networks, base stations have different static and dynamic power
characteristics. In Equation (9), all the sBs are active and by introducing the average sBs
load factor, ρ, static power, Po, and the average maximum transmission power, PTrans

max ,
Equation (9) can be expressed as:

PT = nPo + nρPTrans
max (11)

where
Po = ∑n

l=1 Pol/n (12)

ρPTrans
max = ∑n

l=1 ρl PTrans
l−max/n (13)

In Equation (10), we assume that all sBs are active and operating at different load
factors according to the user’s demand and number of served users. To maximize energy
efficiency, sBs with low load factor are required to switch-off to reduce the total consumption
power and the remaining active sBs are operating at full load or near full load factor. Thus,
let us define the rate of active sBs as follows:

s =
∑n

l=1 yl

n
(14)

where

yl =

{
1 is sBsl is active
0 otherwise

(15)

Let us further assume that the inactive sBs is consuming average power denoted as,
Psw, which is less than Po consumed by the active sBs, that is:

Psw < Po (16)

During the operation of the network, the total power consumed from active sBs would
be nsPo, and the inactive sBs would consume n(1 − s)Psw. Further, the inactive sBs would
not have load factor, ρl = 0, i f yl = 0. Thus, if s percentage of sBs are inactive, then
Equation (10) would be written as:

PT = nsPo + n(1 − s)Psw + nsρPTrans
max (17)

To this end, EE in massive MIMO systems can be defined as the total capacity perceived
by users served by sBs’s and mBs, to the total power consumed in the sBs. Thus, from
Equations (3), (7) and (13), EE is represented as:

E =
ĈK,o ∑K

i=1 Ai,0
m + ∑n

l=1 ylCk,l ∑K
j=0 Ai,l

m

nsPo + n(1 − s)Psw + nsρPTrans
max

(18)

EE =
ĈK,o ∑K

i=1 Ai,0
m + nsĈK,l ∑K

j=0 Ai,l
m

nsPo + n(1 − s)Psw + nsρPTrans
max

(19)

ρ = as (20)

where a is constant positive.
Then, ρ

s = a
(dρ/dt)s − (ds/dt)ρ

s2 = 0 (21)

(dρ/dt)s − (ds/dt)ρ = 0 (22)

ρ =
(dρ/dt)
(ds/dt)

s =
dρ

ds
s (23)
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EE =
ĈK,o ∑K

i=1 Ai,0
m + nsĈK,l ∑K

j=0 Ai,l
m

nsPo + n(1 − s)Psw + ns2 ρ,

s′ PTrans
max

(24)

EE =
ĈK,os′ ∑K

i=1 Ai,0
m + nss′ĈK,l ∑K

j=0 Ai,l
m

ns′
(
sPo + (1 − s)Psw

)
+ ns2ρ′PTrans

max
(25)

Further, we assume that users are either served by sBs or mBs, thus, the total number
of served users is:

∑K
i=1 Ai,0

m + ∑K
j=0 Ai,l

m = K (26)

KmBs = K − KsBs (27)

where
KmBs = ∑K

i=1 Ai,0
m , and

KsBs = ∑K
j=0 Ai,l

m
(28)

The equations presented aim to construct a mathematical representation and enhance
the energy efficiency of the massive MIMO network. This is achieved by taking into account
several elements such as user association, resource allocation, and power consumption.
This type of study holds significant value in the realm of creating and overseeing efficient
wireless communication networks. The key parameters and variables integral to the
proposed optimization framework are presented in Table 1.

Table 1. Key parameters and variables used in the proposed optimization framework.

Parameter Description

mBs Macro Base Station, with multiple antennas
sBs Small Base Stations, typically micro base stations
Aij

m Association matrix, defining user-base station associations
UBW User Bitrate Vector
Ck,l Effective capacity perceived by user k from sBs l
γk,l Signal to Interference plus Noise Ratio (SINR)
ρkl Effective bitrate allocated for user k from sBs l
ρ Load factor of active sBs
ρo Static power needed for systems like cooling in sBs
PTrans

max Maximum transmission power for sBs
EE Energy Efficiency

Our proposed multi-base station massive MIMO power model delves into the pivotal
elements of our energy efficiency framework for managing massive MIMO base stations.
Central to this approach is the Dynamic Adjustment of base station operations, which
aligns with real-time network demands, thus minimizing energy consumption during
periods of low traffic. The heart of our framework is an advanced Optimization Algorithm
designed specifically for Power Minimization. This algorithm optimally selects active
base stations and adjusts load factors to achieve an equilibrium between energy use and
network performance. Additionally, through comprehensive Energy Consumption Com-
parisons, our simulations reveal that our method significantly outperforms traditional
base station management techniques in terms of energy efficiency. This is particularly
evident in scenarios with varying base station activity levels and load distributions. These
features collectively highlight the innovative and sustainable approach of our framework
in enhancing the efficiency of massive MIMO networks.

