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Abstract: Learning underlying patterns from sensory data is crucial in the Human Activity Recogni-
tion (HAR) task to avoid poor generalization when coping with unseen data. A key solution to such
an issue is representation learning, which becomes essential when input signals contain activities
with similar patterns or when patterns generated by different subjects for the same activity vary. To
address these issues, we seek a solution to increase generalization by learning the underlying factors
of each sensor signal. We develop a novel multi-channel asymmetric auto-encoder to recreate input
signals precisely and extract indicative unsupervised futures. Further, we investigate the role of
various activation functions in signal reconstruction to ensure the model preserves the patterns of
each activity in the output. Our main contribution is that we propose a multi-task learning model to
enhance representation learning through shared layers between signal reconstruction and the HAR
task to improve the robustness of the model in coping with users not included in the training phase.
The proposed model learns shared features between different tasks that are indeed the underlying
factors of each input signal. We validate our multi-task learning model using several publicly avail-
able HAR datasets, UCI-HAR, MHealth, PAMAP2, and USC-HAD, and an in-house alpine skiing
dataset collected in the wild, where our model achieved 99%, 99%, 95%, 88%, and 92% accuracy.
Our proposed method shows consistent performance and good generalization on all the datasets
compared to the state of the art.

Keywords: human activity recognition; wearable; deep learning; representation learning; multi-task
learning; alpine skiing

1. Introduction

HAR is an active field of research in pervasive computing that aims to detect human
physical activities through machine learning models. HAR has various applications in
healthcare [1,2], sports [3,4], industry [5–7], and other fields. Commonly, HAR models
utilize activity signals recorded by wearable or visual sensors. While wearable sensors
are unobtrusive, low-cost, and portable, vision-based sensors [8] are inflexible, limited to
environmental factors [9], and suffer from privacy-related issues [10]. Therefore, wear-
ables such as Inertial Measurement Units (IMUs) have been employed frequently in data
recording for HAR applications [11–13].

Without regard to the learning approach, HAR consists of four main stages: data
acquisition, data preparation, feature learning, and recognition task [14]. Among all the
HAR steps, scholars have reported data acquisition and feature learning as major HAR
bottlenecks [15,16]. Although publicly available datasets, to some extent, alleviate the
former, the latter remains the number one challenge [15], which causes poor generalization.
Consequently, the model’s accuracy drops when facing data from unseen subjects [16].
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Moreover, the model’s confusion may increase when activities in a dataset are very similar
or complex, meaning that one activity is a mixture of the other actions [17], or when users
can perform activities in different ways. For instance, one can think of cycling in sitting or
standing mode or alpine skiing in different styles.

To overcome such problems, traditionally, scientists tried to extract meaningful fea-
tures from the IMU signals to train machine learning models. Hand-crafted features are
tedious to create, limited, and need domain expertise. As a result, utilizing conventional
models is time-consuming and they lack generalization. On the other hand, deep learning
models made significant progress by automatically generating relevant features in the
latent space to learn underlying patterns of activities [15]. Over the past few years, thanks
to heterogeneous publicly available HAR datasets, scholars have implemented various
models to recognize human actions. Although these models could achieve high accuracy,
one limitation of such studies is that they are not validated against a real case scenario or
unseen data. Consequently, model generalization is still a challenge [15,16].

Among deep learning architectures, auto-encoders as an unsupervised deep learning
model are suggested for automatic feature extraction [18,19] and dimensionality reduc-
tion [20]. Auto-encoders are unsupervised methods that replicate the input in the output,
and consist of an encoder, latent space, and decoder. The encoder compresses the input
into a latent space and the decoder reproduces the input. The latent space is a compressed
representation of data where the data points shape groups that are related to class labels
that are, ideally, useful for classification tasks. The difference between the input and output
of an auto-encoder is defined as the reconstruction error, where a lower error on the test set
indicates good generalization [18]. Garcia et al. [21] proposed an ensemble of auto-encoders
where the key feature of the classification model is reconstruction error. They dedicated
one auto-encoder per activity, assuming that an auto-encoder trained on one activity mini-
mizes the reconstruction error on samples with the same label. Therefore, the model passes
the new data to all auto-encoders and assigns a label based on the lowest reconstruction
error. Moyes et al. [22] highlighted the capability of the multi-channel auto-encoder model
in producing domain-invariant feature representation. Their results showed that a multi-
channel auto-encoder enables generalization to unseen data. In the other study [23], the
authors proposed a multi-channel auto-encoder to learn time series data. They achieved a
higher generalization using such a multi-channel architecture for anomaly detection.

