Remote Sensing Retrieval of Cloud Top Height Using Neural Networks and Data from Cloud-Aerosol Lidar with Orthogonal Polarization
Abstract
:1. Introduction
2. Data and Matching
2.1. Aqua-MODIS Data
2.2. CALIOP Data
2.3. Data Preprocessing and Matching
3. Algorithms and Models
3.1. Correlation Analysis of Feature Parameters
3.2. Building and Training of Models
3.3. Evaluation Metrics of Models
4. Results
4.1. Statistic Analysis of Retrieval Performance
4.2. Statistical Analysis of Retrieval in Different Cloud Types
4.3. Geographical Application of the Models
4.3.1. A Case Retrieval during the Typhoon Lekima Period
4.3.2. Application of the Global CTH Retrieval
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, M.; Zhang, H.; Wang, H.; Zhu, L. Spatiotemporal variation characteristics of cloud top height in East Asia from 2000 to 2018. Adv. Clim. Chang. Res. 2020, 16, 591–599. [Google Scholar]
- Li, Q.; Sun, X.; Wang, X. Reliability evaluation of the joint observation of cloud top height by FY-4A and Himawari-8. Remote Sens. 2021, 13, 3851. [Google Scholar] [CrossRef]
- Moroney, C.; Davies, R.; Muller, J.P. Operational retrieval of cloud-top heights using MISR data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1532–1540. [Google Scholar] [CrossRef]
- Huang, Y.X.; Ma, S.; Bai, H. Error analysis of cloud-top height detection using stereoscopic observation method. J. Infrared Millim. Waves 2012, 31, 314–318. [Google Scholar] [CrossRef]
- Ma, S.; Huang, Y.X.; Yan, W.; Ai, W.H. Tri-linear array cloud stereoscopic detection technique. J. Infrared Millim. Waves 2014, 33, 164–171. [Google Scholar]
- Muller, J.P.; Mandanayake, A.; Moroney, C.; Davies, R.; Diner, D.J.; Paradise, S. MISR stereoscopic image matchers: Techniques and results. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1547–1559. [Google Scholar] [CrossRef]
- Simpson, J.J.; McIntire, T.; Jin, Z.; Stitt, J.R. Improved cloud top height retrieval under arbitrary viewing and illumination conditions using AVHRR data. Remote Sens. Environ. 2000, 72, 95–110. [Google Scholar] [CrossRef]
- Marchand, R.; Ackerman, T.; Smyth, M.; Rossow, W.B. A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Marchand, R.T.; Ackerman, T.P.; Moroney, C. An assessment of Multiangle Imaging Spectroradiometer (MISR) stereo-derived CTHs and cloud top winds using ground-based radar, lidar, and microwave radiometers. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Marchand, R.T.; Ackerman, T.P.; King, M.D.; Moroney, C.; Davies, R.; Muller, J.P.A.; Gerber, H. Multiangle observations of Arctic clouds from FIRE ACE: June 3, 1998, case study. J. Geophys. Res. Atmos. 2001, 106, 15201–15214. [Google Scholar] [CrossRef]
- Naud, C.M.; Baum, B.A.; Pavolonis, M.; Heidinger, A.; Frey, R.; Zhang, H. Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap. Remote Sens. Environ. 2007, 107, 200–210. [Google Scholar] [CrossRef]
- Naud, C.; Muller, J.P.; Clothiaux, E.E. Comparison of cloud top heights derived from MISR stereo and MODIS CO2-slicing. Geophys. Res. Lett. 2002, 29, 42-1–42-4. [Google Scholar] [CrossRef]
