
Citation: Brennan, D.; Galvin, P.

Evaluation of a Machine Learning

Algorithm to Classify Ultrasonic

Transducer Misalignment and

Deployment Using TinyML. Sensors

2024, 24, 560. https://doi.org/

10.3390/s24020560

Academic Editors: Petr Musilek,

Darius Andriukaitis and

Michal Prauzek

Received: 14 December 2023

Revised: 11 January 2024

Accepted: 12 January 2024

Published: 16 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Evaluation of a Machine Learning Algorithm to Classify
Ultrasonic Transducer Misalignment and Deployment
Using TinyML
Des Brennan * and Paul Galvin

Tyndall National Institute, University College, T12 K8AF Cork, Ireland; paul.galvin@tyndall.ie
* Correspondence: des.brennan@tyndall.ie

Abstract: The challenge for ultrasonic (US) power transfer systems, in implanted/wearable medical
devices, is to determine when misalignment occurs (e.g., due to body motion) and apply directional
correction accordingly. In this study, a number of machine learning algorithms were evaluated to
classify US transducer misalignment, based on data signal transmissions between the transmitter
and receiver. Over seven hundred US signals were acquired across a range of transducer misalign-
ments. Signal envelopes and spectrograms were used to train and evaluate machine learning (ML)
algorithms, classifying misalignment extent. The algorithms included an autoencoder, convolutional
neural network (CNN) and neural network (NN). The best performing algorithm, was deployed
onto a TinyML device for evaluation. Such systems exploit low power microcontrollers developed
specifically around edge device applications, where algorithms were configured to run on low power,
restricted memory systems. TensorFlow Lite and Edge Impulse, were used to deploy trained models
onto the edge device, to classify signals according to transducer misalignment extent. TinyML de-
ployment, demonstrated near real-time (<350 ms) signal classification achieving accuracies > 99%.
This opens the possibility to apply such ML alignment algorithms to US arrays (capacitive micro-
machined ultrasonic transducer (CMUT), piezoelectric micro-machined ultrasonic transducer (PMUT)
devices) capable of beam-steering, significantly enhancing power delivery in implanted and body
worn systems.

Keywords: ultrasonic; machine learning; TinyML

1. Introduction

Trans-tissue US power transfer has been demonstrated from shallow to deep im-
plants [1], for battery recharge or powering devices directly. Compared to conventional
electromagnetic energy transfer, US transducers offer reduced size, lower tissue attenuation,
higher safe operating power (720 mWcm−2) [2] and the possibility for energy focusing
(e.g., beam steering). With radio frequency (RF) charging, a limit of 1–10 mWcm−2 is placed
by medical regulation authorities [3], thus US offers deeper signal delivery within safe
operating power limits. Body motion is a significant challenge to US power transfer and
minimal misalignment (<4 mm) has been shown to reduce acoustic energy by up 40% [4].
In US medical imaging, signal parameters (e.g., phase, timing) are optimised on transducer
arrays for target depth focusing [5], similar approaches can be used to optimise implant
power delivery. Many medical implants have communication capability, to exchange data
with an external body mounted receiver to indicate device status or alter functionality.

An approach to guide the transducer alignment direction is required. Where im-
plant systems exchange data signals, alignment may be achieved using the transmitted
signal envelope, thus modifying transducer orientation to optimise implant power transfer.
Envelope detection may already be implemented within such power transfer and commu-
nication systems. In US target location; (i) time of flight (TOF) [6], (ii) time difference on

Sensors 2024, 24, 560. https://doi.org/10.3390/s24020560 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24020560
https://doi.org/10.3390/s24020560
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24020560
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24020560?type=check_update&version=1

Sensors 2024, 24, 560 2 of 13

received US envelope [7] and (iii) envelope phase [8] have been demonstrated. The poten-
tial to use machine learning to classify US transducer alignment, using a communication
signal between transmitter/receiver, has not previously been reported. ML has been used
to automate complex system parameters, where algorithms are trained on a “train” dataset
and independently evaluated on a “test” dataset. Training can be supervised (i.e., class
labels pre-assigned to input training set) or unsupervised (i.e., the algorithm determines
closely related inputs and labels them accordingly). In this work, ML algorithms were
evaluated to classify misalignment between an US transmitter and receiver. The algorithms
included auto-encoder, convolutional neural networks (CNN) implementing spectrogram
analysis and a neural network (NN). Autoencoders and CNNs are extensively used in
healthcare applications for complex time varying signal analysis, specifically around classi-
fying heart arrhythmia [9] and respiratory sound analysis [10]. Where constituent frequency
and intensity vary between normal and anomalous signals. Multilayer NNs are applied
across a range of applications to identify hierarchical representations from complex in-
puts [11], without prior specialist training knowledge, thus specific signal preparation
or parameter extraction steps are not required. These three algorithms can be applied
directly to the US signals without the need for parameter extraction, as with conventional
models such as decision trees, support vector machines (SVMs), K-means clustering and
K-nearest neighbours. ML algorithm deployment on TinyML devices is still in its infancy,
thus comparative performance metrics is difficult to find in the literature [12]. However,
the algorithms considered here have previously been deployed on TinyML applications.
An autoencoder was implemented [13] for urban noise recognition, while spectrogram
analysis using CNN has been implemented for sound or word recognition [14]. The au-
toencoder also implements noise reduction through signal reconstruction and has been
demonstrated with US communications [15]. The ability to learn non-linear relationships
between input signals and outputs, allow NNs to model complex relationships within
data. They implement a “black-box” type algorithm and it’s difficult to interpret how the
algorithm arrives at a specific output, unlike conventional models (e.g., decision trees,
support vector machines), where the decision making process is clearly defined (e.g., trees,
using Entropy or Gini index). The best performing algorithm, was deployed onto a TinyML
edge device for evaluation, where the final algorithm was optimised and deployed onto a
local hardware system, referred to as an edge device [16,17]. Such systems typically exploit
low power microcontrollers, developed specifically around edge device applications, where
algorithms are configured to run on low power, restricted memory systems (e.g., Arduino
NANO BLE 33). The benefits of TinyML applications include; (i) minimal data exchange
with network servers, (ii) data stored locally on the device, (iii) no internet connectivity
required, (iv) reduced model size, (v) low power consumption. The TinyML approach has
been adapted by a number of system providers, with many developing AI platforms for
application areas including; wearables, preventative maintenance, home and environment
monitoring [18]. Such platforms are compatible with established ML open-source environ-
ments (e.g., Tensorflow, Keras, ONNX, SKlearn etc.), used in industry and research. Cloud
service software platforms (e.g., AWS—Sagemaker Classic V1.5 [19], Microsoft—Azure
V2.17 [20]) have also implemented edge capabilities offering the possibility to develop
and deploy algorithms using compatible edge boards. Thus complex algorithms can be
developed on cloud platforms and deployed as simplified models on edge devices.

In this work, TensorFlow Lite [21,22] was used to deploy a trained neural NN model
onto an edge device to classify US communication signal envelopes, according to transducer
misalignment extent. Such an approach could facilitate transducer realignment by the
user or an autonomous system. In medical devices, high US frequencies (100′s kHz to
MHz range) are typically used for power delivery, requiring expensive instrumentation
(e.g., Verasonics [23]). In this work, to readily generate a large dataset for algorithm
development, we used low cost off the shelf transducer systems operating at 40 kHz in
air, as misaligned signal behaviour was similar to high frequency systems (2–10 MHz),
operating on gel phantoms.

Sensors 2024, 24, 560 3 of 13

2. Materials and Methods
2.1. US Signal Acquisition

Two US transmitter modules (JSNSR-04T) were used as transmission/receiver trans-
ducers (Figure 1a). An Arduino Uno, powered and controlled the transmitter/receiver
components. Such a system was previously demonstrated in underwater, low power
US data transmission over short distances [24]. The US transducer had a peak trans-
mission at 40 kHz with 3 kHz bandwidth. The transmitter was triggered by a 10 µs
TTL pulse, subsequently emitting an eight cycle pulse at 40 kHz, this signal was sam-
pled by the receiving transducer and simultaneously recorded on a digital oscilloscope
(R&S®RTO2000). The horizontal transmitter displacement, relative to the receiver was
varied from 0 mm to 20 mm as illustrated in Figure 1b and signals recorded across
eight positions. For the classification algorithm, each position was given a label; posi-
tion 0 = aligned, position 1 = misalligned 1, position 2 = misalligned 2, position 3 = misal-
ligned 3, position 4 = misalligned 4, position 5 = misalligned 5, position 6 = misalligned 6,
position 7 = misalligned 7.

Sensors 2024, 24, x FOR PEER REVIEW 3 of 13

(e.g., Verasonics [23]). In this work, to readily generate a large dataset for algorithm de-

velopment, we used low cost off the shelf transducer systems operating at 40 kHz in air,

as misaligned signal behaviour was similar to high frequency systems (2–10 MHz), oper-

ating on gel phantoms.