Multi-task learning is a machine learning approach to learning several related tasks
simultaneously, which helps generalization through shared factors across tasks [18,24].
One example of multi-task learning is a supervised auto-encoder in which the latent space
of the auto-encoder is connected to a supervised model [25]. The authors in [25] concluded
that supervised auto-encoders improve the model performance, although they did not
examine any human activity dataset. Additionally, it has not been carefully investigated
and reported in the HAR literature how well an auto-encoder performs when reconstructing
IMU signals. Through this study, we discuss the role of signal reconstruction in generating
relevant features for activity recognition tasks. Subsequently, if the latent space, exploited by
compressing signals, is suitable for IMU signal recreation, it contains informative patterns
of the input. Therefore, signal reconstruction is the task that should be learned together
with the HAR task by the multi-task learning model. Thus, we will demonstrate the latent
features’ shape in the case of a precise signal reconstruction to answer these questions:

• Does such a latent space exist where human activities are recognizable using fea-
tures generated in an automatic and unsupervised way, due to signal compression
and reconstruction?

• How does a classifier affect the latent space created by the unsupervised block in a
multi-task learning model?

Although activity classification is the primary goal of HAR, we will treat IMU signal
reconstruction the same as the main task to ensure that the model recreates the input
signals precisely. We hypothesize that an auto-encoder that can reconstruct the input
signals to a reasonable degree shapes a latent space where labels are well represented. We
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propose a multi-channel asymmetric auto-encoder to compress IMU signals and accurately
reconstruct them to examine the quality of extracted features in the latent space for the
HAR task. Moreover, we examine the effect of several activation functions on the signal
reconstruction. Additionally, we connect a classification head to the auto-encoder’s latent
space to create a multi-task learning model, and examine the trade-off between the encoder,
decoder, and classifier. We aim to address the generalization problem of HAR models in
dealing with unseen data using the multi-task learning model capable of accurate signal
reconstruction. We report the state-of-the-art results on the UCI-HAR, MHealth, PAMAP2,
and USC-HAD datasets. Also, we validate our model against a wild dataset of alpine skiing
activities where skiers recorded data on their smartphones.

We investigate the role of signal reconstruction in representation learning for HAR
tasks to increase model generalization in coping with unseen data. To this end, we utilize
an auto-encoder-based multi-task learning model to compress input signals in a latent
space, reconstruct the input precisely, and classify human activities based on the generated
features due to signal reconstruction. We demonstrate the viability of the selected model
for this task using four public HAR datasets, as well as a novel alpine skiing dataset. The
primary contribution of this work to the HAR field is as follows:

• We investigate how signal reconstruction helps form activity-related dense clusters in
the latent space of a multi-task learning model.

In addition, the following secondary contributions were achieved:

• We present a multi-channel, asymmetric auto-encoder to automatically learn features
from wearable sensor data and precisely reconstruct input signals.

• We propose a multi-task learning model based on the multi-channel asymmetric auto-
encoder architecture to benefit from the robust representation learning due to signal
reconstruction and boost model generalization for the HAR task.

• We evaluate the multi-task learning model’s efficacy using four public datasets and
compare it to the state of the art.

• We investigate the effect of different activation functions on signal reconstruction and
provide a comparison.

The rest of the paper is structured as follows: in the Section 2, we will review the
literature and related works. In the Section 3, we introduce the architecture of the multi-
channel asymmetric auto-encoder and the multi-task learning model. We also provide
the details of the experiment and validation. In the Section 4, we test the model and
demonstrate the results in detail. Finally, in the Section 5, we discuss the model and results
and provide a conclusion.

2. Related Work

Multi-task learning aims to learn several tasks concurrently to improve generaliza-
tion performance [24]. One approach to MTL is representation learning, which assumes
that training data in various learning tasks improves representation learning, boosts the
model [26], and decreases over-fitting [24]. Ruder in [27] provides a guideline to select
such an auxiliary task to enhance model generalization through shared representations.
MTL has been broadly applied to computer vision, bioinformatics, health informatics,
federated learning, natural language processing, speech recognition, and so on [24,26,28].
Subsequently, an overview of MTL in the field of HAR is given; however, due to the
amount of published research, an exhaustive list is out of scope here—see, e.g., work by
Chen et al. [15] for further reading.

In [29], the authors proposed a deep multi-task learning method to solve simple and
complex activity recognition tasks jointly. They employ CNN to recognize simple activities
and add LSTM layers on top of CNN to solve complex activity recognition tasks. The offered
model, called AROMA, benefits from the shared CNN to improve generalization. Saeed
et al. [30] highlighted the importance of unsupervised learning exploiting vast amounts of
unlabeled data and proposed a self-supervised technique for representation learning from
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unlabeled sensory data. They demonstrated that the self-supervised technique enables
the convolutional model to learn suitable features for the HAR task. Chen et al. in [31]
proposed a multi-tasking approach to simultaneously address activity recognition (AR)
and user recognition (UR) tasks using wearable sensors. They utilized a mutual attention
mechanism to enable knowledge sharing between AR and UR tasks.

2.1. Use of Auto-Encoders for MTL

Specifically in the frame of HAR and MTL, auto-encoders have found much use, due
to their inherent capability of constructing latent spaces that compress time-domain signals
which are typical for HAR applications. Auto-encoders were found to be applicable to
data derived from various sensor technologies, such as smartphones [32–35], radar [36],
cameras [37], IoT devices [38], and smart homes [39].