- Naud, C.; Muller, J.P.; Haeffelin, M.; Morille, Y.; Delaval, A. Assessment of MISR and MODIS cloud top heights through inter-comparison with a back-scattering lidar at SIRTA. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Genkova, I.; Seiz, G.; Zuidema, P.; Zhao, G.; Di Girolamo, L. cloud top height comparisons from ASTER, MISR, and MODIS for trade wind cumuli. Remote Sens. Environ. 2007, 107, 211–222. [Google Scholar] [CrossRef]
- Seiz, G.; Davies, R.; Grün, A. Stereo cloud-top height retrieval with ASTER and MISR. Int. J. Remote Sens. 2006, 27, 1839–1853. [Google Scholar] [CrossRef]
- Zhang, H.; Menzel, W.P. Improvement in thin cirrus retrievals using an emissivity-adjusted CO2 slicing algorithm. J. Geophys. Res. Atmos. 2002, 107, AAC 2-1–AAC 2-11. [Google Scholar] [CrossRef]
- Menzel, W.P.; Frey, R.A.; Zhang, H.; Wylie, D.P.; Moeller, C.C.; Holz, R.; Maddux, B.; Baum, B.A.; Strabala, K.I.; Gumley, L.E. MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteorol. Climatol. 2008, 47, 1175–1198. [Google Scholar] [CrossRef]
- Cheng, X.; Yi, L.; Bendix, J. cloud top height retrieval over the Arctic Ocean using a cloud-shadow method based on MODIS. Atmos. Res. 2021, 253, 105468. [Google Scholar] [CrossRef]
- Heidinger, A.K.; Pavolonis, M.J. Gazing at cirrus clouds for 25 years through a split window. Part I: Methodology. J. Appl. Meteorol. Climatol. 2009, 48, 1100–1116. [Google Scholar] [CrossRef]
- Sayer, A.M.; Poulsen, C.A.; Arnold, C.; Campmany, E.; Dean, S.; Ewen, G.B.L.; Grainger, R.G.; Lawrence, B.N.; Siddans, R.; Thomas, G.E.; et al. Global retrieval of ATSR cloud parameters and evaluation (GRAPE): Dataset assessment. Atmos. Chem. Phys. 2011, 11, 3913–3936. [Google Scholar] [CrossRef]
- Watts, P.D.; Bennartz, R.; Fell, F. Retrieval of two-layer cloud properties from multispectral observations using optimal estimation. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Wilheit, T.T.; Hutchison, K.D. Retrieval of cloud base heights from passive microwave and cloud top temperature data. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1253–1259. [Google Scholar] [CrossRef]
- Li, J.M.; Yi, Y.H.; Stamnes, K.; Ding, X.D.; Wang, T.H.; Jin, H.C.; Wang, S.S. A new approach to retrieve cloud base height of marine boundary layer clouds. Geophys. Res. Lett. 2013, 40, 4448–4453. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Wang, P.; Schmit, T.J.; Bai, W.; Atlas, R. An efficient radiative transfer model for hyperspectral IR radiance simulation and applications under cloudy-sky conditions. J. Geophys. Res. Atmos. 2017, 122, 7600–7613. [Google Scholar] [CrossRef]
- Weisz, E.; Li, J.; Menzel, W.P.; Heidinger, A.K.; Kahn, B.H.; Liu, C.Y. Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Sherwood, S.C.; Chae, J.H.; Minnis, P.; McGill, M. Underestimation of deep convective cloud tops by thermal imagery. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Min, M.; Li, J.; Wang, F.; Liu, Z.; Menzel, W.P. Retrieval of cloud top properties from advanced geostationary satellite imager measurements based on machine learning algorithms. Remote Sens. Environ. 2020, 239, 111616. [Google Scholar] [CrossRef]