2. Materials and Methods

2.1. US Signal Acquisition

Two US transmitter modules (JSNSR-04T) were used as transmission/receiver trans-

ducers (Figure 1a). An Arduino Uno, powered and controlled the transmitter/receiver

components. Such a system was previously demonstrated in underwater, low power US

data transmission over short distances [24]. The US transducer had a peak transmission at

40 kHz with 3 kHz bandwidth. The transmitter was triggered by a 10 µs TTL pulse, sub-

sequently emitting an eight cycle pulse at 40 kHz, this signal was sampled by the receiving

transducer and simultaneously recorded on a digital oscilloscope (R&S® RTO2000). The

horizontal transmitter displacement, relative to the receiver was varied from 0 mm to 20

mm as illustrated in Figure 1b and signals recorded across eight positions. For the classi-

fication algorithm, each position was given a label; position 0 = aligned, position 1 = mis-

alligned 1, position 2 = misalligned 2, position 3 = misalligned 3, position 4 = misalligned

4, position 5 = misalligned 5, position 6 = misalligned 6, position 7 = misalligned 7.

Figure 1. (a) The US transducer module used to transmit data between transducers; (b) receiver

module displaced across a range of horizontal misalignment positions, relative to transmitter (indi-

cated by arrows) (c) example of recorded US signal (aligned—position 0).

The data set consisted of 736 recorded signals, transmitted between two US trans-

ducers at varying extent of horizontal transducer misalignment (0–20 mm). Similar num-

bers of data files for each class were sampled for receiver displacements, achieving a bal-

anced dataset. A typical US signal exchanged between the transmitter and receiver mod-

ules is illustrated in Figure 1c, i.e., the analogue signal received at the transducer. Each

signal was assigned a label to classify the extent of transducer misalignment, upon which

the algorithms were trained and tested.

2.2. Data Pre-Processing

Each signal file (.csv format) recorded on the oscilloscope was loaded into a Python

dataframe structure, for data processing and algorithm model input. For the autoencoder

and NN, the input data was the positive signal envelope as illustrated in Figure 2b. This

was extracted from raw signals (Figure 2a) using the Hilbert transform function in Python.

This step was implemented for each data file, forming a dataset composed entirely of pos-

itive signal envelopes. Data was configured as an X matrix with each row representing a

signal transmission, while the labels associated with each signal alignment were repre-

sented by a vector y. The X matrix was composed of continuous numerical data (i.e., signal

envelope amplitude), which was normalised over the range 0–1. The dataset was consid-

ered balanced with a similar number of data signals in each label category. The X, y data

structures were subdivided into training and test subsets, with a 70:30 split. Before the

Figure 1. (a) The US transducer module used to transmit data between transducers; (b) receiver mod-
ule displaced across a range of horizontal misalignment positions, relative to transmitter (indicated
by arrows) (c) example of recorded US signal (aligned—position 0).

The data set consisted of 736 recorded signals, transmitted between two US transducers
at varying extent of horizontal transducer misalignment (0–20 mm). Similar numbers of
data files for each class were sampled for receiver displacements, achieving a balanced
dataset. A typical US signal exchanged between the transmitter and receiver modules is
illustrated in Figure 1c, i.e., the analogue signal received at the transducer. Each signal
was assigned a label to classify the extent of transducer misalignment, upon which the
algorithms were trained and tested.

2.2. Data Pre-Processing

Each signal file (.csv format) recorded on the oscilloscope was loaded into a Python
dataframe structure, for data processing and algorithm model input. For the autoencoder
and NN, the input data was the positive signal envelope as illustrated in Figure 2b. This was
extracted from raw signals (Figure 2a) using the Hilbert transform function in Python. This
step was implemented for each data file, forming a dataset composed entirely of positive
signal envelopes. Data was configured as an X matrix with each row representing a signal
transmission, while the labels associated with each signal alignment were represented by a
vector y. The X matrix was composed of continuous numerical data (i.e., signal envelope
amplitude), which was normalised over the range 0–1. The dataset was considered balanced
with a similar number of data signals in each label category. The X, y data structures were
subdivided into training and test subsets, with a 70:30 split. Before the data split, X and y
were randomly shuffled and maintained the same class ratios in test/train datasets as the
original dataset.

Sensors 2024, 24, 560 4 of 13

Sensors 2024, 24, x FOR PEER REVIEW 4 of 13

data split, X and y were randomly shuffled and maintained the same class ratios in

test/train datasets as the original dataset.

Figure 2. (a) The raw US signal acquired on the receiver transducer and sampled by an oscilloscope;

(b) the positive signal envelope extracted using a Hilbert transform prior to algorithm implementation.

For CNN classification, the original raw data (Figure 2a) was used to generate signal

spectrogram (e.g., Figure 3), forming a second dataset. A python function was used to

generate spectrograms for each original US signal. In Figure 3, the spectrogram X-axis was

time (seconds) while the y-axis was frequency. The intensity of the image color map illus-

trated specific frequencies present within the signal time window. The 40 kHz signal as-

sociated with the peak US transducer operating frequency, was evident over a duration

of approximately 1.5 ms.

Figure 3. An example of the spectrogram color map extracted from an unprocessed US signal, trans-

mitted between transducers in the aligned configuration. The 40 kHz signal (green) is clearly de-

fined against background frequencies (blue).

In this case, X_test and X_train datasets were formed by allocating spectrograms to

specific class folders, each labelled according to signal misalignment. Spectrograms were

randomly assigned to train and test datasets with similar numbers assigned to each class

folder, maintaining balanced datasets.

2.3. ML Algorithms

The data subset X_train, y_train was used to train algorithms, while the data subset

X_test, y_test was used to investigate algorithm performance. Algorithm performance

used metrics based on the number of true positives (TP), false positives (FP), true nega-

tives (TN) and false negatives (FN) returned by the algorithm. Metrics included;

• Accuracy—ratio of correct predictions from all predictions:

Figure 2. (a) The raw US signal acquired on the receiver transducer and sampled by an oscilloscope;
(b) the positive signal envelope extracted using a Hilbert transform prior to algorithm implementation.

For CNN classification, the original raw data (Figure 2a) was used to generate signal
spectrogram (e.g., Figure 3), forming a second dataset. A python function was used to
generate spectrograms for each original US signal. In Figure 3, the spectrogram X-axis
was time (seconds) while the y-axis was frequency. The intensity of the image color map
illustrated specific frequencies present within the signal time window. The 40 kHz signal
associated with the peak US transducer operating frequency, was evident over a duration
of approximately 1.5 ms.

Sensors 2024, 24, x FOR PEER REVIEW 4 of 13

data split, X and y were randomly shuffled and maintained the same class ratios in

test/train datasets as the original dataset.

Figure 2. (a) The raw US signal acquired on the receiver transducer and sampled by an oscilloscope;

(b) the positive signal envelope extracted using a Hilbert transform prior to algorithm implementation.

For CNN classification, the original raw data (Figure 2a) was used to generate signal

spectrogram (e.g., Figure 3), forming a second dataset. A python function was used to

generate spectrograms for each original US signal. In Figure 3, the spectrogram X-axis was

time (seconds) while the y-axis was frequency. The intensity of the image color map illus-

trated specific frequencies present within the signal time window. The 40 kHz signal as-

sociated with the peak US transducer operating frequency, was evident over a duration

of approximately 1.5 ms.

Figure 3. An example of the spectrogram color map extracted from an unprocessed US signal, trans-

mitted between transducers in the aligned configuration. The 40 kHz signal (green) is clearly de-

fined against background frequencies (blue).

In this case, X_test and X_train datasets were formed by allocating spectrograms to

specific class folders, each labelled according to signal misalignment. Spectrograms were

randomly assigned to train and test datasets with similar numbers assigned to each class

folder, maintaining balanced datasets.

2.3. ML Algorithms

The data subset X_train, y_train was used to train algorithms, while the data subset

X_test, y_test was used to investigate algorithm performance. Algorithm performance

used metrics based on the number of true positives (TP), false positives (FP), true nega-

tives (TN) and false negatives (FN) returned by the algorithm. Metrics included;

• Accuracy—ratio of correct predictions from all predictions:

Figure 3. An example of the spectrogram color map extracted from an unprocessed US signal,
transmitted between transducers in the aligned configuration. The 40 kHz signal (green) is clearly
defined against background frequencies (blue).

In this case, X_test and X_train datasets were formed by allocating spectrograms to
specific class folders, each labelled according to signal misalignment. Spectrograms were
randomly assigned to train and test datasets with similar numbers assigned to each class
folder, maintaining balanced datasets.

2.3. ML Algorithms

The data subset X_train, y_train was used to train algorithms, while the data subset
X_test, y_test was used to investigate algorithm performance. Algorithm performance used
metrics based on the number of true positives (TP), false positives (FP), true negatives (TN)
and false negatives (FN) returned by the algorithm. Metrics included;

• Accuracy—ratio of correct predictions from all predictions:

Accuracy =
TP + TN

TP + TN + FP + FN

• Precision—proportion of correct class predictions over all positive predictions:

Precision =
TP

TP + FP

Sensors 2024, 24, 560 5 of 13

• Recall—proportion of actual positives identified correctly:

Recall =
TP

TP + FN

Performance metrics were generated using Tensorflow and Keras libraries imple-
mented in python for classification statistics, confusion matrix etc. The algorithms were
suitable for numerical, categorical and nominal data parameters, but only numerical vari-
ables were used in the X matrix and the y vector was categorical using one-hot-encoding.

