Evaluation of a Machine Learning Algorithm to Classify Ultrasonic Transducer Misalignment and Deployment Using TinyML
Abstract
:1. Introduction
2. Materials and Methods
2.1. US Signal Acquisition
2.2. Data Pre-Processing
2.3. ML Algorithms
- Accuracy—ratio of correct predictions from all predictions:
- Precision—proportion of correct class predictions over all positive predictions:
- Recall—proportion of actual positives identified correctly:
2.3.1. Autoencoder
2.3.2. Convolutional Neural Networks (CNNs)
2.3.3. Neural Network (NN)
2.4. Edge Device Algorithm Deployment
3. Results
3.1. Algorithm Performance Evaluation
3.2. Edge Device Performance
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turner, B.L.; Senevirathne, S.; Kilgour, K.; McArt, D.; Biggs, M.; Menegatti, S.; Daniele, M.A. Ultrasound-Powered Implants: A Critical Review of Piezoelectric Material Selection and Applications. Adv. Healthc. Mater. 2021, 10, e2100986. [Google Scholar] [CrossRef] [PubMed]
- Bazaka, K.; Jacob, M.V. Implantable Devices: Issues and Challenges. Electronics 2013, 2, 1–34. [Google Scholar] [CrossRef]
- Dinis, H.; Colmiais, I.; Mendes, P.M. Extending the Limits of Wireless Power Transfer to Miniaturized Implantable Electronic Devices. Micromachines 2017, 8, 359. [Google Scholar] [CrossRef] [PubMed]
- Ozeri, S.; Shmilovitz, D. Ultrasonic transcutaneous energy transfer for powering implanted devices. Ultrasonics 2010, 50, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Schneider, F.K.; Yoo, Y.; Agarwal, A.; Koh, L.M.; Kim, Y. New demodulation filter in digital phase rotation beamforming. Ultrasonics 2006, 44, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Barshan, B. Fast processing techniques for accurate ultrasonic range measurements. Meas. Sci. Technol. 2000, 11, 45–50. [Google Scholar] [CrossRef]
- Parrilla, M.; Anaya, J.; Fritch, C. Digital signal processing techniques for high accuracy ultrasonic range measurement. IEEE Trans. Instrum. Meas. 1991, 40, 759–763. [Google Scholar] [CrossRef]
- Gueuning, F.; Varlan, M.; Eugene, C.; Dupuis, P. Accurate Distance Measurement by an Autonomous Ultrasonic System Combining Time-of-Flight and Phase-Shift Methods. IEEE Trans. Instrum. Meas. 1997, 46, 1236–1240. [Google Scholar] [CrossRef]
- Nithya, S.; Rani, M. Stacked Variational Autoencoder in the Classification of Cardiac Arrhythmia using ECG Signals with 2D-ECG Images. In Proceedings of the International Conference on Intelligent Innovations in Engineering and Technology (ICIIET), Coimbatore, India, 22–24 September 2022; pp. 222–226. [Google Scholar] [CrossRef]
- Srivastava, A.; Jain, S.; Miranda, R.; Patil, S.; Pandya, S.; Kotecha, K. Deep learning based respiratory sound analysis for detection of chronic obstructive pulmonary disease. Peer J. Comput. Sci. 2021, 7, 369–371. [Google Scholar] [CrossRef] [PubMed]
- Bergen, K.J.; Johnson, P.A.; De Hoop, M.V.; Beroza, G.C. Machine learning for data-driven discovery in solid Earth geoscience. Science 2019. [Google Scholar] [CrossRef] [PubMed]