- Yang, B.; Liu, J.; Jia, X. Correction of MODIS cirrus cloud top height in Beijing-Tianjin-Hebei region based on CALIPSO satellite data. Atmos. Sci. 2020, 44, 1013–1022. [Google Scholar]
- Fritz, S.; Winston, J.S. Synoptic use of radiation measurements from satellite TIROS II. Mon. Weather. Rev. 1962, 90, 1–9. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. Ser. II. 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Letu, H.; Nagao, T.M.; Nakajima, T.Y.; Riedi, J.; Ishimoto, H.; Baran, A.J.; Shang, H.; Kikuchi, M. Ice cloud properties from Himawari-8/AHI next-generation geostationary satellite: Capability of the AHI to monitor the DC cloud generation process. IEEE Trans. Geosci. Remote Sens. 2018, 57, 3229–3239. [Google Scholar] [CrossRef]
- Khatri, P.; Hayasaka, T.; Iwabuchi, H.; Takamura, T.; Irie, H.; Nakajima, T.Y. Validation of MODIS and AHI observed water cloud properties using surface radiation data. J. Meteorol. Soc. Jpn. Ser. II. 2018, 96B, 151–172. [Google Scholar] [CrossRef]
- Duan, L.; Zhang, Y. Cloud top height retrieval method based on satellite infrared window region data. Infrared 2022, 43, 33–43. [Google Scholar]
- Meyer, K.; Platnick, S. Utilizing the MODIS 1.38 μm channel for cirrus cloud optical thickness retrievals: Algorithm and retrieval uncertainties. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Arka, M.; Jesse, R.L.; Larry, D.G. Fusion of MISR Stereo Cloud Heights and Terra-MODIS Thermal Infrared Radiances to Estimate Two-Layered Cloud Properties. J. Geophys. Res. Atmos. 2023, 128, 12. [Google Scholar]
- Holz, R.E.; Ackerman, S.A.; Nagle, F.W.; Frey, R.; Dutcher, S.; Kuehn, R.E.; Vaughan, M.A.; Baum, B. Global moderate resolution imaging spectroradiometer (MODIS) cloud detection and height evaluation using caliop. J. Geophys. Res. Atmos. 2008, 113, D00A19. [Google Scholar] [CrossRef]
- Huo, J.; Lu, D.; Duan, S.; Liu, B. Comparison of the cloud top heights retrieved from MODIS and AHI satellite data with ground-based Ka-band radar. Atmos. Meas. Tech. 2020, 13, 1–11. [Google Scholar] [CrossRef]
- Hagihara, Y.; Okamoto, H.; Yoshida, R. Development of a combined CloudSat-CALIPSO cloud mask to show global cloud distribution. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Li, J.; Huang, J.; Stamnes, K.; Wang, T.; Lv, Q.; Jin, H. A global survey of cloud overlap based on CALIPSO and CloudSat measurements. Atmos. Chem. Phys. 2015, 15, 519–536. [Google Scholar] [CrossRef]
- Stephens, G.; Winker, D.; Pelon, J.; Trepte, C.; Vane, D.; Yuhas, C.; L’Ecuyer, T.; Lebsock, M. CloudSat and CALIPSO within the A-Train: Ten years of actively observing the Earth system. Bull. Am. Meteorol. Soc. 2018, 99, 569–581. [Google Scholar] [CrossRef]