2.3.1. Autoencoder

The autoencoder was composed of a neural network forming two blocks, (i) the
encoder (Figure 4a) and (ii) the decoder (Figure 4b), with the former realising data reduction
and the latter reconstructing the input signal as close to its original state as possible. With
data reduction, relevant signal parameters were preserved while non-essential components
were removed.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 13

Accuracy =
TP + TN

TP + TN + FP + FN

• Precision—proportion of correct class predictions over all positive predictions:

Precision =
TP

TP + FP

• Recall—proportion of actual positives identified correctly:

Recall =
TP

TP + FN

Performance metrics were generated using Tensorflow and Keras libraries imple-

mented in python for classification statistics, confusion matrix etc. The algorithms were

suitable for numerical, categorical and nominal data parameters, but only numerical var-

iables were used in the X matrix and the y vector was categorical using one-hot-encoding.

2.3.1. Autoencoder

The autoencoder was composed of a neural network forming two blocks, (i) the en-

coder (Figure 4a) and (ii) the decoder (Figure 4b), with the former realising data reduction

and the latter reconstructing the input signal as close to its original state as possible. With

data reduction, relevant signal parameters were preserved while non-essential compo-

nents were removed.

Figure 4. (a) The NN structure for the encoder (arrow indicates algorithm sequence); (b) the decoder,

implemented in this work (arrow indicates algorithm sequence); (c) the NN model loss over training

epochs.

The encoder input was the signal envelope vector (301 × 1) which passed through

three layers, of node sizes 32, 16 and 8, with the latter forming the encoded output latent

representation of the input signal. The decoder input was this latent representation vector,

which was used to reconstruct the input signal by passing it through sequential NN layers

of size 16, 32 and 301. Thus the output layer had the same dimension as the input layer,

effectively reconstructing the input signal. During training the NN node weights were

modified based on the adaptive moment estimate (ADAM) optimiser to minimise the

training error, based on mean square error (MSE). ADAM uses second and third moments

to estimate loss and direct gradient descent, optimising hyper-parameters for all nodes.

The autoencoder was a one versus all algorithm, trained to identify a target signal (re-

ferred to as normal) and distinguish from remaining signals (referred to as anomalous).

The algorithm was trained over 1000 epochs using batch data size of 512 and it was found

Figure 4. (a) The NN structure for the encoder (arrow indicates algorithm sequence); (b) the de-
coder, implemented in this work (arrow indicates algorithm sequence); (c) the NN model loss over
training epochs.

The encoder input was the signal envelope vector (301 × 1) which passed through
three layers, of node sizes 32, 16 and 8, with the latter forming the encoded output latent
representation of the input signal. The decoder input was this latent representation vector,
which was used to reconstruct the input signal by passing it through sequential NN layers
of size 16, 32 and 301. Thus the output layer had the same dimension as the input layer,
effectively reconstructing the input signal. During training the NN node weights were
modified based on the adaptive moment estimate (ADAM) optimiser to minimise the
training error, based on mean square error (MSE). ADAM uses second and third moments
to estimate loss and direct gradient descent, optimising hyper-parameters for all nodes. The
autoencoder was a one versus all algorithm, trained to identify a target signal (referred to as
normal) and distinguish from remaining signals (referred to as anomalous). The algorithm
was trained over 1000 epochs using batch data size of 512 and it was found the loss on the
validation dataset for normal signal had a plateau at 0.06, while the anomalous signal data
achieved a loss of 0.08 after 300 epochs. It was also noted from Figure 4c how training loss
continued to decrease with increasing epoch number, thus an independent test dataset gave
a non-biased performance loss estimate and was more representative of likely algorithm
performance on unseen data. The algorithm reached optimum parameter settings on test
data at 400 epochs, thus a call-back function was used to identify these settings in the final
model. The algorithm determined an error threshold between the reconstructed signal
and the original input signal, above this threshold the signal was classified as anomalous,

Sensors 2024, 24, 560 6 of 13

while signals below threshold were classified as normal. The threshold was based on the
mean error on the normal dataset plus N standard deviations (1.0), varying N modified the
threshold and thus algorithm performance, in this work N = 3.

threshold = mean (train_loss) + N.std (train_loss) (1.0)

Modifying the threshold parameter N changed the FP, FN density in model results
and hence performance metrics (precision, accuracy, recall). Thus N was optimised to
achieve acceptable performance for a specific application, i.e., reduce FP or FN in the train
dataset results. In some applications (e.g., medical diagnosis) it may be acceptable to have
increased numbers of FP over FN, as missing a diagnosis has significant negative impact.

2.3.2. Convolutional Neural Networks (CNNs)

CNNs (Figure 5a) was the second classification algorithm evaluated, this was applied
to spectrograms generated from original US signals. The spectrograms formed input to the
CNN, which extracted key frequency domain features.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 13

the loss on the validation dataset for normal signal had a plateau at 0.06, while the anom-

alous signal data achieved a loss of 0.08 after 300 epochs. It was also noted from Figure 4c

how training loss continued to decrease with increasing epoch number, thus an independ-

ent test dataset gave a non-biased performance loss estimate and was more representative

of likely algorithm performance on unseen data. The algorithm reached optimum param-

eter settings on test data at 400 epochs, thus a call-back function was used to identify these

settings in the final model. The algorithm determined an error threshold between the re-

constructed signal and the original input signal, above this threshold the signal was clas-

sified as anomalous, while signals below threshold were classified as normal. The thresh-

old was based on the mean error on the normal dataset plus N standard deviations (1.0),

varying N modified the threshold and thus algorithm performance, in this work N = 3.

threshold = mean (train_loss) + N.std (train_loss) (1.0)

Modifying the threshold parameter N changed the FP, FN density in model results

and hence performance metrics (precision, accuracy, recall). Thus N was optimised to

achieve acceptable performance for a specific application, i.e., reduce FP or FN in the train

dataset results. In some applications (e.g., medical diagnosis) it may be acceptable to have

increased numbers of FP over FN, as missing a diagnosis has significant negative impact.

2.3.2. Convolutional Neural Networks (CNNs)

CNNs (Figure 5a) was the second classification algorithm evaluated, this was applied

to spectrograms generated from original US signals. The spectrograms formed input to

the CNN, which extracted key frequency domain features.

Figure 5. (a) The CNN structure implemented for spectrogram analysis (arrow indicates algorithm

sequence); (b) the algorithm training loss over training epochs.

Spectrograms were generated in Python forming eight classes within test and train

data sets. The batch size was set to thirty-two. The CNN model was defined using sequen-

tial structures from the Tensorflow and Keras platforms. The CNN classifier was com-

posed of three Conv2D layers each of which acted as convolutional filter to extract features

and map a reduced representation to the following CNN layer. The Relu activation thresh-

old removed negative values after each convolution layer. The maxpooling layer was an

n x n sliding filter which extracted key features from each filter step, across the spectro-

gram. Maxpooling reduced spectrogram size/representation from proceeding to follow-

on convolutional layers. It also reduced the number of connected nodes, while maintain-

ing key frequency feature information. The maxpooled 2D feature maps were flattened

into a single vector, each node in this output vector represented a specific spectrogram

Figure 5. (a) The CNN structure implemented for spectrogram analysis (arrow indicates algorithm
sequence); (b) the algorithm training loss over training epochs.

Spectrograms were generated in Python forming eight classes within test and train
data sets. The batch size was set to thirty-two. The CNN model was defined using sequen-
tial structures from the Tensorflow and Keras platforms. The CNN classifier was composed
of three Conv2D layers each of which acted as convolutional filter to extract features and
map a reduced representation to the following CNN layer. The Relu activation threshold
removed negative values after each convolution layer. The maxpooling layer was an n × n
sliding filter which extracted key features from each filter step, across the spectrogram.
Maxpooling reduced spectrogram size/representation from proceeding to follow-on con-
volutional layers. It also reduced the number of connected nodes, while maintaining key
frequency feature information. The maxpooled 2D feature maps were flattened into a single
vector, each node in this output vector represented a specific spectrogram feature. In the
final model, two dropout layers were included (0.25, 0.5) to remove any low importance
nodes from dense node layers, this reduced complexity and shortened training time. Two of
the CNN optimisation hyper-parameters included the number of layers within the neural
network and layer density. Additional layers of varying density were added to the network
to determine if algorithm performance improved. The model was compiled using ADAM
optimisation on a cross entropy loss function. The training and validation datasets were
evaluated over 800 epochs (Figure 5b) with a call-back function identifying the optimum
model for evaluation. The train/validation losses and accuracy (Figure 5b) reach a plateau

Sensors 2024, 24, 560 7 of 13

after approximately 200 epochs, with the validation dataset performance more represen-
tative of expected performance in the final CNN classifier model, at approximately 80%
accuracy, with a loss based on cross entropy of approximately 0.5. The oscillations in the
validation loss plotted over epochs, result from smaller batch sizes repeatedly used in the
validation set over epochs, thus some data combinations gave better algorithm perfor-
mance than others. This was also evident in algorithm performance evaluation, where
some transducer positions achieved better performance metrics over others.

2.3.3. Neural Network (NN)

The NN had an input layer, output layer and a number of hidden layers defining
its structure. The layer number and nodes per layer were hyper-parameters optimised
during the training process. Since eight classes were considered, the output layer was a
vector of dimension 8 × 1 (i.e., one node representing each class), with a softmax activation
function determining which output node was activated to classify the input signal. The
data used in this NN algorithm was the positive envelope extracted from the US signal
transmitted between the transducers. The model was trained by modifying node weights
during feed-forward/feedback adjustment, implemented by the optimiser function on
the loss metric. The ADAM optimiser was used on the cross entropy loss function. The
complete envelope dataset was randomly split into test and train datasets, with 70:30 ratios.
Next the test and train datasets were normalised in the range 0–1. The structure of the
network (Figure 6a) was; (i) the input layer (301 × 1), (ii) four dense layers (128 × 1) and
(iii) the softmax output layer (8 × 1, Relu activation). After the model was compiled, it
was trained over 100 epochs with the accuracy and loss metrics evaluated during this step
(Figure 6b).