In [40], the authors expanded auto-encoders to multi-task learning to recognize con-
current human activities. They defined HAR as a set prediction problem where every set
can contain multiple human actions. In their study, a symmetric auto-encoder, inspired
by [41], is employed as the unsupervised feature extractor. A classifier is also developed on
top of the auto-encoder to learn simultaneously from extracted features and target sets of
activities. Similarly, Ma et al. [42] proposed a deep clustering model for HAR applications
that relies on an auto-encoder for feature learning. They offered a multi-task learning
model to learn three tasks of feature extraction, clustering, and classification concurrently.
In another study, Suh et al. [43] proposed a multi-task learning framework that adopts
an adversarial encoder–decoder with the maximum mean discrepancy regularization to
improve subject generalization.

Similar to the design approach in [40,42,43], this work connects the HAR task head to
the compressed, latent space, thus utilizing the same general approach. However, none of
the outlined works investigate whether the auto-encoder can recreate the input precisely
in the output, instead reporting only on the classification task. It is thus unclear how the
quality of the reconstructed signal affects the representation learning and classification task.

2.2. State of the Art in HAR

The subsequent works represent the current state of the art in HAR and are used as
a reference for comparisons in Section 4.3. Abbaspour et al. [44] examined the role of a
combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) in HAR. They integrated CNN with four RNNs, i.e., LSTMs, BiLSTMs, GRUs, and
BiGRUs, and tested these models on the PAMAP2 dataset. The authors of [45] argued
the disadvantage of hybrid models in learning spatio-temporal context from the latent
space. Thus, they proposed a self-attention-based neural network model to address this
issue by generating a high-dimensional feature space. They validated their method on
PAMAP2, Opportunity, Skoda, and USC-HAD. Gao et al. [46] mentioned the difficulties
of RNNs in feature representation and offered a dual attention method for HAR. They
added channel and temporal attention heads to CNNs and tested their model on PAMAP2
and the other datasets. Abedin et al. [47] offered a cross-channel interaction encoder,
including a self-attention mechanism followed by an attentional GRU encoder to improve
representation learning by extracting latent relationships between sensor channels. They
reported their model’s efficacy on four datasets including PAMAP2.

The authors of [48] proposed a multi-scale Deep Convolution Neural Network (DCNN)
ensemble to extract multiple temporal scale features on each sensor separately. They
validated their approach against seven publicly available datasets, such as MHealth and
USC-HAD. The authors of [49] focused on capturing the spatial and temporal features. They
designed a residual block followed by a bi-directional LSTM to capture relevant features for
HAR. In [50], the authors proposed a hybrid model to improve the HAR task accuracy and
reduce the number of parameters. They designed a new model containing Bi-GRU layers
and an inception block to extract temporal and spatial features. Ek et al. [51] presented the
Human Activity Recognition Transformer (HART) model for mobile devices, which benefits
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from a vision transformer for image recognition [52]. They tried to address the heavyweight
problem of transformer-based models by proposing a lightweight architecture for mobile
devices. Zhang et al., in [53], suggest combining CNN, residual BiLSTM (ResBLSTM),
and attention mechanism to cope with similar human actions. They reported an F1 score
higher than 98% on the UCI-HAR dataset. The authors of [54] proposed a ConvTransformer
model that blends CNN, transformer, and attention mechanism to improve representation
learning by extracting global temporal and local spatial features. They tested their model
using four public datasets, including PAMAP2 and USC-HAD.

In the literature on alpine skiing, activity recognition using wearables is limited [55].
Scholars usually considered different bio-mechanical aspects of skiing rather than activity
recognition while activity recognition is necessary to know the mechanism of injury [56].
The authors of [57] classified alpine skiing styles using a global navigation satellite system
(GNSS) and IMU. They extracted domain-related features from advanced or expert skiers to
address the HAR task, and classified alpine skiing styles into parallel (drifted or carved) and
non-parallel (snowplow or snowplow-steering) turns. In our examination, we considered
four parallel skiing styles, which are categorized at the third level of the teaching plan,
from start to perfection in four stages, by a national skiing association, and observed skiers
with different skill levels.

3. Approach and Methods

To test our hypothesis and answer the proposed questions, we present a multi-task
learning model consisting of a multi-channel asymmetric auto-encoder to reconstruct
IMU signals and a classification head to execute the HAR task. First, we explore signal
reconstruction using the proposed auto-encoder as the unsupervised baseline introduced
in Figure 1 and plot its latent space to see how it shapes the latent features. Second, we
examine the HAR classification task as the supervised baseline presented in Figure 2 to
compare supervised and unsupervised latent representations. Further, we study how the
unsupervised and supervised baseline of the model affect the latent features when they
work together in a multi-task learning architecture, introduced in Figure 3.