- Nazaryan, H.; McCormick, M.P.; Menzel, W.P. Global characterization of cirrus clouds using CALIPSO data. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Heidinger, A.K.; Pavolonis, M.J.; Holz, R.E.; Baum, B.A.; Berthier, S. Using CALIPSO to explore the sensitivity to cirrus height in the infrared observations from NPOESS/VIIRS and GOES-R/ABI. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Donovan, D.P.; Van Lammeren, A. Cloud effective particle size and water content profile retrievals using combined lidar and radar observations: 1. Theory and examples. J. Geophys. Res. Atmos. 2001, 106, 27425–27448. [Google Scholar] [CrossRef]
- Deng, M.; Mace, G.G.; Wang, Z.; Okamoto, H. Tropical composition, cloud and climate coupling experiment validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Delanoë, J.; Hogan, R.J. Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Zhou, Y.; Sun, R.; Duan, J.; Li, Y.; Ding, Q.; Wang, H. Retrieving vertical cloud radar reflectivity from MODIS cloud products with CGAN: An evaluation for different cloud types and latitudes. Remote Sens. 2023, 15, 816. [Google Scholar] [CrossRef]
- Dong, Y.; Sun, X.; Li, Q. A method for retrieving cloud-top height based on a machine learning model using the Himawari-8 combined with near infrared data. Remote Sens. 2022, 14, 6367. [Google Scholar] [CrossRef]
- Wang, G.; Wang, H.; Zhuang, Y.; Wu, Q.; Chen, S.; Kang, H. Tropical overshooting cloud-top height retrieval from himawari-8 imagery based on random forest model. Atmosphere 2021, 12, 173. [Google Scholar] [CrossRef]
- Kox, S.; Bugliaro, L.; Ostler, A. Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing. Atmos. Meas. Tech. 2014, 7, 3233–3246. [Google Scholar] [CrossRef]
- Milstein, A.B.; Blackwell, W.J. Neural network temperature and moisture retrieval algorithm validation for AIRS/AMSU and CrIS/ATMS. J. Geophys. Res. Atmos. 2016, 121, 1414–1430. [Google Scholar] [CrossRef]
- Holl, G.; Eliasson, S.; Mendrok, J.; Buehler, S.A. SPARE-ICE: Synergistic ice water path from passive operational sensors. J. Geophys. Res. Atmos. 2014, 119, 1504–1523. [Google Scholar] [CrossRef]
- Stengel, M.; Stapelberg, S.; Sus, O.; Schlundt, C.; Poulsen, C.; Thomas, G.; Christensen, M.; Henken, C.C.; Preusker, R.; Fischer, J.; et al. Cloud property datasets retrieved from AVHRR, MODIS, AATSR and MERIS in the framework of the Cloud_cci project. Earth Syst. Sci. Data 2017, 9, 881–904. [Google Scholar] [CrossRef]
- Håkansson, N.; Adok, C.; Thoss, A.; Scheirer, R.; Hörnquist, S. Neural network cloud top pressure and height for MODIS. Atmos. Meas. Tech. 2018, 11, 3177–3196. [Google Scholar] [CrossRef]
- Minnis, P.; Hong, G.; Sun-Mack, S.; Smith, W.L., Jr.; Chen, Y.; Miller, S.D. Estimating nocturnal opaque ice cloud optical depth from MODIS multispectral infrared radiances using a neural network method. J. Geophys. Res. Atmos. 2016, 121, 4907–4932. [Google Scholar] [CrossRef]
- Loyola, D.G.R. Automatic cloud analysis from polar-orbiting satellites using neural network and data fusion techniques. In Proceedings of the IGARSS 2004, 2004 IEEE International Geoscience and Remote Sensing Symposium, Piscataway, NJ, USA, 20–24 September 2004; Volume 4, pp. 2530–2533. [Google Scholar]