Sensors 2024, 24, x FOR PEER REVIEW 7 of 13

feature. In the final model, two dropout layers were included (0.25, 0.5) to remove any

low importance nodes from dense node layers, this reduced complexity and shortened

training time. Two of the CNN optimisation hyper-parameters included the number of

layers within the neural network and layer density. Additional layers of varying density

were added to the network to determine if algorithm performance improved. The model

was compiled using ADAM optimisation on a cross entropy loss function. The training

and validation datasets were evaluated over 800 epochs (Figure 5b) with a call-back func-

tion identifying the optimum model for evaluation. The train/validation losses and accu-

racy (Figure 5b) reach a plateau after approximately 200 epochs, with the validation da-

taset performance more representative of expected performance in the final CNN classi-

fier model, at approximately 80% accuracy, with a loss based on cross entropy of approx-

imately 0.5. The oscillations in the validation loss plotted over epochs, result from smaller

batch sizes repeatedly used in the validation set over epochs, thus some data combinations

gave better algorithm performance than others. This was also evident in algorithm per-

formance evaluation, where some transducer positions achieved better performance met-

rics over others.

2.3.3. Neural Network (NN)

The NN had an input layer, output layer and a number of hidden layers defining its

structure. The layer number and nodes per layer were hyper-parameters optimised dur-

ing the training process. Since eight classes were considered, the output layer was a vector

of dimension 8 × 1 (i.e., one node representing each class), with a softmax activation func-

tion determining which output node was activated to classify the input signal. The data

used in this NN algorithm was the positive envelope extracted from the US signal trans-

mitted between the transducers. The model was trained by modifying node weights dur-

ing feed-forward/feedback adjustment, implemented by the optimiser function on the loss

metric. The ADAM optimiser was used on the cross entropy loss function. The complete

envelope dataset was randomly split into test and train datasets, with 70:30 ratios. Next

the test and train datasets were normalised in the range 0–1. The structure of the network

(Figure 6a) was; (i) the input layer (301 × 1), (ii) four dense layers (128 × 1) and (iii) the

softmax output layer (8 × 1, Relu activation). After the model was compiled, it was trained

over 100 epochs with the accuracy and loss metrics evaluated during this step (Figure 6b).

Figure 6. (a) The implemented NN structure (arrow indicates algorithm sequence); (b) and the al-

gorithm training loss over training epochs.

A probability based prediction function was generated from the model using the

Softmax function and evaluated on the test dataset. For each test signal a probability vec-

tor (8 × 1) was calculated, the maximum probability position represented the most likely

Figure 6. (a) The implemented NN structure (arrow indicates algorithm sequence); (b) and the
algorithm training loss over training epochs.

A probability based prediction function was generated from the model using the
Softmax function and evaluated on the test dataset. For each test signal a probability vector
(8 × 1) was calculated, the maximum probability position represented the most likely class,
according to the NN classifier model. A recall function was used to identify the best model
parameters, which were used in the final model.

2.4. Edge Device Algorithm Deployment

Algorithm development was undertaken in Python using TensorFlow (TF) and KERAS,
with the former facilitating deployment on mobile, embedded and edge devices, using TF-
Lite. TF-Lite executes a low resource algorithm version on devices with limited memory and
compute power. The full TF model was easily converted into a TF-Lite format by running

Sensors 2024, 24, 560 8 of 13

conversion scripts [25]. The resulting TF-Lite model had reduced size and complexity in
moving from 32-bit to 8-bit numerical representation, using dropout layers and removing
features with minimal impact on algorithm performance. The TFLite model was stored as
a FlatBuffer [26], which was useful reading large data chunks one piece at a time, rather
than load everything into RAM. TF-Lite models can be deployed on; (i) Android and ios
devices, (ii) embedded Linux using Raspberry Pi, Coral devices, (iii) Microcontrollers etc.

The final algorithm was deployed and evaluated on a TF-Lite supported development
microcontroller board, the Arduino Nano 33 BLE Sense. This board was chosen because of
low cost, availability and ease of ML algorithm implementation. For model deployment,
the TF-Lite algorithm model library was downloaded onto the Nano BLE 33 board via
the Arduino IDE using the “manage libraries” tab [27]. The algorithm was compiled
and uploaded directly onto Arduino memory via the serial port. Fast ADC settings were
implemented on the edge device to optimise data acquisition by manipulating ADC buffers
(ADPS0, ADPS1, ADPS2, ADCSRA). The receiver signal could also be down shifted for
edge board audio input. The steps for data preparation, model training and evaluation,
followed by edge device deployment are outlined in Figure 7.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 13

class, according to the NN classifier model. A recall function was used to identify the best

model parameters, which were used in the final model.

2.4. Edge Device Algorithm Deployment

Algorithm development was undertaken in Python using TensorFlow (TF) and

KERAS, with the former facilitating deployment on mobile, embedded and edge devices,

using TF-Lite. TF-Lite executes a low resource algorithm version on devices with limited

memory and compute power. The full TF model was easily converted into a TF-Lite for-

mat by running conversion scripts [25]. The resulting TF-Lite model had reduced size and

complexity in moving from 32-bit to 8-bit numerical representation, using dropout layers

and removing features with minimal impact on algorithm performance. The TFLite model

was stored as a FlatBuffer [26], which was useful reading large data chunks one piece at a

time, rather than load everything into RAM. TF-Lite models can be deployed on; (i) An-

droid and ios devices, (ii) embedded Linux using Raspberry Pi, Coral devices, (iii) Micro-

controllers etc.
The final algorithm was deployed and evaluated on a TF-Lite supported develop-

ment microcontroller board, the Arduino Nano 33 BLE Sense. This board was chosen be-

cause of low cost, availability and ease of ML algorithm implementation. For model de-

ployment, the TF-Lite algorithm model library was downloaded onto the Nano BLE 33

board via the Arduino IDE using the “manage libraries” tab [27]. The algorithm was com-

piled and uploaded directly onto Arduino memory via the serial port. Fast ADC settings

were implemented on the edge device to optimise data acquisition by manipulating ADC

buffers (ADPS0, ADPS1, ADPS2, ADCSRA). The receiver signal could also be down

shifted for edge board audio input. The steps for data preparation, model training and

evaluation, followed by edge device deployment are outlined in Figure 7.

Figure 7. Outline of data preparation and model development in TensorFlow (Python) to deploy-

ment on board using the edge impulse platform and model inference output as transducer position

changes (position 0, position 1, position 4).

The edge impulse platform could also be used to build an algorithm project which

could be deployed directly onto the edge device [28]. The serial monitor was also used to

visualise in real time, the algorithm inference running on the board based on the trans-

mitted US signal. The inference output was the probability the input signal belonged to a

specific transmitter transducer position class. For a specific alignment signal, the algo-

rithm output was a probability between 0 and 1, a value close to 1 indicated high proba-

bility of belonging to that position class. The serial interface displayed the neural network

classifier model probability assigned to class labels, representing the extent of transducer

misalignment, as illustrated in Figure 7 “model inference output”.

Figure 7. Outline of data preparation and model development in TensorFlow (Python) to deployment
on board using the edge impulse platform and model inference output as transducer position changes
(

Sensors 2024, 24, x FOR PEER REVIEW 8 of 13

class, according to the NN classifier model. A recall function was used to identify the best

model parameters, which were used in the final model.

2.4. Edge Device Algorithm Deployment

Algorithm development was undertaken in Python using TensorFlow (TF) and

KERAS, with the former facilitating deployment on mobile, embedded and edge devices,

using TF-Lite. TF-Lite executes a low resource algorithm version on devices with limited

memory and compute power. The full TF model was easily converted into a TF-Lite for-

mat by running conversion scripts [25]. The resulting TF-Lite model had reduced size and

complexity in moving from 32-bit to 8-bit numerical representation, using dropout layers

and removing features with minimal impact on algorithm performance. The TFLite model

was stored as a FlatBuffer [26], which was useful reading large data chunks one piece at a

time, rather than load everything into RAM. TF-Lite models can be deployed on; (i) An-

droid and ios devices, (ii) embedded Linux using Raspberry Pi, Coral devices, (iii) Micro-

controllers etc.
The final algorithm was deployed and evaluated on a TF-Lite supported develop-

ment microcontroller board, the Arduino Nano 33 BLE Sense. This board was chosen be-

cause of low cost, availability and ease of ML algorithm implementation. For model de-

ployment, the TF-Lite algorithm model library was downloaded onto the Nano BLE 33

board via the Arduino IDE using the “manage libraries” tab [27]. The algorithm was com-

piled and uploaded directly onto Arduino memory via the serial port. Fast ADC settings

were implemented on the edge device to optimise data acquisition by manipulating ADC

buffers (ADPS0, ADPS1, ADPS2, ADCSRA). The receiver signal could also be down

shifted for edge board audio input. The steps for data preparation, model training and

evaluation, followed by edge device deployment are outlined in Figure 7.