Figure 1. The multi-channel asymmetric auto-encoder. The multi-channel asymmetric auto-encoder
is composed of an encoder block that dedicates one encoder to each sensor channel and a decoder
block to reconstruct every signal in the output. Every encoder starts with a batch normalization layer
followed by four repetitions of the convolutional layer and max pooling layer. Each decoder is made
up of a batch normalization layer followed by four deconvolutional layers. All of the convolutional
and deconvolutional layers share the same features. The max pooling layer is utilized for down-
sampling. It is also used to examine the impact of signal reconstruction on representation learning as
the unsupervised baseline.
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Figure 2. The supervised baseline. Inspired by the unsupervised multi-channel asymmetric auto-
encoder, this supervised baseline only uses the encoder block to perform activity classification. It is
also used to examine the recognition performance in the absence of signal reconstruction.

Figure 3. The proposed multi-task learning model (MCAE). The proposed model architecture
combines the unsupervised (signal reconstruction) and supervised (HAR classification) tasks. Thus,
this multi-task learning model is formed of the multi-channel asymmetric auto-encoder and the
classification head for the HAR task. The classification head flattens the latent features and passes
them to a batch normalization layer followed by a dense layer with Softmax activation function.

3.1. Model Architecture

We propose a novel multi-channel asymmetric auto-encoder to compress IMU signals,
create a latent representation, learn temporal features, and reconstruct the input, Figure 1.
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The auto-encoder consists of an encoder block and a decoder block. The encoder block
dedicates one encoder to each sensor channel to compress the associated signal. At the end
of the encoder block, one dense layer fuses all the encoded signals to shape the latent space.
Conversely, one decoder recreates every input from the latent features. The last layer of the
decoder block is one convolutional layer to aggregate decoded signals.

In the encoder block, every input channel passes through a dedicated encoder com-
posed of a batch normalization layer followed by four repetitions of a convolutional layer,
each paired with a down-sampling layer. On the other hand, every decoder in the decoder
block up-samples the compressed data via a batch normalization layer followed by four de-
convolutional layers. We examine the effect of several activation functions in reconstructing
human activity signals recorded by wearables.

Additionally, we removed the decoder and attached a classification head to create a
supervised baseline to classify human activities, Figure 2. The classification head is made
up of a flatten layer followed by a batch normalization and a dense layer with a Softmax
activation function directly connected to the latent space.

Lastly, we introduce the multi-task learning model (MCAE), which combines the
multi-channel asymmetric auto-encoder and a classification head, Figure 3. We keep the
classifier head as simple as possible to examine the goodness of generated features in the
latent space, assuming that a representative latent space does not need a sophisticated
classification algorithm. Figure 3 provides the big picture of the model architecture.

The multi-task learning pipeline works as follows: first, the recorded signals go
through the preprocessing stage, including filtering, segmentation, and standardization to
form the input. In the data preparation phase, we filter the data following the approach
in [58]. Then, the smooth signals are segmented by a windowing strategy. After, the
pipeline normalizes the data to remove the mean of signals using Standardscaler [59].
The normalized data are passed directly to the model. Then, the encoder block creates a
shared latent space for the decoder and classifier. Accordingly, our multi-tasking model has
two outputs: the signal reconstruction and the HAR task.

As loss functions for the signal reconstruction and the classification tasks, Huber loss
and cross-entropy were chosen, respectively, which are used for robust regression [60] and
classification [61]. We used the Adam optimizer with a learning rate of 0.001 and the default
hyperparameter and set the batch size to 128 for all the analyses. We implemented our
experiment using Tensorflow and Keras and ran the model on Intel(R) Core(TM) i7-7820HQ
CPU @ 2.90GHz 2.90 GHz, Nvidia Quadro M2200, and 32 GB of installed RAM. We set an
early stop to stop training when the validation loss stops improving by a minimum change
of 0.0001 after 10 epochs.

3.2. Datasets

We will test our approach against five data sets, of which one is recorded in the wild.
In this study, we analyze four public datasets, UCI-HAR [58], mHealth [62], PAMAP2 [63],
and USC-HAD [64]. These public datasets have been widely used in the HAR literature [65].
The fifth dataset is an alpine skiing dataset [66].

UCI-HAR dataset [58] consists of six activities of daily life such as walking, walking
upstairs, walking downstairs, sitting, standing, and lying. A group of thirty subjects
performed these activities while wearing a smartphone on the waist. For each session, 3D
linear acceleration and 3D angular velocity with a sampling rate of 50 Hz are recorded.
The UCI-HAR dataset is already segmented, preprocessed, and divided into two sets of
21 subjects for training (70%) and 9 subjects for testing (30% unseen subjects). The dataset
is filtered and segmented by a window size of 128 samples and a 50% sliding rate.

The MHEALTH (Mobile HEALTH) dataset [62] contains acceleration, angular veloc-
ity, magnetic field orientation, and ECG measurements from ten subjects while performing
several physical activities, such as cycling, jogging, running, waist bends forward, etc. The
sensors on the subject’s chest, right wrist, and left ankle measure each user’s motion. The
sensor on the chest provides 2-lead ECG measurements. All the signals are sampled at
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a frequency of 50 Hz. For the validation, we reserve three subjects, roughly 30% of the
dataset. The dataset contains twelve activities of daily life and sports. Subjects performed
the activities at their best in the wild. The complete description of data collection is in the
paper [62].

