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Abstract: Methane gas concentration detection faces the challenges of increasing accuracy and
sensitivity, as well as high reliability in harsh environments. The special design of the optical path
structure of the sensitive element provides an opportunity to improve methane gas concentration
detection. In this study, the optical path structure of the sensitive element was newly designed based
on the Pyramidal beam splitter matrix. The infrared light source was modulated by multi-frequency
point-signal superimposed modulation technology. At the same time, concentration detection results
and confidence levels were calculated using the four-channel methane gas concentration detection
algorithm based on spectral refinement. Through the experiment, it was found that the sensor enables
the full-range measurement of CH4; at the lower explosive limit (LEL, CH4 LEL of 5%), the reliability
level is 0.01 parts-per-million (PPM), and the limit of detection is 0.5 ppm. The sensor is still capable
of achieving PPM-level detections under extreme conditions in which the sensor’s optical window is
covered by two-thirds and humidity is 85% or dust concentration is 100 mg/m3. Those improve the
sensitivity, robustness, reliability, and accuracy of the sensor.

Keywords: methane gas concentration detection; redundant sensor; pyramidal beam splitter matrix;
signal superposition technology; chirp z-transform

1. Introduction

Fires and even explosions caused by methane gas leaks are threats to safety produc-
tion in the petrochemical field, which accounts for about 50% of all major petrochemical
accidents in China [1–3]. Although methane gas sensors are prevalent in the workplace
and have alarmed considerable staff for emergency response, about 40% of flammable
and explosive accidents in petrochemical production sites were caused by no or failed
alarms [4,5]. On the other hand, there were over 300,000 alarms in China responded to by
fire departments in 2022 due to sensor malfunctions, leading to disruption to normal pro-
duction, the spending of social resources, and decreasing public confidence [6,7]. Prompt
and reliable methane gas leak detection is critical for rescuing life and avoiding flammable
and explosive damage.

Methane gas concentration detection technology faces the challenges of improving
detection limits, false alarm resistance, and adaptation under extreme environments. In-
creasing the optical path length is the key instrument for improving sensitivity, involving
techniques such as reflective optics [8] and compact pentahedron reflector structures [9]
that increase the light path length through the reflection process. In addition to that, de-
tection limits can be improved by increasing the efficiency of the sensitive element, for
instance, by plating zirconate titanate (PZT) film on the surface of the sensitive element [10]
and etching 3D patterns on the Monocrystalline lithium tantalate film [11]. Furthermore,
improving the infrared light source efficiency is another way to improve detection limits,
for example, by installing high-refractive-index long period gratings (LPFG) in front of
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an infrared light source [12] and improving the infrared light source structure based on
the Fabry-Borot (FPG) structure [13]. All the methods above can achieve sub-ppm-level
detection. However, at the very beginning of the leak, the concentration of methane gases
is below the PPM level; at the same time, the calculation results need to be evaluated
at extremely low concentrations. In more serious cases, the reliability of the sensor will
be affected when the window of the sensor is attached by contaminants or the infrared
detection channel is aging or malfunctioning.

In this study, a four-channel infrared sensitive element with a new optical structure
was designed to improve sensor accuracy, sensitivity, and reliability. The pyramidal beam
splitter matrix was used as an optical reflection structure inside the sensitive element. On
the one hand, the sensitivity of the sensor was improved by increasing the optical path
length. On the other hand, the complex optical reflection path enabled the four-signal de-
tection channel to receive a uniform infrared light signal and effectively reduced the impact
of contaminants (such as condensation fog, dust, etc.) attached to the optical window on
the performance of the sensor, thus raising the reliability of the sensor. The concentration
calculation results and the confidence level were calculated via the results of the four in-
frared signal detections that were calculated by the four-channel methane gas concentration
redundancy algorithm based on the linear frequency modulation chirp z-transform (CZT).
The designed methane gas concentration sensors were tested for detection performance,
accuracy and sensitivity, and reliability through the methane gas concentration calibration
experiment, the methane gas limit detection experiment, and the anti-interference capability
simulation experiment, respectively.