- Strandgren, J.; Fricker, J.; Bugliaro, L. Characterisation of the artificial neural network CiPS for cirrus cloud remote sensing with MSG/SEVIRI. Atmos. Meas. Tech. 2017, 10, 4317–4339. [Google Scholar] [CrossRef]
- Karimian, H.; Li, Q.; Li, C.; Jin, L.; Fan, J.; Li, Y. An improved method for monitoring fine particulate matter mass concentrations via satellite remote sensing. Aerosol Air Qual. Res. 2016, 16, 1081–1092. [Google Scholar] [CrossRef]
- Baum, B.A.; Menzel, W.P.; Frey, R.A.; Tobin, D.C.; Holz, R.E.; Ackerman, S.A.; Heidinger, A.K.; Yang, P. MODIS cloud-top property refinements for collection 6. J. Appl. Meteorol. Climatol. 2012, 51, 1145–1163. [Google Scholar] [CrossRef]
- Toller, G.N.; Isaacman, A.; Kuyper, J.; Geng, X.; Xiong, J. MODIS Level 1B Product User’s Guide for Level 1B Version 6.1. 0 (Terra) and Version 6.1. 1 (Aqua); NASA: Washington, DC, USA, 2012. [Google Scholar]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Hirakata, M.; Okamoto, H.; Hagihara, Y.; Hayasaka, T.; Oki, R. Comparison of global and seasonal characteristics of cloud phase and horizontal ice plates derived from Calipso with MODIS and ECMWF. J. Atmos. Ocean. Technol. 2014, 31, 2114–2130. [Google Scholar] [CrossRef]
- Tan, S.; Zhang, X.; Shi, G. MODIS cloud detection evaluation using CALIOP over polluted eastern China. Atmosphere 2019, 10, 333. [Google Scholar] [CrossRef]
- Kotarba, A.Z. Calibration of global MODIS cloud amount using CALIOP cloud profiles. Atmos. Meas. Tech. 2020, 13, 4995–5012. [Google Scholar] [CrossRef]
- Forsythe, J.M.; Haar, T.H.V.; Reinke, D.L. Cloud-base height estimates using a combination of meteorological satellite imagery and surface reports. J. Appl. Meteorol. Climatol. 2000, 39, 2336–2347. [Google Scholar] [CrossRef]
- Wang, S.; Yao, Z.; Han, Z.; Zhao, Z. Feasibility analysis of CloudSat cloud bottom height extrapolation estimation. Meteorology 2012, 38, 210–219. [Google Scholar]
- Yu, Z.; Wang, Y.; Ma, S.; Ai, W.; Yan, W. FY-4A cloud bottom height inversion method based on integrated learning. Acta Opt. Sin. 2023, 43, 49–62. [Google Scholar]
- Rossow, W.B. International satellite Cloud Climatology Project (ISCCP) documentation of new cloud datasets. In WMO/TD737, World Climate Research Programme (ICSU and WMO); World Meteorological Organization: Geneva, Switzerland, 1996; p. 115. [Google Scholar]
- Vaughan, M.; Pitts, M.; Trepte, C.; Winker, D.; Getzewich, B.; Tackett, J.; Cai, X.; Detweiler, P.; Garnier, A.; Kar, J.; et al. Cloud-Aerosol LIDAR Infrared Pathfinder Satellite Observations (CALIPSO)-Data Management System: Data Products Catalog V4. 95; No. Document No: PC-SCI-503; NASA Technical Reports Server: Washington, DC, USA, 2023. [Google Scholar]
- Meng, H.; Yang, Z.; Guo, H. Research and analysis of cloud top height inversion technology based on neural network. J. Jinling Inst. Technol. 2019, 35, 34–39. [Google Scholar]
- Chen, B.; Wu, D. Research on arctic sea fog detection based on CALIOP and MODIS. J. Atmos. Environ. Opt. 2022, 17, 267–278. [Google Scholar]