Figure 7. Outline of data preparation and model development in TensorFlow (Python) to deploy-

ment on board using the edge impulse platform and model inference output as transducer position

changes (position 0, position 1, position 4).

The edge impulse platform could also be used to build an algorithm project which

could be deployed directly onto the edge device [28]. The serial monitor was also used to

visualise in real time, the algorithm inference running on the board based on the trans-

mitted US signal. The inference output was the probability the input signal belonged to a

specific transmitter transducer position class. For a specific alignment signal, the algo-

rithm output was a probability between 0 and 1, a value close to 1 indicated high proba-

bility of belonging to that position class. The serial interface displayed the neural network

classifier model probability assigned to class labels, representing the extent of transducer

misalignment, as illustrated in Figure 7 “model inference output”.

position 0,

Sensors 2024, 24, x FOR PEER REVIEW 8 of 13

class, according to the NN classifier model. A recall function was used to identify the best

model parameters, which were used in the final model.

2.4. Edge Device Algorithm Deployment

Algorithm development was undertaken in Python using TensorFlow (TF) and

KERAS, with the former facilitating deployment on mobile, embedded and edge devices,

using TF-Lite. TF-Lite executes a low resource algorithm version on devices with limited

memory and compute power. The full TF model was easily converted into a TF-Lite for-

mat by running conversion scripts [25]. The resulting TF-Lite model had reduced size and

complexity in moving from 32-bit to 8-bit numerical representation, using dropout layers

and removing features with minimal impact on algorithm performance. The TFLite model

was stored as a FlatBuffer [26], which was useful reading large data chunks one piece at a

time, rather than load everything into RAM. TF-Lite models can be deployed on; (i) An-

droid and ios devices, (ii) embedded Linux using Raspberry Pi, Coral devices, (iii) Micro-

controllers etc.
The final algorithm was deployed and evaluated on a TF-Lite supported develop-

ment microcontroller board, the Arduino Nano 33 BLE Sense. This board was chosen be-

cause of low cost, availability and ease of ML algorithm implementation. For model de-

ployment, the TF-Lite algorithm model library was downloaded onto the Nano BLE 33

board via the Arduino IDE using the “manage libraries” tab [27]. The algorithm was com-

piled and uploaded directly onto Arduino memory via the serial port. Fast ADC settings

were implemented on the edge device to optimise data acquisition by manipulating ADC

buffers (ADPS0, ADPS1, ADPS2, ADCSRA). The receiver signal could also be down

shifted for edge board audio input. The steps for data preparation, model training and

evaluation, followed by edge device deployment are outlined in Figure 7.

Figure 7. Outline of data preparation and model development in TensorFlow (Python) to deploy-

ment on board using the edge impulse platform and model inference output as transducer position

changes (position 0, position 1, position 4).

The edge impulse platform could also be used to build an algorithm project which

could be deployed directly onto the edge device [28]. The serial monitor was also used to

visualise in real time, the algorithm inference running on the board based on the trans-

mitted US signal. The inference output was the probability the input signal belonged to a

specific transmitter transducer position class. For a specific alignment signal, the algo-

rithm output was a probability between 0 and 1, a value close to 1 indicated high proba-

bility of belonging to that position class. The serial interface displayed the neural network

classifier model probability assigned to class labels, representing the extent of transducer

misalignment, as illustrated in Figure 7 “model inference output”.

position 1,

Sensors 2024, 24, x FOR PEER REVIEW 8 of 13

class, according to the NN classifier model. A recall function was used to identify the best

model parameters, which were used in the final model.

2.4. Edge Device Algorithm Deployment

Algorithm development was undertaken in Python using TensorFlow (TF) and

KERAS, with the former facilitating deployment on mobile, embedded and edge devices,

using TF-Lite. TF-Lite executes a low resource algorithm version on devices with limited

memory and compute power. The full TF model was easily converted into a TF-Lite for-

mat by running conversion scripts [25]. The resulting TF-Lite model had reduced size and

complexity in moving from 32-bit to 8-bit numerical representation, using dropout layers

and removing features with minimal impact on algorithm performance. The TFLite model

was stored as a FlatBuffer [26], which was useful reading large data chunks one piece at a

time, rather than load everything into RAM. TF-Lite models can be deployed on; (i) An-

droid and ios devices, (ii) embedded Linux using Raspberry Pi, Coral devices, (iii) Micro-

controllers etc.
The final algorithm was deployed and evaluated on a TF-Lite supported develop-

ment microcontroller board, the Arduino Nano 33 BLE Sense. This board was chosen be-

cause of low cost, availability and ease of ML algorithm implementation. For model de-

ployment, the TF-Lite algorithm model library was downloaded onto the Nano BLE 33

board via the Arduino IDE using the “manage libraries” tab [27]. The algorithm was com-

piled and uploaded directly onto Arduino memory via the serial port. Fast ADC settings

were implemented on the edge device to optimise data acquisition by manipulating ADC

buffers (ADPS0, ADPS1, ADPS2, ADCSRA). The receiver signal could also be down

shifted for edge board audio input. The steps for data preparation, model training and

evaluation, followed by edge device deployment are outlined in Figure 7.

Figure 7. Outline of data preparation and model development in TensorFlow (Python) to deploy-

ment on board using the edge impulse platform and model inference output as transducer position

changes (position 0, position 1, position 4).

The edge impulse platform could also be used to build an algorithm project which

could be deployed directly onto the edge device [28]. The serial monitor was also used to

visualise in real time, the algorithm inference running on the board based on the trans-

mitted US signal. The inference output was the probability the input signal belonged to a

specific transmitter transducer position class. For a specific alignment signal, the algo-

rithm output was a probability between 0 and 1, a value close to 1 indicated high proba-

bility of belonging to that position class. The serial interface displayed the neural network

classifier model probability assigned to class labels, representing the extent of transducer

misalignment, as illustrated in Figure 7 “model inference output”.

position 4).

The edge impulse platform could also be used to build an algorithm project which
could be deployed directly onto the edge device [28]. The serial monitor was also used to
visualise in real time, the algorithm inference running on the board based on the transmitted
US signal. The inference output was the probability the input signal belonged to a specific
transmitter transducer position class. For a specific alignment signal, the algorithm output
was a probability between 0 and 1, a value close to 1 indicated high probability of belonging
to that position class. The serial interface displayed the neural network classifier model
probability assigned to class labels, representing the extent of transducer misalignment, as
illustrated in Figure 7 “model inference output”.

3. Results
3.1. Algorithm Performance Evaluation

The classification algorithms were compared using; accuracy, precision, recall, true
positives, true negatives, false positives and false negatives. Such metrics are typically
used to evaluate and compare algorithm classification performance. Different thresholds
were also considered to determine the best performance metrics. Envelope signals from the
aligned class (position 0) were input to the trained autoencoder model, Figure 8 highlights
the original input signal (blue) and the decoder reconstituted signal (red), the error between
the two signals was also plotted (red fill). In the case where error was below threshold (1.0),

Sensors 2024, 24, 560 9 of 13

as with signals in Figure 8a,b, these were correctly classified as aligned (position—0) by the
autoencoder algorithm. Where signals from transducer positions misaligned 4 & 7 were
input to the algorithm, a high error between input and reconstructed signal resulted, as
illustrated in Figure 8c,d.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 13

3. Results

3.1. Algorithm Performance Evaluation

The classification algorithms were compared using; accuracy, precision, recall, true

positives, true negatives, false positives and false negatives. Such metrics are typically

used to evaluate and compare algorithm classification performance. Different thresholds

were also considered to determine the best performance metrics. Envelope signals from

the aligned class (position 0) were input to the trained autoencoder model, Figure 8 high-

lights the original input signal (blue) and the decoder reconstituted signal (red), the error

between the two signals was also plotted (red fill). In the case where error was below

threshold (1.0), as with signals in Figure 8a,b, these were correctly classified as aligned

(position—0) by the autoencoder algorithm. Where signals from transducer positions mis-

aligned 4 & 7 were input to the algorithm, a high error between input and reconstructed

signal resulted, as illustrated in Figure 8c,d.

Figure 8. (a,b) Original and reconstructed signals for aligned input; (c,d) high error was evident for

reconstructed input signal envelopes, misaligned 4 and 7.

The autoencoder performance for each US transducer configuration was outlined in

Table 1, where labels “Misalign-1” to “Misalign-7” represent the extent of transducer mis-

alignment. Good accuracy, precision and recall was achieved for class labels misalign-2,

misalign-3, misalign-5 and misalign-7. Precision and accuracy was good for misalign-1,

misalign-4 and misalign-6, however recall was poor. For the aligned class, precision and

recall was poor due to increased numbers of FP and FN.

Table 1. Performance metrics for the auto-encoder classification algorithm outlined for aligned and

misaligned US signals.

Configuration Accuracy Precision Recall TP TN FP FN

Aligned 0.87 0.22 0.41 6 187 21 7

Misalign-1 0.92 0.90 0.56 18 187 2 14

Misalign-2 0.92 0.72 0.79 27 177 10 7

Misalign-3 0.96 0.85 0.78 18 195 3 5

Misalign-4 0.91 0.73 0.56 7 185 13 6

Misalign-5 0.95 0.87 0.84 27 185 4 5

Misalign-6 0.93 0.82 0.53 14 192 3 12

Misalign-7 0.94 0.88 0.70 22 187 3 9

Figure 8. (a,b) Original and reconstructed signals for aligned input; (c,d) high error was evident for
reconstructed input signal envelopes, misaligned 4 and 7.