- Alajlan, N.N.; Ibrahim, D.M. TinyML: Enabling of Inference Deep Learning Models on Ultra-Low-Power IoT Edge Devices for AI Applications. Micromachines 2022, 13, 851. [Google Scholar] [CrossRef] [PubMed]
- Hammad, S.S.; Iskandaryan, D.; Trilles, S. An unsupervised TinyML approach applied to the detection of urban noise anomalies under the smart cities environment. Internet Things 2023, 23, 100848. [Google Scholar] [CrossRef]
- Zhang, Y.; Suda, N.; Lai, L.; Chandra, V. Hello Edge: Keyword Spotting on Microcontrollers. arXiv 2018, arXiv:1711.07128v3. [Google Scholar]
- Park, J.; Seok, J.; Hong, J. Autoencoder-Based Signal Modulation and Demodulation Methods for Sonobuoy Signal Transmission and Reception. Sensors 2022, 22, 6510. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Iborra, R.; Skarmeta, A.F. Tinyml-enabled frugal smart objects: Challenges and opportunities. IEEE Circuits Syst. Mag. 2020, 20, 4–18. [Google Scholar] [CrossRef]
- Han, S. Putting AI on Diet: TinyML and Efficient Deep Learning. In Proceedings of the 2021 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 19–22 April 2021. [Google Scholar] [CrossRef]
- Zaidi, S.A.R.; Hayajneh, A.M.; Hafeez, M.; Ahmed, Q.Z. Unlocking Edge Intelligence Through Tiny Machine Learning (TinyML). IEEE Access 2022, 10, 100867–100877. [Google Scholar] [CrossRef]
- Amazon Web Services. Available online: https://aws.amazon.com/sagemaker/edge/ (accessed on 14 November 2023).
- Microsoft Azure Machine Learning. Available online: https://azure.microsoft.com/en-us/products/machine-learning/ (accessed on 14 November 2023).
- Tensorflow. Available online: https://www.tensorflow.org/lite/microcontrollers (accessed on 19 April 2023).
- David, R.; Duke, J.; Jain, A.; Reddi, V.J.; Jeffries, N.; Li, J.; Kreeger, M.; Nappier, I.; Natraj, M.; Wang, T.; et al. TensorFlow-lite micro: Embedded machine learning for TinyML systems. In Proceedings of the 4th MLSys Conference, San Jose, CA, USA, 5–9 April 2021. [Google Scholar]
- Verasonics. Available online: https://verasonics.com/vantage-systems/ (accessed on 19 April 2023).
- Indriyanto, S.; Edward, I.Y. Ultrasonic Underwater Acoustic Modem Using Frequency Shift Keying (FSK) Modulation 2018. In Proceedings of the 4th International Conference on Wireless and Telematics (ICWT), Nusa Dua, Bali, Indonesia, 12–13 July 2018. [Google Scholar] [CrossRef]
- Tensorflow. Available online: https://www.tensorflow.org/lite/guide (accessed on 19 April 2023).
- Tensorflow. Available online: https://www.tensorflow.org/lite/microcontrollers/get_started (accessed on 19 April 2023).
- Arduino. Arduino Nano 33 BLE Sense with headers. Available online: https://store-usa.arduino.cc/products/arduino-nano-33-ble-sense-with-headers (accessed on 19 April 2023).
- EDGE Impulse. Available online: https://studio.edgeimpulse.com/studio/upload (accessed on 19 April 2023).