2. Design of Sensitive Element and Measurement Circuit
2.1. Sensitive Element Design

In order to increase the optical length and mix infrared light well, as shown in Figure 1,
a pyramid beam splitter matrix is added in the center of the sensitive element. At the
same time, the combination of four infrared bandpass filters and infrared pyroelectric
elements is placed around the pyramidal beam splitter matrix. An optical incidence
window is arranged at the top of the sensitive element, with an infrared reflective lining
on the inside. The infrared reflective lining has high pass-through to infrared light signals
from the entrance to the inside of the sensitive element, and it has full-spectrum high
reflectivity for infrared light signals reflected by the pyramidal spectral matrix and infrared
bandpass filter.

As shown in Figure 1b, the methane gas only absorbs infrared light signals near the
center wavelength of 3.4 µm and does not absorb infrared light signals near the center
wavelength of 3.91 µm. Therefore, infrared bandpass filters with a center wavelength of
3.4 µm and a bandwidth of 0.2 µm are mounted in front of the two sensitive elements of the
detection channel to detect the methane gas concentration. Infrared bandpass filters with a
center wavelength of 3.91 µm and a bandwidth of 0.2 µm are installed in front of the two
sensitive elements of the reference channel to provide a reference for the detection channel.

The top view of the inside of the sensitive element is shown in Figure 2. An infrared
pyroelectric sensitive element is arranged behind each group of infrared bandpass filters
(A1, A2, B1, B2). A1 and A2 only pass through the infrared light signal with a center
wavelength of 3.4 µm and a bandwidth of 0.2 µm for the detection of methane gas. B1
and B2 only pass through the infrared light signal with a center wavelength of 3.91 µm
and a bandwidth of 0.2 µm to provide a reference for the detection waveform. A1, A2, B1,
and B2 have full-spectrum high reflectivity for infrared light signals outside the allowed
passage wavelength.



Sensors 2024, 24, 602 3 of 18
Sensors 2024, 24, 602 3 of 19 
 

 

 
(a) 

(b) 

Figure 1. Element structure and methane absorption spectrum; (a) Schematic diagram of the struc-
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Figure 2. Top view of the inside of a sensitive element. 

As shown in Figure 3, infrared light A and B, to be emitted by the infrared light 
source, are shot inside the sensitive element through the signal inlet on it. The infrared 
light is reflected toward the infrared bandpass filter when it hits the pyramidal beam split-
ter. Only the infrared light, within the bandpass wavelength range, can pass through it 
and shoot to the infrared pyroelectric element behind it. The rest of the infrared light, out 
of the bandpass wavelength range, will all be reflected into the infrared reflection lining, 
and a secondary reflection—all the infrared light will be reflected, due to its highly reflec-
tive full spectrum—occurs here. The secondary reflected infrared light will be reflected to 

Figure 1. Element structure and methane absorption spectrum; (a) Schematic diagram of the structure
of the sensitive element; (b) Methane absorption spectrum.

Sensors 2024, 24, 602 3 of 19 
 

 

 
(a) 

(b) 

Figure 1. Element structure and methane absorption spectrum; (a) Schematic diagram of the struc-
ture of the sensitive element; (b) Methane absorption spectrum. 

 
Figure 2. Top view of the inside of a sensitive element. 

As shown in Figure 3, infrared light A and B, to be emitted by the infrared light 
source, are shot inside the sensitive element through the signal inlet on it. The infrared 
light is reflected toward the infrared bandpass filter when it hits the pyramidal beam split-
ter. Only the infrared light, within the bandpass wavelength range, can pass through it 
and shoot to the infrared pyroelectric element behind it. The rest of the infrared light, out 
of the bandpass wavelength range, will all be reflected into the infrared reflection lining, 
and a secondary reflection—all the infrared light will be reflected, due to its highly reflec-
tive full spectrum—occurs here. The secondary reflected infrared light will be reflected to 

Figure 2. Top view of the inside of a sensitive element.