The autoencoder performance for each US transducer configuration was outlined
in Table 1, where labels “Misalign-1” to “Misalign-7” represent the extent of transducer
misalignment. Good accuracy, precision and recall was achieved for class labels misalign-2,
misalign-3, misalign-5 and misalign-7. Precision and accuracy was good for misalign-1,
misalign-4 and misalign-6, however recall was poor. For the aligned class, precision and
recall was poor due to increased numbers of FP and FN.

Table 1. Performance metrics for the auto-encoder classification algorithm outlined for aligned and
misaligned US signals.

Configuration Accuracy Precision Recall TP TN FP FN

Aligned 0.87 0.22 0.41 6 187 21 7
Misalign-1 0.92 0.90 0.56 18 187 2 14
Misalign-2 0.92 0.72 0.79 27 177 10 7
Misalign-3 0.96 0.85 0.78 18 195 3 5
Misalign-4 0.91 0.73 0.56 7 185 13 6
Misalign-5 0.95 0.87 0.84 27 185 4 5
Misalign-6 0.93 0.82 0.53 14 192 3 12
Misalign-7 0.94 0.88 0.70 22 187 3 9

The CNN spectrogram classifier performance was also evaluated using accuracy,
precision and recall on the test data set (Table 2). The classifier was evaluated with a
number of CNN configurations, including layer depth and node number. The best model
performance was achieved with 2D convolution layers set to densities 16, 12, 8 respectively,
configurations with 64, 32, 16 layers achieved no improvement in performance.

Sensors 2024, 24, 560 10 of 13

Table 2. Illustrated how four classes perform well with the CNN algorithm (Aligned, Misalign-1,3,7),
while the others have mixed performance.

Configuration Accuracy Precision Recall TP TN FP FN

Aligned 1.00 1.00 1.00 3 47 0 0
Misalign-1 0.96 1.00 0.78 7 41 0 2
Misalign-2 0.94 0.75 0.60 3 44 1 2
Misalign-3 1.00 1.00 1.00 4 46 0 0
Misalign-4 0.86 0.25 0.66 2 41 6 1
Misalign-5 0.82 1.00 0.36 5 36 0 9
Misalign-6 0.92 1.00 0.56 5 41 0 4
Misalign-7 0.98 1.00 0.88 8 41 0 1

Classification performance was good for four transducer positions (aligned, Misalign-1,
Misalign-3, Misalign-7), while Misalign-5 and Misalign-6 had good accuracy and precision,
but low recall. Poor precision and recall were associated with classes misalign-2, misalign-4.
For such transducer positions, the algorithm confused classes with positions in close
proximity and misclassified accordingly.

The performance of the NN model with 4 hidden layers, each with 128 nodes was
comparable to the models evaluated with 5 & 6 hidden layers, thus the simpler network
configuration was preferred over deeper models. This simple NN model (Table 3) per-
formed superior to the autoencoder and spectrogram classifiers. The accuracy, precision
and recall metrics were consistently above 0.88 for all alignment positions. The average
model accuracy, precision and recall as outlined in Table 4, also indicated better NN model
performance. Thus the NN model was selected for deployment onto the edge device
evaluation board.

Table 3. The NN model was evaluated for layer depth 4, using 128 nodes on hidden layers.

Configuration Accuracy Precision Recall TP TN FP FN

Aligned 0.97 1.00 0.77 10 208 0 3
Misalign-1 0.97 0.91 0.88 29 185 3 4
Misalign-2 0.98 0.94 0.91 32 184 2 3
Misalign-3 1.00 1.00 1.00 23 198 0 0
Misalign-4 0.99 0.96 1.00 30 190 1 0
Misalign-5 0.98 0.92 0.89 23 193 2 3
Misalign-6 0.98 0.93 0.90 26 190 2 3
Misalign-7 0.98 0.96 0.90 27 190 1 3

Table 4. The average accuracy, precision and recall of the three algorithms evaluated on the US
alignment dataset.

Model Avg. Accuracy Avg. Precision Avg. Recall

Autoencoder 0.93 0.75 0.65
Spectrogram-CNN 0.94 0.88 0.73

Neural network 0.98 0.95 0.91

3.2. Edge Device Performance

The NN algorithm was deployed onto the edge devices to classify US signals trans-
mitted between transducers. This offered the possibility to implement in near real time,
position inference based on US signal, as illustrated in Figure 9. The neural network
classifier model output assigned a probability to class labels, representing the extent of
transducer misalignment.

Sensors 2024, 24, 560 11 of 13

Sensors 2024, 24, x FOR PEER REVIEW 11 of 13

3.2. Edge Device Performance

The NN algorithm was deployed onto the edge devices to classify US signals trans-

mitted between transducers. This offered the possibility to implement in near real time,

position inference based on US signal, as illustrated in Figure 9. The neural network clas-

sifier model output assigned a probability to class labels, representing the extent of trans-

ducer misalignment.

(a) (b) (c)

Figure 9. Outline of three transmitter/receiver alignment configurations, classified by edge de-

ployed algorithm; (a) position 0 (aligned); (b) misaligned position 1; (c) misaligned position 4, where

the arrow indicates direction of transmitter movement.

From the classifier probability output outlined in Table 5, all positions are clearly

labelled correctly, with high probability for each transducer position. As the US transmit-

ter transitioned between labelled positions, the inference probability gradually reduced

for the departing position label and increased for the arriving position label. Thus midway

between the two positions, probability approached 0.5 for adjacent position labels. The

coloured rows in Table 5, correspond to transducer positions outlined in Figure 9a–c. The

algorithm implementation time on the evaluation board typically took 319 ms. Moving

from 32 bit float to 8 bit integer model representation, reduced required memory from

34.4 kb to 27.7 kb.

Table 5. Outline of the probability for transducer misalignment for positions 0–7, the high probabil-

ity score returned by the on-board algorithm correctly classified the alignment position for the edge

device board (position 0, position 1, position 4).

Aligned Misaligned-1 Misaligned-2 Misaligned-3 Misaligned-4 Misaligned-5 Misaligned-6 Misaligned-7

0.99609 0.00000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000

0.00000 0.99609 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.99609 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.99609 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.99609 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.99609 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.99609 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.99609

It was also possible to use the Edge Impulse platform as a remote server upon which

classification was implemented. Thus the board locally acquired data for transmission to

the Edge Impulse server, for “cloud” based classification. After signal analysis the align-

ment class was conveyed back to the local pc running the Edge Impulse platform. From

signal acquisition to locally display the algorithm output class, took approximately 10 s.

Thus there was significantly increased latency in cloud implementation compared to local

on device algorithm application. The second issue arising with cloud based implementa-

tion was connectivity, poor broadband availability or loss of signal disrupting algorithm

inference. The server sites experiencing technical difficulties or upgrading systems also

impacted device connectivity and inference continuity.

Figure 9. Outline of three transmitter/receiver alignment configurations, classified by edge deployed
algorithm; (a) position 0 (aligned); (b) misaligned position 1; (c) misaligned position 4, where the
arrow indicates direction of transmitter movement.

From the classifier probability output outlined in Table 5, all positions are clearly
labelled correctly, with high probability for each transducer position. As the US transmitter
transitioned between labelled positions, the inference probability gradually reduced for
the departing position label and increased for the arriving position label. Thus midway
between the two positions, probability approached 0.5 for adjacent position labels. The
coloured rows in Table 5, correspond to transducer positions outlined in Figure 9a–c. The
algorithm implementation time on the evaluation board typically took 319 ms. Moving
from 32 bit float to 8 bit integer model representation, reduced required memory from
34.4 kb to 27.7 kb.

Table 5. Outline of the probability for transducer misalignment for positions 0–7, the high probability
score returned by the on-board algorithm correctly classified the alignment position for the edge
device board (

Sensors 2024, 24, x FOR PEER REVIEW 8 of 13

class, according to the NN classifier model. A recall function was used to identify the best

model parameters, which were used in the final model.

2.4. Edge Device Algorithm Deployment

Algorithm development was undertaken in Python using TensorFlow (TF) and

KERAS, with the former facilitating deployment on mobile, embedded and edge devices,

using TF-Lite. TF-Lite executes a low resource algorithm version on devices with limited

memory and compute power. The full TF model was easily converted into a TF-Lite for-

mat by running conversion scripts [25]. The resulting TF-Lite model had reduced size and

complexity in moving from 32-bit to 8-bit numerical representation, using dropout layers

and removing features with minimal impact on algorithm performance. The TFLite model

was stored as a FlatBuffer [26], which was useful reading large data chunks one piece at a

time, rather than load everything into RAM. TF-Lite models can be deployed on; (i) An-

droid and ios devices, (ii) embedded Linux using Raspberry Pi, Coral devices, (iii) Micro-

controllers etc.
The final algorithm was deployed and evaluated on a TF-Lite supported develop-

ment microcontroller board, the Arduino Nano 33 BLE Sense. This board was chosen be-

cause of low cost, availability and ease of ML algorithm implementation. For model de-

ployment, the TF-Lite algorithm model library was downloaded onto the Nano BLE 33

board via the Arduino IDE using the “manage libraries” tab [27]. The algorithm was com-

piled and uploaded directly onto Arduino memory via the serial port. Fast ADC settings

were implemented on the edge device to optimise data acquisition by manipulating ADC

buffers (ADPS0, ADPS1, ADPS2, ADCSRA). The receiver signal could also be down

shifted for edge board audio input. The steps for data preparation, model training and

evaluation, followed by edge device deployment are outlined in Figure 7.