The PAMAP2 Physical Activity Monitoring dataset [63] provides motion signals of
twelve different physical activities, for instance, walking, running, cycling, and Nordic
walking, collected from nine subjects, including one female. The dataset includes IMU
signals from the sensors attached to the wrist, chest, and ankle recorded at a 100 Hz
sampling rate. It also provides a heart rate signal recorded at a 9 Hz frequency. For
validation, we reserve two objects.

USC-HAD dataset [64] consists of twelve low-level activities where some of the
activities are very similar, such as walking forward, walking left, walking right, walking
upstairs, and walking downstairs. A group of fourteen volunteers performed the activities
while wearing a sensor at their front right hip. The acceleration and angular velocity signals
were collected at a sampling rate of 100 Hz using MotionNode.

Alpine skiing dataset is composed of four different skiing styles, Parallel Basic—Long,
Parallel Basic—Short, Parallel Dynamic—Long, and Parallel Dynamic—Short, performed
by a group of recreational alpine skiers with different skills. The importance of this dataset
is that some sessions are recorded uncontrolled which makes it appropriate for a real case
scenario test. Please refer to [66] for detailed information. It is worth mentioning that some
of the skiers performed skiing activities in different locations.

We summarize some characteristics of these datasets in Table 1.

Table 1. The table represents the number of activities and their types (Activities of Daily Life
(ADL) or Sports), the number of sensors and their types, and the number of subjects in each dataset.
A: Accelerometer, G: Gyroscope, M: Magnetometer, ECG: Electrocardiogram, HR: Heart Rate.

Dataset Activities Activity
Type Sensors Frequency Subjects

UCI-HAR 6 ADL A, G 50 Hz 30

mHealth 12 ADL and
Sports A, G, M, ECG 50 Hz 10

PAMAP2 12 ADL and
Sports A,G, M, HR 100 Hz 9

USC-HAD 12 ADL A, G 100 Hz 14

Alpine Skiing 4 Sports A, G, M 50 Hz 8

3.3. Validation

In this study, we validate our model against data from unseen users. Therefore, we
reserve several subjects from each dataset to create test sets. We do not introduce the
unseen data to the model at any stage of training. We use the data from the other subjects
for training and validation. Thus, to measure our model generalization performance, we
partition our data into three sets, a training set to train the model, a validation set to tune
hyperparameters, and a test set to measure the generalization performance [67]. The test
set includes unseen users and is independent of the other two sets.

The authors of the UCI-HAR dataset already divided the dataset into two groups of
subjects for model training, where they subselected nine random subjects as a test set. These
users constitute 30% of the dataset. Similarly, we reserve a number of subjects from each
dataset, which amounts to roughly 30% of the whole dataset. From the MHealth dataset,
we reserve three random users. To validate our model by PAMAP2, we reserve users five
and six, which are chosen for testing in the other studies [49,54]. Among volunteers from
the USC-HAD dataset, we reserve four of them, who are selected to test the model in [54].
Among skiers in the alpine skiing dataset, we chose two subjects with different skills and
reserved all their sessions. These two users are recreational alpine skiers who recorded
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their data by themselves in the wild. Therefore, they simulate the real case scenario to
some extent.

3.4. Evaluation Metrics

To evaluate the accuracy of our proposed model, we produce a classification report
on every HAR task which provides accuracy, precision, recall, and F1 score metrics [68].
Additionally, for each task, we provide a confusion matrix to compare classification results
and assess the model performance. Moreover, we visualize the latent features to show how
effectively the model is at creating useful features.

3.5. Data Analysis

First, we examine the unsupervised baseline on the UCI-HAR to see how it reconstructs
the signals and provide some examples of signal reconstruction. Second, we plot and
compare the generated latent features by unsupervised and supervised baselines on the
UCI-HAR dataset. Then, we validate our proposed multi-task learning model on the other
datasets to assess the model’s performance in recognizing various activities. Additionally,
we examine how a model performs without signal reconstruction as a single-task learning
model using the supervised baseline, see Figure 2. In the end, we provide a detailed
comparison. Therefore, we not only evaluate our model’s performance via classification
metrics but also check how model baselines influence the latent features and, consequently,
the overall performance.

4. Results

In this section, we first illustrate the result of signal reconstruction and compare the
extracted features using unsupervised and supervised baselines. Then, we present the
result of the multi-task learning model on the HAR task. Finally, we provide a comparison
of our approach with the state of the art.

4.1. Signal Reconstruction

In this study, we are exploring how an accurate signal reconstruction using auto-
encoders shapes the latent space. Indeed, we try to answer the following question:

• Does such a latent space exist where human activities are recognizable using fea-
tures generated in an automatic and unsupervised way, due to signal compression
and reconstruction?