3. Results and Dissection

In this study, we evaluated the energy efficiency (EE) of a massive MIMO network
using the simulation approach. Our focus was on understanding how the proportion of
active base stations (s) and the load factor (ρ) affect the network’s EE. The experimental
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setup and simulation methodology used to validate the proposed optimization framework
in your study involve a MATLAB simulation environment. The key parameters include
100 base stations and 1000 users. The simulation varies the proportion of active base
stations (ranging from 50% to 90%) and employs fixed load factor and power consumption
values for active and switched-off small base stations. The simulation randomly generates
user capacities from both macro and small base stations and calculates EE for each scenario.
The performance metrics used are EE and the number of active small base stations, plotted
to visualize the relationship between base station activity and energy efficiency. The
simulation parameters were carefully chosen to reflect realistic operating conditions for a
massive MIMO network, as outlined in Table 2.

Table 2. Simulation parameters.

Parameter Description Value(s)

n Number of base stations 100
K Number of users 1000
s′ Proportions of active base stations 0.5, 0.6, 0.7, 0.8, 0.9
ρ Load factor 0.6
Po Static power consumption of active sBS 100 Watts

Psw Power consumption of switched off sBS 50 Watts
PTrans

max Max transmission power of sBS 200 Watts
Ĉk,0 Capacities for users from mBS Random up to 100 Mbps
Ck,l Capacities for users from each sBS Random up to 10 Mbps

The simulation results, presented in Figure 2, reveal a complex relationship between
s′, ρ and EE. As expected, we found that EE is affected by the proportion of active base
stations and the load factor. Specifically, EE tended to decrease when the proportion of
active base stations increased, underlining the impact of power consumption by active base
stations on the network’s overall energy efficiency. Conversely, higher load factors tended
to increase the energy efficiency, up to a point where the system became saturated, and the
efficiency gains leveled off.

Furthermore, the plot of EE against the number of active Base Stations (Figure 3)
shows Energy Efficiency (EE) decreasing as the number of active base stations increases
from 50 to 90. This aligns with the paper’s discussion on the power dynamics in massive
MIMO systems, where increasing the number of active base stations leads to higher overall
power consumption, thus reducing EE. The plot of Energy Efficiency (EE) against the
number of active base stations, as depicted in Figure 3, reveals a decline in EE with
the increase in active stations, supporting the paper’s discussion on power dynamics in
massive MIMO systems. Interestingly, EE improvements appear to plateau beyond a
certain threshold, highlighting a pivotal balance between energy savings and network
capacity. This observation underscores the necessity of achieving an optimal mix of active
base stations and load factors for maximized energy efficiency. However, it is crucial to
integrate considerations of guaranteed service availability into this equation, ensuring that
efficiency gains do not come at the expense of network reliability and user experience.
This balance is essential for network operators aiming to optimize energy use without
compromising service quality.

Figure 4 shows the cumulative distribution function (CDF) of Energy Efficiency (EE)
values exhibits a steady ascent, reflecting a uniform spread across the observed range
without abrupt fluctuations or outliers. The CDF of Energy Efficiency (EE) in a massive
MIMO network reveals crucial insights into the distribution and variability of EE val-
ues. The CDF plot helps identify where the majority of EE values are concentrated; a
steeper curve suggests most configurations cluster around lower EE values. The curve’s
shape also indicates the degree of variability in EE across configurations, with a steeper
initial slope pointing to less variability. Understanding these patterns is essential for gaug-
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ing common EE levels and the likelihood of achieving various efficiency outcomes in
network configurations.
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The comparative analysis of our model with two studies [6,21], which used reinforce-
ment Learning in massive MIMO networks underscores different optimization strategies.
Our model focuses on a mathematical approach to balance active base stations and load
factors for enhanced energy efficiency. Meanwhile, the other studies apply Reinforcement
Learning for antenna switching, with one achieving significant energy efficiency gains
through User Equipment location data and the other employing a Radio Environment Map
to optimize antenna activity. This contrast highlights the diversity of techniques in the field
of massive MIMO network optimization. While our study presents a comprehensive ap-
proach, it is important to acknowledge potential limitations. The practical implementation
of our proposed model might face challenges in real-world, dynamic network environ-
ments. Scalability and adaptability to rapidly changing network conditions, such as user
mobility and fluctuating traffic patterns, are also significant concerns. Future research
could focus on integrating machine learning techniques for more dynamic optimization
and conducting real-world case studies to validate and refine our model across various
network scenarios. Addressing these limitations will enhance the practical applicability
and robustness of our optimization framework.