Figure 7. Outline of data preparation and model development in TensorFlow (Python) to deploy-

ment on board using the edge impulse platform and model inference output as transducer position

changes (position 0, position 1, position 4).

The edge impulse platform could also be used to build an algorithm project which

could be deployed directly onto the edge device [28]. The serial monitor was also used to

visualise in real time, the algorithm inference running on the board based on the trans-

mitted US signal. The inference output was the probability the input signal belonged to a

specific transmitter transducer position class. For a specific alignment signal, the algo-

rithm output was a probability between 0 and 1, a value close to 1 indicated high proba-

bility of belonging to that position class. The serial interface displayed the neural network

classifier model probability assigned to class labels, representing the extent of transducer

misalignment, as illustrated in Figure 7 “model inference output”.

position 0,

Sensors 2024, 24, x FOR PEER REVIEW 8 of 13

class, according to the NN classifier model. A recall function was used to identify the best

model parameters, which were used in the final model.

2.4. Edge Device Algorithm Deployment

Algorithm development was undertaken in Python using TensorFlow (TF) and

KERAS, with the former facilitating deployment on mobile, embedded and edge devices,

using TF-Lite. TF-Lite executes a low resource algorithm version on devices with limited

memory and compute power. The full TF model was easily converted into a TF-Lite for-

mat by running conversion scripts [25]. The resulting TF-Lite model had reduced size and

complexity in moving from 32-bit to 8-bit numerical representation, using dropout layers

and removing features with minimal impact on algorithm performance. The TFLite model

was stored as a FlatBuffer [26], which was useful reading large data chunks one piece at a

time, rather than load everything into RAM. TF-Lite models can be deployed on; (i) An-

droid and ios devices, (ii) embedded Linux using Raspberry Pi, Coral devices, (iii) Micro-

controllers etc.
The final algorithm was deployed and evaluated on a TF-Lite supported develop-

ment microcontroller board, the Arduino Nano 33 BLE Sense. This board was chosen be-

cause of low cost, availability and ease of ML algorithm implementation. For model de-

ployment, the TF-Lite algorithm model library was downloaded onto the Nano BLE 33

board via the Arduino IDE using the “manage libraries” tab [27]. The algorithm was com-

piled and uploaded directly onto Arduino memory via the serial port. Fast ADC settings

were implemented on the edge device to optimise data acquisition by manipulating ADC

buffers (ADPS0, ADPS1, ADPS2, ADCSRA). The receiver signal could also be down

shifted for edge board audio input. The steps for data preparation, model training and

evaluation, followed by edge device deployment are outlined in Figure 7.

Figure 7. Outline of data preparation and model development in TensorFlow (Python) to deploy-

ment on board using the edge impulse platform and model inference output as transducer position

changes (position 0, position 1, position 4).

The edge impulse platform could also be used to build an algorithm project which

could be deployed directly onto the edge device [28]. The serial monitor was also used to

visualise in real time, the algorithm inference running on the board based on the trans-

mitted US signal. The inference output was the probability the input signal belonged to a

specific transmitter transducer position class. For a specific alignment signal, the algo-

rithm output was a probability between 0 and 1, a value close to 1 indicated high proba-

bility of belonging to that position class. The serial interface displayed the neural network

classifier model probability assigned to class labels, representing the extent of transducer

misalignment, as illustrated in Figure 7 “model inference output”.

position 1,

Sensors 2024, 24, x FOR PEER REVIEW 8 of 13

class, according to the NN classifier model. A recall function was used to identify the best

model parameters, which were used in the final model.

2.4. Edge Device Algorithm Deployment

Algorithm development was undertaken in Python using TensorFlow (TF) and

KERAS, with the former facilitating deployment on mobile, embedded and edge devices,

using TF-Lite. TF-Lite executes a low resource algorithm version on devices with limited

memory and compute power. The full TF model was easily converted into a TF-Lite for-

mat by running conversion scripts [25]. The resulting TF-Lite model had reduced size and

complexity in moving from 32-bit to 8-bit numerical representation, using dropout layers

and removing features with minimal impact on algorithm performance. The TFLite model

was stored as a FlatBuffer [26], which was useful reading large data chunks one piece at a

time, rather than load everything into RAM. TF-Lite models can be deployed on; (i) An-

droid and ios devices, (ii) embedded Linux using Raspberry Pi, Coral devices, (iii) Micro-

controllers etc.
The final algorithm was deployed and evaluated on a TF-Lite supported develop-

ment microcontroller board, the Arduino Nano 33 BLE Sense. This board was chosen be-

cause of low cost, availability and ease of ML algorithm implementation. For model de-

ployment, the TF-Lite algorithm model library was downloaded onto the Nano BLE 33

board via the Arduino IDE using the “manage libraries” tab [27]. The algorithm was com-

piled and uploaded directly onto Arduino memory via the serial port. Fast ADC settings

were implemented on the edge device to optimise data acquisition by manipulating ADC

buffers (ADPS0, ADPS1, ADPS2, ADCSRA). The receiver signal could also be down

shifted for edge board audio input. The steps for data preparation, model training and

evaluation, followed by edge device deployment are outlined in Figure 7.

Figure 7. Outline of data preparation and model development in TensorFlow (Python) to deploy-

ment on board using the edge impulse platform and model inference output as transducer position

changes (position 0, position 1, position 4).

The edge impulse platform could also be used to build an algorithm project which

could be deployed directly onto the edge device [28]. The serial monitor was also used to

visualise in real time, the algorithm inference running on the board based on the trans-

mitted US signal. The inference output was the probability the input signal belonged to a

specific transmitter transducer position class. For a specific alignment signal, the algo-

rithm output was a probability between 0 and 1, a value close to 1 indicated high proba-

bility of belonging to that position class. The serial interface displayed the neural network

classifier model probability assigned to class labels, representing the extent of transducer

misalignment, as illustrated in Figure 7 “model inference output”.

position 4).

Aligned Misaligned-1 Misaligned-2 Misaligned-3 Misaligned-4 Misaligned-5 Misaligned-6 Misaligned-7
0.99609 0.00000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000
0.00000 0.99609 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.99609 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.99609 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.99609 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.99609 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.99609 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.99609

It was also possible to use the Edge Impulse platform as a remote server upon which
classification was implemented. Thus the board locally acquired data for transmission to the
Edge Impulse server, for “cloud” based classification. After signal analysis the alignment
class was conveyed back to the local pc running the Edge Impulse platform. From signal
acquisition to locally display the algorithm output class, took approximately 10 s. Thus there
was significantly increased latency in cloud implementation compared to local on device
algorithm application. The second issue arising with cloud based implementation was
connectivity, poor broadband availability or loss of signal disrupting algorithm inference.
The server sites experiencing technical difficulties or upgrading systems also impacted
device connectivity and inference continuity.

4. Discussion

A data set based on a transmitted 8-bit US signal between a transmitter and receiver,
across a range of displacements, was used to access the ability of three algorithms clas-
sifying transducer misalignment. The models included an autoencoder, multilayer NN
and CNN classifier. The data set was composed of 736 signals acquired across eight posi-
tions, with a similar number of samples per class. For each model, performance relevant

Sensors 2024, 24, 560 12 of 13

hyper-parameters were optimised based on a selected optimiser (e.g., ADAM), minimising
loss (e.g., cross entropy) over a range of epochs. The NN model achieved the best classi-
fication performance metrics based on accuracy, precision, recall and confusion matrices,
across transducer displacements. The autoencoder was more accurate for misaligned than
aligned classes and envelope shape similarity for shallow misalignment angles may be
an issue. CNN classifier applied to data spectrograms didn’t perform as well as the other
algorithms. The NN model delivered the best performance and was implemented on an
edge device, the NanoBLE33. The algorithm successfully classified misalignment between
an ultrasonic transmitter and receiver, thus demonstrated a potential approach to trans-
ducer alignment based on a short US data exchange. This result is relevant to transducer
alignment in US power transfer or communication applications, especially for arrayed US
devices (e.g., CMUT, PMUT), where altering beam phase and intensity can steer signals
to specific tissue locations. The Edge Impulse software platform offered a convenient
approach for algorithm deployment on supported edge devices. The Tensorflow model
was imported into the Edge Impulse environment where code was generated and burnt
directly onto hardware. In deploying the algorithm an Int8 TFLITE model representation
was selected to minimise memory requirements. ML signal classification took typically
<350 ms, an acceptable time period for this alignment evaluation. The benefit of edge ML
deployment over cloud based application was clearly demonstrated with reduced inference
time (milliseconds vs. seconds) and minimal disruption due to connectivity or remote
server issues. With more complex algorithms higher computational power and memory
may be required, which may not be available on an edge device. Thus cloud servers may
be required. Cloud based systems also facilitate augmented/continuous algorithm training
to improve accuracy and robustness signal variation (e.g., drift). Additional consideration
such as data integrity, update rate, hardware size and power consumption, should be
considered when deciding where and how ML applications are deployed.