As shown in Figure 3, infrared light A and B, to be emitted by the infrared light source,
are shot inside the sensitive element through the signal inlet on it. The infrared light is
reflected toward the infrared bandpass filter when it hits the pyramidal beam splitter. Only
the infrared light, within the bandpass wavelength range, can pass through it and shoot
to the infrared pyroelectric element behind it. The rest of the infrared light, out of the
bandpass wavelength range, will all be reflected into the infrared reflection lining, and
a secondary reflection—all the infrared light will be reflected, due to its highly reflective
full spectrum—occurs here. The secondary reflected infrared light will be reflected to
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the bandpass filter in the opposite direction and the above optical reflection process will
be repeated.
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Figure 3. Schematic diagram of the optical path reflected by the pyramid beam splitter matrix.

In Figure 3, only the reflection process for two beams of light (A and B) is shown
between the two infrared bandpass filters and infrared reflection lining. Actually, it is
a complex reflection process wherein a beam of light is reflected between the pyramid
beam splitter matrix, four infrared bandpass filters (A1, A2, B1, and B2), and the infrared
reflection lining. This process can increase the optical path length and provide all infrared
light signals in the respective wavelength range to four infrared bandpass filters (A1, A2,
B1, and B2).

As mentioned above, this design for the sensitive element can improve the reliability
and accuracy of the methane gas concentration sensor.

On the one hand, we discuss the impact of improving the accuracy of the sensor for the
detection of methane gas concentration. Absorption properties follow the Beer–Lambert
law [14,15]:

I = I0e−αCL (1)

Here, I0 is the intensity of the infrared light incident, I is the intensity of the infrared
light transmitted through the gas, α is the absorption coefficient of the gas, L is the optical
path length, and C is the concentration of the gas. Apparently, increasing the optical
path length can improve the absorption of infrared light by the methane gas, when the
concentration of the methane gas is certain, and improve the accuracy of the sensitive
element to detect methane gas concentration. The complex optical reflection process in the
internal optical path structure of the sensitive element can increase the optical path length
so that the infrared light signal can be fully absorbed by the methane gas. The electrical
signal difference can be increased between the detection channel and the reference channel,
thus increasing the accuracy of the sensor for the detection of methane gas concentration.

On the other hand, we discuss the impact of improving the reliability of the sensor.
The condensation fog can be formed on the optical incidence window of the sensitive
element due to the fact that the sensor is affected by environmental temperature factors
(such as the temperature difference between day and night, the system between start and
stop, etc.). And, dust particles are inevitably attached to the optical incidence window
of the sensitive element on account of the fact that the sensor inlet and outlet are open
paths. All of these conditions can lead to the varying reduction in infrared signals that are
received by each of the infrared signal detection channels so that the detection malfunction
occurs. The complex optical reflection process inside the sensitive element enables each
of the infrared signal detection channels to receive a uniform signal. Even if the incidence
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window is attached to contaminants—it causes the non-uniform incidence of infrared
light signal into the sensitive element—each of the infrared signal detection channels can
receive the uniform signal, too. It thereby ensures that the sensor can effectively detect the
concentration of methane gases even under unfavorable conditions, thus increasing the
reliability of the sensor.

2.2. Measurement Circuit Design

The circuits of measuring signals from four detection channels of the sensitive ele-
ments are completely identical. This circuit diagram is shown in Figure 4. Therefore, only
one of the detection circuits is used as an example. The circuit consists of two operational
amplifiers (op. amps.) U28A and U29A, two transistors Q8 and Q9, and a digital poten-
tiometer U25. The very-low-amplitude raw output at the sensitive element is amplified
through the two-stage amplifier circuit that is constituted by U28A and U29A. And, these
two transistors, Q8 and Q9, behave as a temperature compensation circuit that can suppress
the temperature drift of the output signal from the sensitive component. The analog signal
is precisely regulated by the digital potentiometer U25. Finally, the processed analog signal
is passed to the analog-to-digital converters (ADCs).
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3. Methane Gas Concentration Detection Algorithm Based on CZT Principle
3.1. CZT Algorithm Principle

The CZT algorithm is often used for spectrum refinement in the characteristic bands
of the signal, and it has the advantages of flexible refinement scale and high accuracy.

The specific calculation process can be expressed as follows. Suppose signal sequences
of limited length x(n) are spectrally refined in the frequency band with the origin fre-
quency f0, end frequency fL, and bandwidth length M; M = f0 + fL. This refinement is
accomplished through CZT transformation [16–21].