- Strandgren, J.; Bugliaro, L.; Sehnke, F.; Schröder, L. Cirrus cloud retrieval with MSG/SEVIRI using artificial neural networks. Atmos. Meas. Tech. 2017, 10, 3547–3573. [Google Scholar] [CrossRef]
- Shen, H.; Li, X.; Zhang, L.; Tao, D.; Zeng, C. Compressed sensing-based inpainting of aqua moderate resolution imaging spectroradiometer band 6 using adaptive spectrum-weighted sparse Bayesian dictionary learning. IEEE Trans. Geosci. Remote Sens. 2013, 52, 894–906. [Google Scholar] [CrossRef]
- Yang, X.; Ge, J.; Hu, X.; Wang, M.; Han, Z. Cloud-top height comparison from multi-satellite sensors and ground-based cloud radar over SACOL site. Remote Sens. 2021, 13, 2715. [Google Scholar] [CrossRef]
- Zheng, Q.; Mao, C.; Ding, L.; Liao, J.; Pan, X.; Liu, P.; Lei, Y.; Huang, Y. Comparison of cloud characteristics between typhoon Lekima (1909) and Typhoon Capricorn (1814). J. Appl. Meteorol. 2022, 33, 43–55. [Google Scholar]
- Menzel, W.P.; Strabala, K. Cloud Top Properties and Cloud Phase Algorithm Theoretical Basis Document; University of Wisconsin-Madison: Madison, WI, USA, 1997; p. 17. [Google Scholar]
Band | Bandwidth (μm) | Spectral Radiance (W/m2/μm/sr) | Ground Resolution (m) | Primary Purpose |
---|---|---|---|---|
1 | 0.620–0.670 | 21.8 | 250 | Land/Cloud/Aerosol boundaries |
2 | 0.841–0.876 | 24.7 | 250 | |
3 | 0.459–0.479 | 35.3 | 500 | Land/Cloud/Aerosol properties |
4 | 0.545–0.565 | 29.0 | 500 | |
5 | 1.230–1.250 | 5.4 | 500 | |
6 | 1.628–1.652 | 7.3 | 500 | |
7 | 2.105–2.155 | 1.0 | 500 | |
8–16 | 0.405–0.877 | - | - | Ocean color/Phytoplankton/ Biogeochemistry |
17 | 0.890–0.920 | 10.0 | 1000 | Atmospheric water vapor |
18 | 0.931–0.941 | 3.6 | 1000 | |
19 | 0.915–0.965 | 15.0 | 1000 | |
20 | 3.660–3.840 | 0.45 (300 K) | 1000 | Surface/Cloud temperature |
21 | 3.929–3.989 | 2.38 (335 K) | 1000 | |
22 | 3.929–3.989 | 0.67 (300 K) | 1000 | |
23 | 4.020–4.080 | 0.79 (300 K) | 1000 | |
24 | 4.433–4.498 | 0.17 (250 K) | 1000 | Atmospheric temperature |
25 | 4.482–4.549 | 0.59 (275 K) | 1000 | |
26 | 1.360–1.390 | 6.00 | 1000 | Cirrus cloud water vapor |
27 | 6.535–6.895 | 1.16 (240 K) | 1000 | |
28 | 7.175–7.475 | 2.18 (250 K) | 1000 | |
29 | 8.400–8.700 | 9.58 (300 K) | 1000 | Cloud properties |
30 | 9.580–9.880 | 3.69 (250 K) | 1000 | Ozone |
31 | 10.780–11.280 | 9.55 (300 K) | 1000 | Surface/Cloud temperature |
32 | 11.770–12.270 | 8.94 (300 K) | 1000 | |
33 | 13.185–13.485 | 4.52 (260 K) | 1000 | Cloud top altitude |
34 | 13.485–13.785 | 3.76 (250 K) | 1000 | |
35 | 13.785–14.085 | 3.11 (240 K) | 1000 | |
36 | 14.085–14.385 | 2.08 (220 K) | 1000 |
Parameter | Variable Names | Unit | Source |
---|---|---|---|
Radiance (From reflective solar band-scaled integers) | Radiance 1–7/17–19/26 | W/m2/μm/sr | MAC02(*1) |
Radiance (From emissive band-scaled integers) | Radiance 20/27–36 | W/m2/μm/sr | |
Cloud phase infrared | CPI | ---- | MAC06(*2) |
Cloud top pressure | CTP | hPa | |
Cloud top temperature | CTT | K | |
Cloud top height | CTH | km | |
Surface temperature | SFT | K | |
Cloud emissivity (From 11/12/13.3/8.5 bands) | CE11, CE12, CE13, CE85 | ---- | |
Cloud effective radius (Used 2.1/3.7 bands) | CER, CER37 | m | |