Author Contributions: Conceptualization, D.B.; methodology, D.B.; software, D.B.; validation, D.B.;
formal analysis, D.B.; investigation, D.B.; resources, P.G.; data curation, D.B.; writing—original
draft preparation, D.B.; writing—review and editing, D.B. and P.G.; visualization, D.B.; project
administration, P.G.; funding acquisition, P.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by ECSEL JU in collaboration with the European Union’s H2020
Framework Programme (H2020/2014–2020) through grant no. H2020-ECSEL-2019-IA-876190, and
co-funded by Enterprise Ireland through grant no. IR 2020 0053B. Supported in part by Science
Foundation Ireland (SFI), through the Insight Centre for Data Analytics Initiative (SFI/12/RC/2289-
P2). For the purpose of Open Access, the authors have applied a CC BY public copyright license to
any Author Accepted Manuscript version arising from this submission.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Turner, B.L.; Senevirathne, S.; Kilgour, K.; McArt, D.; Biggs, M.; Menegatti, S.; Daniele, M.A. Ultrasound-Powered Implants:

A Critical Review of Piezoelectric Material Selection and Applications. Adv. Healthc. Mater. 2021, 10, e2100986. [CrossRef]
[PubMed]

2. Bazaka, K.; Jacob, M.V. Implantable Devices: Issues and Challenges. Electronics 2013, 2, 1–34. [CrossRef]
3. Dinis, H.; Colmiais, I.; Mendes, P.M. Extending the Limits of Wireless Power Transfer to Miniaturized Implantable Electronic

Devices. Micromachines 2017, 8, 359. [CrossRef] [PubMed]
4. Ozeri, S.; Shmilovitz, D. Ultrasonic transcutaneous energy transfer for powering implanted devices. Ultrasonics 2010, 50, 556–566.

[CrossRef] [PubMed]

https://doi.org/10.1002/adhm.202100986
https://www.ncbi.nlm.nih.gov/pubmed/34235886
https://doi.org/10.3390/electronics2010001
https://doi.org/10.3390/mi8120359
https://www.ncbi.nlm.nih.gov/pubmed/30400549
https://doi.org/10.1016/j.ultras.2009.11.004
https://www.ncbi.nlm.nih.gov/pubmed/20031183

Sensors 2024, 24, 560 13 of 13

5. Schneider, F.K.; Yoo, Y.; Agarwal, A.; Koh, L.M.; Kim, Y. New demodulation filter in digital phase rotation beamforming.
Ultrasonics 2006, 44, 265–271. [CrossRef] [PubMed]

6. Barshan, B. Fast processing techniques for accurate ultrasonic range measurements. Meas. Sci. Technol. 2000, 11, 45–50. [CrossRef]
7. Parrilla, M.; Anaya, J.; Fritch, C. Digital signal processing techniques for high accuracy ultrasonic range measurement. IEEE Trans.

Instrum. Meas. 1991, 40, 759–763. [CrossRef]
8. Gueuning, F.; Varlan, M.; Eugene, C.; Dupuis, P. Accurate Distance Measurement by an Autonomous Ultrasonic System

Combining Time-of-Flight and Phase-Shift Methods. IEEE Trans. Instrum. Meas. 1997, 46, 1236–1240. [CrossRef]
9. Nithya, S.; Rani, M. Stacked Variational Autoencoder in the Classification of Cardiac Arrhythmia using ECG Signals with 2D-ECG

Images. In Proceedings of the International Conference on Intelligent Innovations in Engineering and Technology (ICIIET),
Coimbatore, India, 22–24 September 2022; pp. 222–226. [CrossRef]

10. Srivastava, A.; Jain, S.; Miranda, R.; Patil, S.; Pandya, S.; Kotecha, K. Deep learning based respiratory sound analysis for detection
of chronic obstructive pulmonary disease. Peer J. Comput. Sci. 2021, 7, 369–371. [CrossRef] [PubMed]

11. Bergen, K.J.; Johnson, P.A.; De Hoop, M.V.; Beroza, G.C. Machine learning for data-driven discovery in solid Earth geoscience.
Science 2019. [CrossRef] [PubMed]

12. Alajlan, N.N.; Ibrahim, D.M. TinyML: Enabling of Inference Deep Learning Models on Ultra-Low-Power IoT Edge Devices for AI
Applications. Micromachines 2022, 13, 851. [CrossRef] [PubMed]

13. Hammad, S.S.; Iskandaryan, D.; Trilles, S. An unsupervised TinyML approach applied to the detection of urban noise anomalies
under the smart cities environment. Internet Things 2023, 23, 100848. [CrossRef]

14. Zhang, Y.; Suda, N.; Lai, L.; Chandra, V. Hello Edge: Keyword Spotting on Microcontrollers. arXiv 2018, arXiv:1711.07128v3.
15. Park, J.; Seok, J.; Hong, J. Autoencoder-Based Signal Modulation and Demodulation Methods for Sonobuoy Signal Transmission

and Reception. Sensors 2022, 22, 6510. [CrossRef] [PubMed]
16. Sanchez-Iborra, R.; Skarmeta, A.F. Tinyml-enabled frugal smart objects: Challenges and opportunities. IEEE Circuits Syst. Mag.

2020, 20, 4–18. [CrossRef]
17. Han, S. Putting AI on Diet: TinyML and Efficient Deep Learning. In Proceedings of the 2021 International Symposium on VLSI

Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 19–22 April 2021. [CrossRef]
18. Zaidi, S.A.R.; Hayajneh, A.M.; Hafeez, M.; Ahmed, Q.Z. Unlocking Edge Intelligence Through Tiny Machine Learning (TinyML).

IEEE Access 2022, 10, 100867–100877. [CrossRef]
19. Amazon Web Services. Available online: https://aws.amazon.com/sagemaker/edge/ (accessed on 14 November 2023).
20. Microsoft Azure Machine Learning. Available online: https://azure.microsoft.com/en-us/products/machine-learning/ (ac-

cessed on 14 November 2023).
21. Tensorflow. Available online: https://www.tensorflow.org/lite/microcontrollers (accessed on 19 April 2023).
22. David, R.; Duke, J.; Jain, A.; Reddi, V.J.; Jeffries, N.; Li, J.; Kreeger, M.; Nappier, I.; Natraj, M.; Wang, T.; et al. TensorFlow-lite

micro: Embedded machine learning for TinyML systems. In Proceedings of the 4th MLSys Conference, San Jose, CA, USA,
5–9 April 2021.

23. Verasonics. Available online: https://verasonics.com/vantage-systems/ (accessed on 19 April 2023).
24. Indriyanto, S.; Edward, I.Y. Ultrasonic Underwater Acoustic Modem Using Frequency Shift Keying (FSK) Modulation 2018. In

Proceedings of the 4th International Conference on Wireless and Telematics (ICWT), Nusa Dua, Bali, Indonesia, 12–13 July 2018.
[CrossRef]

25. Tensorflow. Available online: https://www.tensorflow.org/lite/guide (accessed on 19 April 2023).
26. Tensorflow. Available online: https://www.tensorflow.org/lite/microcontrollers/get_started (accessed on 19 April 2023).
27. Arduino. Arduino Nano 33 BLE Sense with headers. Available online: https://store-usa.arduino.cc/products/arduino-nano-33

-ble-sense-with-headers (accessed on 19 April 2023).
28. EDGE Impulse. Available online: https://studio.edgeimpulse.com/studio/upload (accessed on 19 April 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ultras.2006.02.004
https://www.ncbi.nlm.nih.gov/pubmed/16563453
https://doi.org/10.1088/0957-0233/11/1/307
https://doi.org/10.1109/19.85348
https://doi.org/10.1109/19.668260
https://doi.org/10.1109/ICIIET55458.2022.9967575
https://doi.org/10.7717/peerj-cs.369
https://www.ncbi.nlm.nih.gov/pubmed/33817019
https://doi.org/10.1126/science.aau0323
https://www.ncbi.nlm.nih.gov/pubmed/30898903
https://doi.org/10.3390/mi13060851
https://www.ncbi.nlm.nih.gov/pubmed/35744466
https://doi.org/10.1016/j.iot.2023.100848
https://doi.org/10.3390/s22176510
https://www.ncbi.nlm.nih.gov/pubmed/36080975
https://doi.org/10.1109/MCAS.2020.3005467
https://doi.org/10.1109/VLSI-DAT52063.2021.9427348
https://doi.org/10.1109/ACCESS.2022.3207200
https://aws.amazon.com/sagemaker/edge/
https://azure.microsoft.com/en-us/products/machine-learning/
https://www.tensorflow.org/lite/microcontrollers
https://verasonics.com/vantage-systems/
https://doi.org/10.1109/ICWT.2018.8527809
https://www.tensorflow.org/lite/guide
https://www.tensorflow.org/lite/microcontrollers/get_started
https://store-usa.arduino.cc/products/arduino-nano-33-ble-sense-with-headers
https://store-usa.arduino.cc/products/arduino-nano-33-ble-sense-with-headers
https://studio.edgeimpulse.com/studio/upload

	Introduction
	Materials and Methods
	US Signal Acquisition
	Data Pre-Processing
	ML Algorithms
	Autoencoder
	Convolutional Neural Networks (CNNs)
	Neural Network (NN)

	Edge Device Algorithm Deployment

	Results
	Algorithm Performance Evaluation
	Edge Device Performance

	Discussion
	References