Therefore, we examine the unsupervised baseline to see how automatically generated
features form the latent space. The expectation is that even similar activities are far from
each other in the latent space. We investigate the role of different activation functions
in reconstructing IMU signals. Our preliminary results on signal reconstruction showed
that Relu [69] has tribulations with reproducing non-linear periodic signals. Therefore, we
investigate other activation functions such as Selu [70], Elu [71], and Swish [72] in this study
to have a better comparison. The signal reconstruction results on the UCI-HAR dataset
show that all activation functions have similar performance when looking at loss, Figure 4.
However, Selu performs better on periodic activities such as walking, which is why it has a
better Root Mean Square Error (RMSE), Figure 4. Relu, Elu, and Swish mostly converge to
the mean, a valid reconstruction for inactive activities such as sitting. Therefore, we only
used Selu in our architecture.

We wish to examine whether the proposed multi-channel asymmetric auto-encoder
can recreate the input in the output and demonstrate how signal reconstruction helps
form activity-related dense clusters in the latent space of the model. Figure 5 shows
two examples of signal reconstruction using the Selu activation function where (a) illustrates
the worst reconstruction result, which belongs to the walking class label. On the other hand,
(b) demonstrates the best reconstruction of walking samples. As Figure 5 implies, the model
can reproduce a smooth pattern of activities in the output even in the worst-case scenario.
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Figure 4. The loss and Root Mean Square Error (RMSE) of the unsupervised baseline for signal
reconstruction using different activation functions on the UCI-HAR dataset. Although all the loss
values look similar, Selu performs better, which is represented when looking at RMSE.

Figure 5. Signal reconstruction from the UCI-HAR dataset using the unsupervised baseline and Selu
activation function. (a) shows the worst signal reconstruction in the dataset regarding RMSE which
is from walking activity. On the other hand, (b) presents the best reconstruction of walking activity
as a comparison.

The next step is to see if generated features in the latent space represent any difference
between class labels. We applied principal component analysis (PCA) on the feature space
and plotted three components in Figure 6. We use PCA only to aid the visualization. One
can see that one of the activities, lying, is separated from the others while the other activities
are close together and shape two groups. Although the model reconstructs input signals
adequately, its latent space seems not representative at first glance. However, the model
creates three clusters, including similar activities of walking, sitting and standing, and lying.
In contrast to the unsupervised model, the supervised baseline creates a more representative
feature space of activities. However, sitting and standing are well separated in the latent
space. Even though the supervised baseline performs very well in the HAR task, we will
examine the cooperation of these two baselines in the multi-task learning architecture in the
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next section. At the end of the results section, we compare the performance of the proposed
multi-task learning with its supervised baseline.

Figure 6. Latent space comparison. As one sees, in (a), the latent space of the unsupervised baseline,
one of the activities, lying, is far from the others. The other activities are closer to each other.
They shape two clusters, though. We can see that walking activities shape one cluster on the top.
Additionally, sitting and standing form another cluster in the middle. On the other hand, in the latent
space of the supervised baseline, (b), activities are well separated. However, sitting and standing are
pretty close, and there is a negligible overlap between walking and walking upstairs.

The outcome of the first phase of our analysis suggests that a signal reconstruction
model alone cannot create a representative feature space.

4.2. Multi-Task Learning

For the sake of an answer to the first question, we examined the feature representation
in the latent space. Although the unsupervised model could create some groups of similar
activities, we could not conclude that a signal reconstruction alone creates a representative
feature space. Therefore, we expand the unsupervised model by adding a classification
to its latent space to check whether it learns from latent features and recognizes activities.
This expansion helps us to answer the second proposed question: how does a classifier
affect the latent space created by the unsupervised block in a multi-task learning model?
We expect the trade-off between the decoder and classifier to reform the latent space. We
examine the effect of the classifier on the latent space to provide an answer to the second
question and test the model’s performance using four public datasets and state-of-the-art
results on them.

4.2.1. UCI-HAR

We present the test result on the UCI-HAR dataset in Table 2, and Figures 7 and 8. As
anticipated, the latent space changed in favor of the classification task. Figure 7 illustrates
activities in the latent space, where they are far from each other in comparison with the
latent representation extracted by the unsupervised model in Figure 6. This separation
between activities is well represented in the confusion matrix, Figure 8, where there is no
confusion between the clusters of lying, sitting and standing, and walking activities. As a
result, the model benefited from such representation learning and performed remarkably
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well in activity recognition with an F1 score of 99%. However, there is still a little confusion
between sitting and standing. We provide a classification report in Table 2 to elaborate on
the results and support our claims.

4.2.2. MHealth

We segmented the MHealth dataset using a window size of 2.56 s and a sliding rate
of 50%. Three subjects were randomly chosen to test the model. The samples from three
subjects are roughly 30% of the whole dataset. We present the performance of our proposed
model on the mHealth dataset in Table 3, Figures 9 and 10. The model performed accurately
in the detection of various activities from unseen subjects, except there is a confusion
between Running and Jogging that can also be seen in the latent features, Figure 9. In the
latent space of the model, one can see that generated features on MHealth data are well
separated. As one can see, static activities and activities in fixed positions, i.e., sitting and
relaxing and frontal elevation of arms, are far from other activities, such as walking or cycling.