Configuration | Accuracy | Precision | Recall | TP | TN | FP | FN |
---|---|---|---|---|---|---|---|
Aligned | 0.87 | 0.22 | 0.41 | 6 | 187 | 21 | 7 |
Misalign-1 | 0.92 | 0.90 | 0.56 | 18 | 187 | 2 | 14 |
Misalign-2 | 0.92 | 0.72 | 0.79 | 27 | 177 | 10 | 7 |
Misalign-3 | 0.96 | 0.85 | 0.78 | 18 | 195 | 3 | 5 |
Misalign-4 | 0.91 | 0.73 | 0.56 | 7 | 185 | 13 | 6 |
Misalign-5 | 0.95 | 0.87 | 0.84 | 27 | 185 | 4 | 5 |
Misalign-6 | 0.93 | 0.82 | 0.53 | 14 | 192 | 3 | 12 |
Misalign-7 | 0.94 | 0.88 | 0.70 | 22 | 187 | 3 | 9 |
Configuration | Accuracy | Precision | Recall | TP | TN | FP | FN |
---|---|---|---|---|---|---|---|
Aligned | 1.00 | 1.00 | 1.00 | 3 | 47 | 0 | 0 |
Misalign-1 | 0.96 | 1.00 | 0.78 | 7 | 41 | 0 | 2 |
Misalign-2 | 0.94 | 0.75 | 0.60 | 3 | 44 | 1 | 2 |
Misalign-3 | 1.00 | 1.00 | 1.00 | 4 | 46 | 0 | 0 |
Misalign-4 | 0.86 | 0.25 | 0.66 | 2 | 41 | 6 | 1 |
Misalign-5 | 0.82 | 1.00 | 0.36 | 5 | 36 | 0 | 9 |
Misalign-6 | 0.92 | 1.00 | 0.56 | 5 | 41 | 0 | 4 |
Misalign-7 | 0.98 | 1.00 | 0.88 | 8 | 41 | 0 | 1 |
Configuration | Accuracy | Precision | Recall | TP | TN | FP | FN |
---|---|---|---|---|---|---|---|
Aligned | 0.97 | 1.00 | 0.77 | 10 | 208 | 0 | 3 |
Misalign-1 | 0.97 | 0.91 | 0.88 | 29 | 185 | 3 | 4 |
Misalign-2 | 0.98 | 0.94 | 0.91 | 32 | 184 | 2 | 3 |
Misalign-3 | 1.00 | 1.00 | 1.00 | 23 | 198 | 0 | 0 |
Misalign-4 | 0.99 | 0.96 | 1.00 | 30 | 190 | 1 | 0 |
Misalign-5 | 0.98 | 0.92 | 0.89 | 23 | 193 | 2 | 3 |
Misalign-6 | 0.98 | 0.93 | 0.90 | 26 | 190 | 2 | 3 |
Misalign-7 | 0.98 | 0.96 | 0.90 | 27 | 190 | 1 | 3 |
Model | Avg. Accuracy | Avg. Precision | Avg. Recall |
---|---|---|---|
Autoencoder | 0.93 | 0.75 | 0.65 |
Spectrogram-CNN | 0.94 | 0.88 | 0.73 |
Neural network | 0.98 | 0.95 | 0.91 |
Aligned | Misaligned-1 | Misaligned-2 | Misaligned-3 | Misaligned-4 | Misaligned-5 | Misaligned-6 | Misaligned-7 |
---|---|---|---|---|---|---|---|
0.99609 | 0.00000 | 0.00000 | 0.0000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
0.00000 | 0.99609 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
0.00000 | 0.00000 | 0.99609 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
0.00000 | 0.00000 | 0.00000 | 0.99609 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.99609 | 0.00000 | 0.00000 | 0.00000 |
0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.99609 | 0.00000 | 0.00000 |
0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.99609 | 0.00000 |
0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.99609 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brennan, D.; Galvin, P. Evaluation of a Machine Learning Algorithm to Classify Ultrasonic Transducer Misalignment and Deployment Using TinyML. Sensors 2024, 24, 560. https://doi.org/10.3390/s24020560
Brennan D, Galvin P. Evaluation of a Machine Learning Algorithm to Classify Ultrasonic Transducer Misalignment and Deployment Using TinyML. Sensors. 2024; 24(2):560. https://doi.org/10.3390/s24020560
Chicago/Turabian StyleBrennan, Des, and Paul Galvin. 2024. "Evaluation of a Machine Learning Algorithm to Classify Ultrasonic Transducer Misalignment and Deployment Using TinyML" Sensors 24, no. 2: 560. https://doi.org/10.3390/s24020560
APA StyleBrennan, D., & Galvin, P. (2024). Evaluation of a Machine Learning Algorithm to Classify Ultrasonic Transducer Misalignment and Deployment Using TinyML. Sensors, 24(2), 560. https://doi.org/10.3390/s24020560