Cloud optical thickness (Used 2.1/3.7 bands) | COT, COT37 | ---- | |
Low-cloud temperature (From IR Window retrieval) | ICT | K | |
Cloud water path (Used 2.1/3.7 bands) | CWP, CWP37 | g/m2 |
Code of Cloud Type | Cloud Type Interpretation of CALIPSO | Matched with MODIS Type | Cloud Genera |
---|---|---|---|
0 | low overcast, transparent | Stratus | Low |
1 | low overcast, opaque | Stratus | Low |
2 | transition stratocumulus | Stratocumulus | Low |
3 | low, broken cumulus | Cumulus | Low |
4 | altocumulus (transparent) | Altocumulus | Middle |
5 | altostratus (opaque) | Altostratus/Nimbostratus | Middle |
6 | cirrus (transparent) | Cirrus/Cirrostratus | High |
7 | deep convective (opaque) | Deep convection | High |
Dataset | Count | Type | Mode | Period |
---|---|---|---|---|
Training dataset | 11,727,474 | Orbit | Daytime | 2008 |
Testing dataset | 2,931,869 | Orbit | Daytime | 2008 |
Validation dataset | 13,339,183 | Orbit | Daytime | 2009 |
Single-image dataset | 2,748,620 | Grid | Daytime | 9 August 2019 |
Name | Network-Specific Variables | Applicability |
---|---|---|
Model 1 | CTP,CTT,CPI,SFT,CE11,CE12,CE13,CE85,CER,CER37,COT,COT37,ICT,CWP,CWP37 | Only Day |
Model 2 | CTP,CTT,CE11,CE12,CE13,CE85,CPI,SFT | All Time |
Model 3 | CTP,COT,COT37 | Only Day |
Model 4 | radiance 1–7,17–19,20,26–36 | Only Day |
Model 5 | radiance 4,6,7,20,27,28,29,31,36 | Only Day |
Model 6 | CTP,CTT,radiance 4,6,7,20,27,28,29,31,36 | Only Day |
Model 7 | CTP,CTT,radiance 20,28,31,32,33,36 | All Time |
Method | Type Ⅰ | Type Ⅱ | Type Ⅲ | ||||
---|---|---|---|---|---|---|---|
Model | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 |
Pirmse (%) | 24.8 | 15.3 | 13.7 | −1.7 | −29.4 | 26.4 | 27.3 |
Mean Pirmse (%) | 17.9 | −15.6 | 26.9 |
MAM | JJA | SON | DJF | |
---|---|---|---|---|
CALIOP (km) | 6.66 | 7.70 | 6.32 | 4.89 |
Model 7 (km) | 6.68 | 7.67 | 6.35 | 5.04 |
Relative error (%) | 0.30 | 0.4 | 0.3 | 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; He, H.; Xue, Q.; Yang, J.; Zhong, W.; Zhu, X.; Peng, X. Remote Sensing Retrieval of Cloud Top Height Using Neural Networks and Data from Cloud-Aerosol Lidar with Orthogonal Polarization. Sensors 2024, 24, 541. https://doi.org/10.3390/s24020541
Cheng Y, He H, Xue Q, Yang J, Zhong W, Zhu X, Peng X. Remote Sensing Retrieval of Cloud Top Height Using Neural Networks and Data from Cloud-Aerosol Lidar with Orthogonal Polarization. Sensors. 2024; 24(2):541. https://doi.org/10.3390/s24020541
Chicago/Turabian StyleCheng, Yinhe, Hongjian He, Qiangyu Xue, Jiaxuan Yang, Wei Zhong, Xinyu Zhu, and Xiangyu Peng. 2024. "Remote Sensing Retrieval of Cloud Top Height Using Neural Networks and Data from Cloud-Aerosol Lidar with Orthogonal Polarization" Sensors 24, no. 2: 541. https://doi.org/10.3390/s24020541
APA StyleCheng, Y., He, H., Xue, Q., Yang, J., Zhong, W., Zhu, X., & Peng, X. (2024). Remote Sensing Retrieval of Cloud Top Height Using Neural Networks and Data from Cloud-Aerosol Lidar with Orthogonal Polarization. Sensors, 24(2), 541. https://doi.org/10.3390/s24020541