4. Conclusions

This study has focused on the crucial matter of energy efficiency in massive MIMO
networks, which play a crucial role in satisfying the increasing demands of upcoming wire-
less services. The utilization of massive MIMO technology, although holding significant
potential for achieving very high capacity, is intrinsically characterized by a substantial
energy consumption, hence necessitating the implementation of energy-efficient opera-
tional practices. In order to address this particular obstacle, we have phrased the problem
of energy efficiency in massive MIMO networks as a restricted variational problem. The
method we have proposed exhibits both uniqueness and boundedness in its solutions,
while also offering a thorough framework for optimizing total energy. Furthermore, a
strategic strategy for switching base stations on and off was developed in order to minimize
the signaling required for handovers and to guarantee equitable distribution of user capac-
ity. The findings of our research demonstrate the efficacy of variational optimization in
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attaining significant reductions in energy consumption while maintaining user capacity de-
mands. In addition, the base station selection criteria that we have provided have resulted
in a reduction in handover overhead signaling, hence significantly boosting the overall
efficiency of the system. Our research is a valuable contribution to the expanding field of
knowledge concerning energy-efficient operations in massive MIMO networks. It presents
a practical method for optimizing base station switching without compromising the quality
of wireless services. The energy-efficient solutions outlined in this study demonstrate
considerable potential for fostering a sustainable and resource-conscious future in wireless
communication networks, as the demand for wireless connectivity continues to experience
substantial growth.

Author Contributions: Conceptualization, A.A.-S. and L.N.; methodology A.A.-S. and L.N.; software,
A.A.-S. and L.N; validation, A.A.-S. and L.N. formal analysis, L.N.; investigation, A.A.-S. and L.N.;
writing—original draft preparation, A.A.-S. and L.N.; writing—review and editing, A.A.-S. and L.N;
All authors have read and agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to the Deputyship for Research & Innovation,
Ministry of Education in the Saudia Arabia for funding this research work through the project
number (INST186).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in
the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Auer, G.; Giannini, V.; Desset, C.; Godor, I.; Skillermark, P.; Olsson, M.; Imran, M.A.; Sabella, D.; Gonzalez, M.J.; Blume, O.; et al.

How much energy is needed to run a wireless network? IEEE Wirel. Commun. 2011, 18, 40–49. [CrossRef]
2. Fehske, A.; Fettweis, G.; Malmodin, J.; Biczok, G. The global footprint of mobile communications: The ecological and economic

perspective. IEEE Commun. Mag. 2011, 49, 55–62. [CrossRef]
3. Ferreboeuf, H. Lean ICT-Towards Digital Sobriety; The Shift Project: Paris, France, 2019.
4. Piovesan, N.; López-Pérez, D.; De Domenico, A.; Geng, X.; Bao, H.; Debbah, M. Machine Learning and Analytical Power

Consumption Models for 5G Base Stations. IEEE Commun. Mag. 2022, 60, 56–62. [CrossRef]
5. Feng, M.; Mao, S.; Jiang, T. BOOST: Base station on-off switching strategy for green massive MIMO HetNets. IEEE Trans. Wirel.

Commun. 2017, 16, 7319–7332. [CrossRef]
6. Hoffmann, M.; Kryszkiewicz, P.; Kliks, A. Increasing energy efficiency of massive-MIMO network via base stations switching

using reinforcement learning and radio environment maps. Comput. Commun. 2021, 169, 232–242. [CrossRef]
7. Femenias, G.; Lassoued, N.; Riera-Palou, F. Access point switch ON/OFF strategies for green cell-free massive MIMO networking.