X(Zr) = CZT[x(n)] =
M−1

∑
n=0

x(n)A−n
0 e−jθ0nw0

−nre−jφ0nr (2)

Here, θ0 is the initial amplitude angle, φ0 represents equally spaced increments on a
unit circle angle, A0 is the length of the vector radius at the starting sampling point, w0 is
the elongation of the Z-plane helix, j is the imaginary unit, and the superscript r denotes
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the serial number sample on the unit circle, when A0 and w0 are equal to 1 at the same time.
We can derive Equation (3) from Equation (2).

X(r) =
M−1

∑
n=0

x(n) exp[−j(θ0 + φ0r)n] (3)

Here, θ0 is equal to 2π f0/ fs, φ0 is equal to 2π fL/(M fs) and fs is the sampling fre-
quency of the signal. Therefore, the frequency resolution of this band ∆ f after refinement
of the analysis is equal to fL/M.

3.2. Four-Channel Methane Gas Concentration Redundancy Calculation Model

As shown in Figure 5, the drive signal of the infrared light is driven by the modulated
waveform that is superimposed by the sinusoidal signal with a frequency of 4.0–5.0 Hz and
an interval of 0.1 Hz.
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Figure 5. Infrared light source drive voltage signal timing diagram.

In Figure 4, the characteristic frequency of the signal output from the secondary
amplifier circuit is between 4 and 5 Hz, with an interval of 0.1 Hz. Consequently, this
band (between 4 and 5 Hz) is the characteristic frequency band of the signal, and has the
frequency refinement scale of 0.1 Hz. We refine the spectrum for the characteristic band
using the CZT algorithm.

Suppose that the modulus sums of the four secondary amplified signals calculated
through the CZT algorithm are M1, M2, R1, and R2 on a minimum resolution of 0.1 Hz
in the signal characteristic frequency band between 4 and 5 Hz. Here, M1 and M2 are
the mode sums of the infrared pyroelectric element 3.4 µm band channel 1 and channel
2, respectively and R1 and R2 are the modulus sums of the infrared pyroelectric element
3.91 µm band channel 1 and channel 2, respectively. Then, the expression can be written
as follows:
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Here, ADC1 and ADC2 are the voltages obtained from the two concentration de-
tection circuits and ADC3 and ADC4 are the voltages obtained from the two reference
channel circuits.

As such, from the four ratios of the modulus sums, two infrared pyroelectric 3.4 µm
bands (methane detection bands) are compared to two 3.91 µm bands (reference bands),
which are calculated by the CZT algorithm in the characteristic frequency band and can be
represented as follows: 

Q1 = M1
R1

Q2 = M1
R2

Q3 = M2
R1

Q4 = M2
R2

(5)

Here, Q1, Q2, Q3, and Q4 are the ratios of modulus between two detection channels
and two reference channels.

Then, methane gas concentrations from four redundant combinations can be calculated
as follows: 

C1 = 1 − M1
R1

C2 = 1 − M1
R2

C3 = 1 − M2
R1

C4 = 1 − M2
R2

(6)

Here, C1, C2, C3, and C4 are the methane gas concentration from four redundant
combinations.

Ultimately, the concentration of the methane gas to be detected can be calculated
as follows:

COL = Q =
C1 + C2 + C3 + C4

4
(7)

Here, COL is the result of the methane gas concentration to be detected, and Q is the
average of the concentrations of the four redundant combinations.

The trusted accuracy of the concentration can be evaluated via the concentration
variance S2

COL. The trusted accuracy of the sensor is at the PPM level when S2
COL is equal

to 0.0000001.

S2
COL =

(Q − C1)
2
+ (Q − C2)

2
+ (Q − C3)

2
+ (Q − C4)

2

4
(8)

4. Experiments and Results
4.1. Methane Gas Concentration Calibration Experiments and Results

Methane gas from 0% to 90% LEL was produced by a proportioning device of methane
gas concentration, as shown in Figure 6, and was used for the methane gas concentration
calibration experiment involving the sensor. Among them, the methane gas with a concen-
tration of 0% LEL was prepared by filling the methane gas concentration proportioning
device with high-purity air. The proportioning accuracy of this device is 0.0001 PPM.
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Figure 6. Methane gas concentration proportioning device diagram.