Table 2. Classification report of the proposed multi-task learning model on the UCI-HAR dataset. In
this report are F1 score, precision, recall, macro average, and weighted average F1 score. The support
column shows the number of samples.

Label Precision Recall F1 Score Support

walking 0.99 1.00 1.00 496

walking upstairs 1.00 0.99 0.99 471

walking downstairs 1.00 1.00 1.00 420

sitting 0.96 0.96 0.96 491

standing 0.96 0.96 0.96 532

lying 1.00 1.00 1.00 537

accuracy 0.99 2947

macro avg 0.99 0.99 0.99 2947

weighted avg 0.99 0.99 0.99 2947

Figure 7. In the latent space of the UCI-HAR dataset, activities are separable. There is only a small
overlap between sitting and standing.
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Figure 8. The confusion matrix shows the model’s efficacy in recognizing activities in the UCI-HAR
dataset with a high accuracy. As one can see, the overlap between sitting and standing in Figure 7 is
well represented in the matrix where the accuracy drops to 96%.

Table 3. Classification report of the proposed multi-task learning model on MHealth dataset.

Label Precision Recall F1 Score Support

Standing still 1.00 1.00 1.00 141

Sitting and relaxing 1.00 1.0 1.0 141

Lying down 1.00 1.00 1.00 141

Walking 1.00 1.00 1.00 141

Climbing stairs 1.00 1.00 1.00 141

Waist bends forward 1.00 1.00 1.00 137

Frontal elevation of arms 1.00 1.00 1.00 132

Knees bending (crouching) 1.00 1.00 1.00 139

Cycling 1.00 1.00 1.00 141

Jogging 1.00 0.95 0.97 141

Running 0.95 1.00 0.98 141

Jump forward and back 1.00 1.00 1.00 45

Accuracy 0.99 1581

Macro avg 0.99 0.99 0.99 1581

Weighted avg 0.99 0.99 0.99 1581
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Figure 9. In the latent space of the MHealth dataset, static activities, such as standing and lying, are
far from the others. Activities performed in a fixed position such as the frontal elevation of arms and
knee bending are well separated from the other activities.

Figure 10. The confusion matrix shows the performance of the proposed multi-task learning model
on the MHealth dataset. We chose three random subjects for the test set who are independent of the
training set.
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4.2.3. PAMAP2

The results of the analysis on the PAMAP2 dataset are presented below, employing
a window size of 5.12 s with a 25% sliding rate to capture temporal dynamics effectively.
To assess the robustness of our model, we selected two subjects for performance evalua-
tion, representing approximately 30% of the entire dataset. The experimental results, as
shown in Table 4, Figures 11 and 12, reveal a decrease in the F1 score, particularly in the
recognition of the standing activity. This decline is attributed to the model’s challenge in
distinguishing between various static activities, such as standing, vacuum cleaning, and
ironing. Additionally, the model exhibits confusion in discriminating between ascending
and descending stairs. Figure 11 visually illustrates the separation of activities within the
latent space, showcasing distinct clusters for each activity. The observed overlap in the
latent space provides insights into the model’s performance, particularly in explaining its
difficulty in accurately differentiating static activities. Notably, our model has challenges
distinguishing the static activities of this dataset compared with the other datasets.

Table 4. Classification report of the proposed multi-task learning model on the PAMAP2 dataset.

Label Precision Recall F1 Score Support

Lying 0.96 0.98 0.97 357

Sitting 0.95 0.93 0.94 379

Standing 0.91 0.87 0.89 353

Walking 1.00 0.97 0.99 439

Running 1.00 0.96 0.98 360

Cycling 0.96 0.99 097 342

Nordic walking 1.00 0.99 0.99 403

Ascending stairs 0.89 0.94 0.91 206

Descending stairs 0.94 0.88 0.91 179

Vacuum cleaning 0.94 0.88 0.91 346

Ironing 0.90 0.99 0.94 540

Rope jumping 1.00 0.95 0.97 56

Accuracy 0.95 3960

Macro avg 0.95 0.94 0.95 3960

Weighted avg 0.95 0.95 0.95 3960

4.2.4. USC-HAD

To analyze the USC-HAD dataset [64], we chose a window size of 5 s with 75% overlap
to segment the data. Then, we reserved four users to validate our model. The classification
report, Table 5, the latent space, Figure 13, and confusion matrix, Figure 14 provide detailed
information on the model performance on the USC-HAD dataset. As one can see in the
classification results, the accuracy on this dataset dropped drastically, as there are various
similar activities. However, the model performance is of the highest in the literature [48,73].
The main challenge of this dataset is similar activities. The major group of indistinguishable
activities is standing, standing in an elevator going up, and standing in an elevator going
down. Additionally, five variations of walking challenge the representation learning and
classification task. The latent space of the model is depicted in Figure 13.
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Figure 11. The latent space of the model on the PAMAP2 dataset can clarify why the model perfor-
mance is lower in comparison to the MHealth and UCI-HAR datasets. On the right side of the latent
space, sitting, standing, and ironing shape one cluster. This is where, dissimilar to the other datasets,
our model has a problem in separating static activities. This could be due to the fact that standing
and ironing share similar patterns on the sensors attached to the ankle and chest.