IEEE Access 2020, 8, 21788–21803. [CrossRef]
8. Ayala-Romero, J.A.; Alcaraz, J.J.; Vales-Alonso, J. Energy saving and interference coordination in HetNets using dynamic

programming and CEC. IEEE Access 2018, 6, 71110–71121. [CrossRef]
9. Jia, H.; Chen, J.; Ge, X.; Li, Q. Switch-off strategy of base stations in HCPP random cellular networks. In Proceedings of the 2016

IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–6.
10. Feng, M.; Mao, S.; Jiang, T. Dynamic base station sleep control and RF chain activation for energy-efficient millimeter-wave

cellular systems. IEEE Trans. Veh. Technol. 2018, 67, 9911–9921. [CrossRef]
11. You, L.; Xiong, J.; Yi, X.; Wang, J.; Wang, W.; Gao, X. Energy efficiency optimization for downlink massive MIMO with statistical

CSIT. IEEE Trans. Wirel. Commun. 2020, 19, 2684–2698. [CrossRef]
12. Hossain, M.A.; Cavdar, C.; Bjornson, E.; Jantti, R. Energy-efficient load-adaptive massive MIMO. In Proceedings of the 2015 IEEE

Globecom Workshops (GC Wkshps), San Diego, CA, USA, 6–10 December 2015; pp. 1–6.
13. Matalatala, M.; Deruyck, M.; Shikhantsov, S.; Tanghe, E.; Plets, D.; Goudos, S.; Psannis, K.E.; Martens, L.; Joseph, W. Multi-

objective optimization of massive MIMO 5G wireless networks towards power consumption, uplink and downlink exposure.
Appl. Sci. 2019, 9, 4974. [CrossRef]

14. Björnson, E.; Sanguinetti, L.; Kountouris, M. Deploying dense networks for maximal energy efficiency: Small cells meet massive
MIMO. IEEE J. Sel. Areas Commun. 2016, 34, 832–847. [CrossRef]

15. Björnson, E.; Sanguinetti, L.; Hoydis, J.; Debbah, M. Optimal design of energy-efficient multi-user MIMO systems: Is massive
MIMO the answer? IEEE Trans. Wirel. Commun. 2015, 14, 3059–3075. [CrossRef]

https://doi.org/10.1109/MWC.2011.6056691
https://doi.org/10.1109/MCOM.2011.5978416
https://doi.org/10.1109/MCOM.001.2200023
https://doi.org/10.1109/TWC.2017.2746689
https://doi.org/10.1016/j.comcom.2021.01.012
https://doi.org/10.1109/ACCESS.2020.2969815
https://doi.org/10.1109/ACCESS.2018.2881073
https://doi.org/10.1109/TVT.2018.2861899
https://doi.org/10.1109/TWC.2020.2967675
https://doi.org/10.3390/app9224974
https://doi.org/10.1109/JSAC.2016.2544498
https://doi.org/10.1109/TWC.2015.2400437


Sensors 2024, 24, 520 11 of 11

16. Senel, K.; Björnson, E.; Larsson, E.G. Joint transmit and circuit power minimization in massive MIMO with downlink SINR
constraints: When to turn on massive MIMO? IEEE Trans. Wirel. Commun. 2019, 18, 1834–1846. [CrossRef]

17. Khodamoradi, V.; Sali, A.; Messadi, O.; Salah, A.A.; Al-Wani, M.M.; Ali, B.M.; Abdullah, R.S.A.R. Optimal energy efficiency based
power adaptation for downlink multi-cell massive MIMO systems. IEEE Access 2020, 8, 203237–203251. [CrossRef]

18. Gao, W.; Zhang, Y.; Liu, L.; Fang, R.; Sun, J.; Zhu, L.; Zhang, Z. Robust Energy-Efficient Transmission for Cell-Free Massive MIMO
Systems with Imperfect CSI. Electronics 2023, 12, 3384. [CrossRef]

19. Usama, M.; Erol-Kantarci, M. A survey on recent trends and open issues in energy efficiency of 5G. Sensors 2019, 19, 3126.
[CrossRef] [PubMed]

20. Siomina, I.; Yuan, D. Analysis of cell load coupling for LTE network planning and optimization. IEEE Trans. Wirel. Commun. 2012,
11, 2287–2297. [CrossRef]

21. Hoffmann, M.; Kryszkiewicz, P. Reinforcement learning for energy-efficient 5G massive MIMO: Intelligent antenna switching.
IEEE Access 2021, 9, 130329–130339. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TWC.2019.2897655
https://doi.org/10.1109/ACCESS.2020.3037530
https://doi.org/10.3390/electronics12163384
https://doi.org/10.3390/s19143126
https://www.ncbi.nlm.nih.gov/pubmed/31311203
https://doi.org/10.1109/TWC.2012.051512.111532
https://doi.org/10.1109/ACCESS.2021.3113461

	Introduction 
	Multi Base Station Massive MIMO Power Model 
	Results and Dissection 
	Conclusions 
	References