The results of the methane gas concentration calibration experiment are analyzed as
follows. First of all, from the four time domain signal figures (Figures 7a, 8a, 9a and 10a), we
can find that the signal strengths of detection channels 1 and 2 decreased with the increase in
the concentration of methane gas (Figures 7a and 8a), and those of the two reference channels
remained the same all the time (Figures 9a and 10a).
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In the follow-up phase of the spectrum analysis of the data for four channels, it can be
found that spectrum peaks were concentrated between 4 and 5 Hz (Figures 7b, 8b, 9b and 10b),
indicating that the characteristic frequency band was in this band. Additionally, the spectrum
peaks of detection channels 1 and 2 decreased with the increase in the concentration of methane
gas (Figures 7b and 8b), and those of the two reference channels remained the same all the time
(Figures 9b and 10b). The same conclusion was obtained above when the four channels were
further analyzed in detail on the characteristic band (Figures 7c, 8c, 9c and 10c).

For the final stage of the calculation of detection results for methane gas from 0% to
100% LEL concentration, it can be seen that the results of each concentration of methane gas
were accurately calculated using the methane gas concentration detection algorithm based
on the CZT principle (Table 1). The maximum value of the concentration variance S2

COL of
the detection result was 0.014 PPM, and the minimum one was 0.0015 PPM, indicating that
the trusted accuracy of the concentration detection result can reach a 0.014 PPM level in the
most adverse condition.

Table 1. Calculated methane gas concentration detection results for 0–90% LEL methane concentration.

Concentration
(% LEL) M1 M2 R1 R2 C1 C2 C3 C4 COL S2

COL(PPM)

0 1037.263935 1037.263932 1037.263937 1037.263936 0 0 0 0 0 -
10 933.537542 933.537539 1037.263937 1037.263936 0.1 0.1 0.1 0.1 0.1 0.0140
20 829.811148 829.811146 1037.263937 1037.263936 0.2 0.2 0.2 0.2 0.2 0.0120
30 726.084755 726.084752 1037.263937 1037.263936 0.3 0.3 0.3 0.3 0.3 0.0110
40 622.358361 622.358359 1037.263937 1037.263936 0.4 0.4 0.4 0.4 0.4 0.0090
50 518.631968 518.631966 1037.263937 1037.263936 0.5 0.5 0.5 0.5 0.5 0.0076
60 414.905574 414.905573 1037.263937 1037.263936 0.6 0.6 0.6 0.6 0.6 0.0061
70 311.179181 311.17918 1037.263937 1037.263936 0.7 0.7 0.7 0.7 0.7 0.0046
80 207.452787 207.452786 1037.263937 1037.263936 0.8 0.8 0.8 0.8 0.8 0.0030
90 103.726394 103.726393 1037.263937 1037.263936 0.9 0.9 0.9 0.9 0.9 0.0015

4.2. Methane Gas Concentration Limit Detection Experiments and Results

Methane gas of the 0.5 PPM concentration was produced by a proportioning device of
methane gas concentration and was used for the concentration limit detection experiment
involving the sensor. See Figure 11.
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As shown in Table 2, the result of the concentration, which was calculated using the
methane gas concentration detection algorithm based on the CZT principle, was 0.5028 PPM,
and the concentration variance S2

COL was 0.015 PPM. This indicates that the trusted accuracy
of the concentration detection result is 0.01 PPM at least. Therefore, the concentration
detection accuracy of the sensor can attain 0.01 PPM.

Table 2. Methane gas concentration detection limit test results.

