Exploring the Performance of an Artificial Intelligence-Based Load Sensor for Total Knee Replacements
Abstract
:1. Introduction
1.1. Total Knee Replacements
1.2. Current Devices and Limitations
2. Self-Developed Load Sensor
2.1. Housing Unit
2.2. Electronics
2.3. Artificial Intelligence (AI)
- Collecting Training Data
- 2.
- Pre-processing Collected Training Data
- 3.
- Optimised Network Parameters
2.4. Aims
- Points outside sensing area;
- Points not inputted into the ANN;
- Difference in medial/lateral sides.
- Loads outside of the training load range;
- Loads not inputted to the ANN;
- Difference in medial/lateral sides.
3. Methodology
4. Results
4.1. Load Predictions
- Compartments
- 2.
- Sensing Area
- 3.
- Training Range
4.2. Location Predictions
- Compartments
- 2.
- Sensing Area
- 3.
- Training Region
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belluzzi, E.; Todros, S.; Pozzuoli, A.; Ruggieri, P.; Carniel, E.L.; Berardo, A. Human Cartilage Biomechanics: Experimental and Theoretical Approaches towards the Identification of Mechanical Properties in Healthy and Osteoarthritic Conditions. Processes 2023, 11, 1014. [Google Scholar] [CrossRef]
- National Joint Registry. 18th Annual NJR Report 2021; National Joint Registry: London, UK, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK576858/ (accessed on 14 January 2024).
- Kallala, R.F.; Vanhegan, I.S.; Ibrahim, M.S.; Sarmah, S.; Haddad, F.S. Financial analysis of revision knee surgery based on NHS tariffs and hospital costs. Bone Jt. J. 2015, 97-B, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Ghirardelli, S.; Bala, A.; Peretti, G.; Antonini, G.; Indelli, P.F. Intraoperative Sensing Technology to Achieve Balance in Primary Total Knee Arthroplasty: A Review of the Literature. JBJS Rev. 2019, 7, e4. [Google Scholar] [CrossRef]
- Sharkey, P.F.; Lichstein, P.M.; Shen, C.; Tokarski, A.T.; Parvizi, J. Why are total knee arthroplasties failing today—Has anything changed after 10 years? J. Arthroplast. 2014, 29, 1774–1778. [Google Scholar] [CrossRef]
- Gustke, K.; Golladay, G.J.; Roche, M.W.; Elson, L.C.; Anderson, C.R. A new method for defining balance: Promising short-term clinical outcomes of sensor-guided TKA. J. Arthroplast. 2014, 29, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Moussa, M.E.; Lee, Y.-Y.; Westrich, G.H.; Mehta, N.; Lyman, S.; Marx, R.G. Comparison of Revision Rates of Non-modular Constrained Versus Posterior Stabilized Total Knee Arthroplasty: A Propensity Score Matched Cohort Study. HSS J. 2017, 13, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Babazadeh, S.; Stoney, J.D.; Lim, K.; Choong, P.F.M. The relevance of ligament balancing in total knee arthroplasty: How important is it? A systematic review of the literature. Orthop. Rev. 2009, 1, e26. [Google Scholar] [CrossRef]
- Gustke, K.; Golladay, G.J.; Roche, M.W.; Elson, L.C.; Anderson, C.R. Primary TKA Patients with Quantifiably Balanced Soft-Tissue Achieve Significant Clinical Gains Sooner than Unbalanced Patients. Adv. Orthop. 2014, 2014, 628695. [Google Scholar] [CrossRef]
- MacDessi, S.J.; Gharaibeh, M.A.; Harris, I.A. How Accurately Can Soft Tissue Balance Be Determined in Total Knee Arthroplasty? J. Arthroplast. 2019, 34, 290–294.e1. [Google Scholar] [CrossRef]
- MacDessi, S.J.; Wood, J.A.; Diwan, A.D.; Harris, I.A. Surgeon-defined assessment is a poor predictor of knee balance in total knee arthroplasty: A prospective, multicenter study. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 498–506. [Google Scholar] [CrossRef]
- Elmallah, R.K.; Mistry, J.B.; Cherian, J.J.; Chughtai, M.; Bhave, A.; Roche, M.W.; Mont, M.A. Can We Really “Feel” a Balanced Total Knee Arthroplasty? J. Arthroplast. 2016, 31 (Suppl. S9), 102–105. [Google Scholar] [CrossRef] [PubMed]
- Geller, J.A.; Lakra, A.; Murtaugh, T. The Use of Electronic Sensor Device to Augment Ligament Balancing Leads to a Lower Rate of Arthrofibrosis After Total Knee Arthroplasty. J. Arthroplast. 2017, 32, 1502–1504. [Google Scholar] [CrossRef]
- Amundsen, S.; Lee, Y.-Y.; González Della Vall, A. Algorithmic pie-crusting of the medial collateral ligament guided by sensing technology affects the use of constrained inserts during total knee arthroplasty. Int. Orthop. 2017, 41, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Konopka, J.; Weitzler, L.; Westrich, D.; Wright, T.M.; Westrich, G.H. The effect of constraint on post damage in total knee arthroplasty: Posterior stabilized vs posterior stabilized constrained inserts. Arthroplast. Today 2018, 4, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Green, T.R.; Fisher, J.; Matthews, J.B.; Stone, M.H.; Ingham, E. Effect of size and dose on bone resorption activity of macrophages by in vitro clinically relevant ultra high molecular weight polyethylene particles. J. Biomed. Mater. Res. 2000, 53, 490–497. [Google Scholar] [CrossRef] [PubMed]