M1 M2 R1 R2 Q1 Q2 Q3 Q4

1037.263401 1037.263451 1037.26395 1037.26394 0.999999471 0.999999481 0.999999519 0.999999529

C1 C2 C3 C4 COL S2
col/PPM - -

5.019 PPM 5.009 PPM 5.048 PPM 5.038 PPM 5.028 PPM 0.015 - -

4.3. Anti-Interference Capability Simulation Experiments and Results

The option incident window of the sensitive element was taped with the designed
shading film so that it was simulated that this window was attached with contaminants
(such as condensation fog and dust particles). The material of the shading film was a
designed black polycondensation resin polarizer film and was randomly opened with
several small holes that were two-thirds of the total area. In this way, one-third of the
infrared light was incident of the sensitive element and another two-thirds of the infrared
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light were blocked from the sensitive element by the black overshadow film when the
sensitive element was injected by the infrared light. See Figure 12.
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Figure 12. Installation diagram of the shading film.

Methane gas of the 30% LEL and 70% LEL concentrations was produced by a propor-
tioning device of methane gas concentration and was used for the simulation experiment of
anti-interference ability involving the sensor after being taped with the black shading film.

The data from the comparison of four groups (Table 3) demonstrated that the two
detection results of two concentrations were identical before and after film application,
and were 30% LEL and 40% LEL, respectively. There was a tiny difference in the trusted
accuracy between the two detection results. However, the trusted accuracy can always
reach 0.01 PPM. In the two concentration treatment groups, the modulus of four infrared
signal detection channels were reduced by two-thirds after applying the black shading film.

Table 3. Sensor anti-interference experimental calculation results.

Concentration (% LEL) 30 Pre-Film Data 30 Post-Film Data 70 Pre-Film Data 70 Post-Film Data

M1 726.08 484.05 311.17 276.6
M2 726.08 484.05 311.17 276.6
R1 1037.2 691.5 1037.2 691.5
R2 1037.2 691.5 1037.2 691.5
C1 0.3 0.3 0.7 0.7
C2 0.3 0.3 0.7 0.7
C3 0.3 0.3 0.7 0.7
C4 0.3 0.3 0.7 0.7

COL 0.3 0.3 0.7 0.7
S2

COL(PPM) 0.0110 0.0186 0.0046 0.0071

4.4. High Humidity Environment Simulation Experiments and Results

We placed the sensor in the experiment box of the high-humidity/concentration dust
test device (Figure 13) and set the humidity of the device at 85% to perform the high-
humidity environment simulation experiment on the sensor. We opened the gas suction
value to inject the methane gas with the concentrations of 20% LEL and 60% LEL into it
when the humidity in the box had stabilized.
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As shown in Table 4, the detection results of these two concentrations were 20% LEL
and 60% LEL, and the trusted accuracy could still reach 0.012 PPM and 0.0061 PPM in a
high-humidity environment of 85%. There was only a small reduction in the modulus of
the four infrared signal detection channels.

Table 4. Experimental results of the sensor working in high-humidity environment.

Concentration (% LEL) 20 60

M1 775.043612 387.52180
M2 775.043610 387.52180
R1 968.804517 968.80450
R2 968.804516 968.80450
Q1 0.80000 0.40000
Q2 0.80000 0.40000
Q3 0.80000 0.40000
Q4 0.80000 0.40000

COL 0.20000 0.60000
S2

COL(PPM) 0.012 0.0061

4.5. High Concentration Dust Environment Simulation Experiments and Results

Similarly, we placed the sensor in the experiment box of the high-humidity/concentration
dust test device and set the dust concentration to 100 mg/m3 in order that this dust concen-
tration was used for the high-concentration dust environment simulation experiment. We
injected the methane gas with the concentrations of 40% LEL and 80% LEL into it when the
dust concentration in the box had settled down.

As shown in Table 5, the detection results of these two concentrations were 40% LEL
and 80% LEL, and the trusted accuracy could still reach 0.0063 PPM and 0.0021 PPM in a
high-concentration dust environment of 100 mg/m3. There was only a small reduction in
the modulus of the four infrared signal detection channels.

4.6. High-Humidity and -Concentration Dust Environment Simulation Experiments and Results

Similarly, the sensor taped with designed shading film was placed in the experiment
box of the high-humidity/concentration dust test device, and we set the humidity to 85%
and the dust concentration to 100 mg/m3 for the high-humidity and -concentration dust
environment simulation experiment. We injected the methane gas with the concentrations
of 50% LEL and 90% LEL into it when the humidity and the dust concentration in the box
had settled down.
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Table 5. Experimental results of the sensor working in high-concentration dust environment.

Concentration (% LEL) 40 80

M1 458.0557537 150.4033
M2 458.0557524 150.4033
R1 763.4262576 752.0164
R2 763.4262569 752.0164
Q1 0.599999999 0.2000
Q2 0.599999998 0.2000
Q3 0.599999997 0.2000
Q4 0.599999998 0.2000

COL 0.400000001 0.8000
S2

COL (PPM) 0.0063 0.0021

As shown in Table 6, the detections of these two concentrations were 50% LEL and 90%
LEL, and the trusted accuracy could still reach 0.029 PPM and 0.035 PPM in a high-humidity
and -concentration dust environment. There was only a small reduction in the modulus of
the four infrared signal detection channels.

Table 6. Experimental results of the sensor working in high-humidity and high-concentration dust
environment.

Concentration (% LEL) 50 90

M1 311.1792 62.23584
M2 311.1792 62.23584
R1 622.3584 622.3584
R2 622.3584 622.3584
Q1 0.600000004 0.100000003
Q2 0.600000003 0.100000006
Q3 0.600000005 0.100000004
Q4 0.600000004 0.100000003

COL 0.499999996 0.899999996
S2

COL (PPM) 0.029 0.035

5. Discussion

We compared the performance of the pyramid beam splitter methane gas concentration
sensor with other mainstream sensors in the industry, as shown in Table 7. The other three
sensors are evaluated in terms of % LEL level, which is significantly less accurate than the
PPM level reached by the pyramid beam splitter sensor. The pyramid beam splitter sensor
has a sensitivity level of PPM, which is significantly higher than the other three sensors.
Only the pyramid beam splitter sensor has higher reliability in terms of redundancy and
optical path design.

Table 7. Comparison of sensor performance.

Model Manufacturer Accuracy Sensitivity Redundancy and Optical Path
Reliability Design

PIR7000 Drager (German) 1% LEL 0.5% LEL Not possessing
PIRECLB1 DET-TRONICS (UAS) 3–5% LEL 0.5% LEL Not possessing

JTQB-BK61 BOKANG
(China) 3–5% LEL 1% LEL Not possessing

Pyramid beam splitter
type sensor HIT 0.5 PPM 0.01 PPM Possessing

Compared with the present state of the advanced semiconductor material combustible
gas sensors (such as metal oxide sensors, conducting polymer sensors, carbon nano-tube
sensors, and 2D material sensors), the pyramid beam splitter methane gas concentration
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sensor provides higher sensitivity and accuracy and does not require special process treat-
ment (such as that involving dopants or modifications), and it has greater environmental
adaptability (especially in high-humidity and high-dust-concentration environments) and
reliability (multi-channel redundant designs); additionally, it has a longer service life
because it does not interact directly with the gas (unlike 2D material sensors) [22].

6. Conclusions

(1) The developed detector can effectively detect the methane gas from 0% LEL to 90%
LEL, and the trusted accuracy of the detection result can reach 0.014 PPM. This illus-
trates that this detector can effectively detect the methane gas at each concentration
with high accuracy through the new design of the sensitive element combined with
the redundant four-channel methane gas concentration detection algorithm based on
the CZT principle. Meanwhile, the method of multi-channel redundancy contributes
to the improvement of the detector reliability to a certain degree.

(2) The design of the optical path structure of the sensitive element improves the sensor
sensitivity so that it enables the effective detection of methane gas that is at less than
the PPM level. The limit of the measurement concentration of this detector can reach
0.5 PPM, and the trusted accuracy is 0.01 PPM. The results indicate that the design of
the optical path structure of the sensitive element improves the detector sensitivity so
that it enables the effective detection of methane gas that is at less than the PPM level.

(3) The detector can be still operational, and the trusted accuracy of detection results
can still reach 0.01 PPM under unfavorable conditions, with two-thirds of the option
incident window of the sensitive element blocked, a humidity of 85%, and a dust
concentration of 100 mg/m3. The results illustrate that the sensitive element based on
the pyramidal beam splitter structure can improve detector reliability so that it can
neutralize the effect of the optical window attached by contaminants.
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