- DeHeer, D.H.; Engels, J.A.; DeVries, A.S.; Knapp, R.H.; Beebe, J.D. In situ complement activation by polyethylene wear debris. J. Biomed. Mater. Res. 2001, 54, 12–19. [Google Scholar] [CrossRef]
- Fisher, J.; McEwen, H.M.; Tipper, J.L.; Galvin, A.L.; Ingram, J.; Kamali, A.; Stone, M.H.; Ingham, E. Wear, debris, and biologic activity of cross-linked polyethylene in the knee: Benefits and potential concerns. Clin. Orthop. Relat. Res. 2004, 428, 114–119. [Google Scholar] [CrossRef]
- Naudie, D.D.R.; Ammeen, D.J.; Engh, G.A.; Rorabeck, C.H. Wear and osteolysis around total knee arthroplasty. JAAOS-J. Am. Acad. Orthop. Surg. 2007, 15, 53–64. [Google Scholar] [CrossRef]
- Sava, M.-P.; Hara, H.; Alexandra, L.; Hügli, R.W.; Hirschmann, M.T. Verasense sensor-assisted total knee arthroplasty showed no difference in range of motion, reoperation rate or functional outcomes when compared to manually balanced total knee arthroplasty: A systematic review. Knee Surg Sports Traumatol. Arthrosc. 2023, 31, 1851–1858. [Google Scholar] [CrossRef]
- Nicolet-Petersen, S.J.; Howell, S.M.; Hull, M.L. Tibial contact force and contact location errors of the VERASENSE. J. Biomech. Eng. 2018, 140, 124502. [Google Scholar] [CrossRef]
- Shah, D.S.; Taylan, O.; Verstraete, M.; Berger, P.; Vandenneucker, H.; Scheys, L. Can intraoperative intra-articular loads predict postoperative knee joint laxity following total knee arthroplasty? A cadaver study with smart tibial trays. Sensors 2021, 21, 5078. [Google Scholar] [CrossRef] [PubMed]
- Pramoditha, R. Overview of a Neural Network’s Learning Process. Data Science 365. Available online: https://medium.com/data-science-365/overview-of-a-neural-networks-learning-process-61690a502fa (accessed on 8 January 2024).
- Al-Nasser, S.; Noroozi, S.; Haratian, R.; Aslani, N.; Harvey, A. Load Prediction using an Intraoperative Joint Sensor and Artificial Neural Network. In Proceedings of the 19th International Conference on Condition Monitoring and Asset Management, CM 2023, Northampton, UK, 12–14 September 2023; p. 2024. [Google Scholar] [CrossRef]
- Kuriyama, S.; Nishitani, K.; Nakamura, S.; Matsuda, S. An electronic force sensor accurately detects increased but not decreased soft tissue tension in total knee arthroplasty. Knee 2023, 42, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.X.; Wu, Z.Y.; Lin, Q.H.; Chen, T.; Kuang, S.L.; Gan, M.F.; Huang, L.X.; Sun, L.N. Novel Force Measurement System for Soft Tissue Balance in Total Knee Arthroplasty Based on Flexible Pressure Sensor Arrays. Adv. Intell. Syst. 2022, 4, 2100156. [Google Scholar] [CrossRef]
- Jiang, H.; Xiang, S.; Guo, Y.; Wang, Z. A wireless visualized sensing system with prosthesis pose reconstruction for total knee arthroplasty. Sensors 2019, 19, 2909. [Google Scholar] [CrossRef]
- Crottet, D.; Maeder, T.; Fritschy, D.; Bleuler, H.; Nolte, L.P.; Pappas, I.P. Development of a force amplitude- and location-sensing device designed to improve the ligament balancing procedure in TKA. IEEE Trans. Biomed. Eng. 2005, 52, 1609–1611. [Google Scholar] [CrossRef]
Medial Compartment (X, Y) | Lateral Compartment (X, Y) | |
---|---|---|
Point 1 | (1.5, 0.5) | (1.5, 0.5) |
Point 2 | (0.5, 1.5) | (0.5, 2.5) |
Point 3 | (1.0, 3.0) | (2.0, 3.0) |
Point 4 | (2.5, 2.5) | (3.0, 4.0) |
Point 5 | (1.5, 5.5) | (1.5, 5.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Nasser, S.; Noroozi, S.; Harvey, A.; Aslani, N.; Haratian, R. Exploring the Performance of an Artificial Intelligence-Based Load Sensor for Total Knee Replacements. Sensors 2024, 24, 585. https://doi.org/10.3390/s24020585
Al-Nasser S, Noroozi S, Harvey A, Aslani N, Haratian R. Exploring the Performance of an Artificial Intelligence-Based Load Sensor for Total Knee Replacements. Sensors. 2024; 24(2):585. https://doi.org/10.3390/s24020585
Chicago/Turabian StyleAl-Nasser, Samira, Siamak Noroozi, Adrian Harvey, Navid Aslani, and Roya Haratian. 2024. "Exploring the Performance of an Artificial Intelligence-Based Load Sensor for Total Knee Replacements" Sensors 24, no. 2: 585. https://doi.org/10.3390/s24020585
APA StyleAl-Nasser, S., Noroozi, S., Harvey, A., Aslani, N., & Haratian, R. (2024). Exploring the Performance of an Artificial Intelligence-Based Load Sensor for Total Knee Replacements. Sensors, 24(2), 585. https://doi.org/10.3390/s24020585