Figure 12. As the confusion matrix of the trained model on the PAMAP2 dataset suggests, the model
performs well in the HAR task except where it struggles in distinguishing vacuum cleaning and
standing from ironing.
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Table 5. Classification report on the USC-HAD shows serious confusion between standing, elevator
up, and elevator down.

Label Precision Recall F1 Score Support

Walking Forward 0.98 0.95 0.96 1004

Walking Left 0.98 0.98 0.98 473

Walking Right 0.97 1.00 0.99 465

Walking Upstairs 0.87 0.88 0.88 235

Walking Downstairs 0.93 0.92 0.92 200

Running Forward 0.94 1.00 0.97 279

Jumping Up 1.00 0.90 0.95 232

Sitting 0.99 0.99 0.99 554

Standing 0.62 0.93 0.74 574

Sleeping 1.00 1.00 1.00 700

Elevator Up 0.47 0.31 0.37 317

Elevator Down 0.47 0.25 0.32 333

Accuracy 0.88 5366

Macro avg 0.85 0.84 0.84 5366

Weighted avg 0.87 0.88 0.87 5366

Figure 13. The latent space of the multi-task learning model on the USC-HAD dataset. As one can
see on the top right of the scatter plot, the two activities of elevator up and down are not distinctive.
Additionally, they share the space with standing.
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Figure 14. Confusion matrix of the trained model on the USC-HAD dataset. The accuracy drop in the
classification report is well represented in the confusion matrix where two activities, elevator up and
elevator down, are classified as standing.

4.2.5. Alpine Skiing

We segmented the data into windows of 10 s with a 25% sliding rate. From all the
recordings, we subselected all the trials performed by two of the skiers with separate skill
levels for testing the model. As explained in [66], skiers with different levels of expertise
produce different patterns, which makes the HAR task more challenging. One of the
skiers is an experienced recreational skier, considered an expert, and the other subject is an
alpine skiing enthusiast, evaluated as a novice. Moreover, users’ data is recorded under
various conditions on their own smartphones in an uncontrolled manner. Therefore, this
is a demanding task for the proposed model to prove its generalization. Unlike the other
use cases, we followed the data preparation suggested in [66] to fix the orientation. The
inputs to the model are acceleration in the world reference and magnetic field channels.
The results on the alpine skiing dataset are shown in Table 6, Figures 15 and 16.

We plotted the latent space of our model on the alpine skiing dataset in Figure 15.
As one can see, there are some overlaps between samples, which could be the source of
confusion in the result. Although these techniques are different in terms of the number of
turns and speed, they can be performed similarly under varying circumstances, such as
skill level.
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Table 6. Classification report on the alpine skiing dataset shows the highest confusion on the Parallel
Basic—Short, where it is classified as Parallel Dynamic—Long.

Label Precision Recall F1 Score Support

Parallel Basic—Long 0.96 0.93 0.94 356

Parallel Basic—Short 0.92 0.84 0.88 231

Parallel Dynamic—Long 0.84 0.94 0.89 269

Parallel Dynamic—Short 0.95 0.94 0.94 241

Accuracy 0.92 1097

Macro avg 0.92 0.91 0.91 1097

Weighted avg 0.92 0.92 0.92 1097

Figure 15. The latent space of multi-task learning model on the alpine skiing dataset. As one can see,
Parallel Basic—Long and Parallel Dynamic—Short are far from each other as an indication of why
there is no confusion between these two techniques in the confusion matrix.

4.3. Comparison

In this section, we compare the performance of the multi-task learning model with
its supervised baseline to see how it performs without the signal reconstruction head.
Additionally, we implement a multi-task learning model using a classical auto-encoder
(CAE). In contrast to our model, The CAE dedicates only one encoder and decoder to all the
input signals. Therefore, all the input signals share one encoder and one decoder. Moreover,
these results are compared to the state of the art for a better assessment.
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Figure 16. The confusion matrix of the proposed model on the alpine skiing dataset shows that the
model has some difficulty in distinguishing Parallel Dynamic—Short from the other activities. As it
is represented in the latent space, there is no confusion between Parallel Basic—Long and Parallel
Dynamic—Short.

In Table 7, one can see the supervised baseline works pretty similar to the proposed
model on the UCI-HAR, MHealth, and PAMAP2. However, the classifier performance
drops significantly on the other two challenging datasets. The USC-HAD contains various
similar activities and the alpine skiing dataset includes users with different skills. As
reported by the other studies, the overall accuracy of the trained model on the USC-
HAD dataset is relatively low compared to the other public datasets. Moreover, CAE’s
performance falls considerably on all datasets, especially the alpine skiing dataset.

Note that, in this comparison, we only considered studies that reserved one or more
subjects to test their model. Therefore, we do not compare our studies with leave-one-trial-
out or random train–test split approaches. Additionally, some scholars in this comparison
have suggested several models; nevertheless, we reported the best performance among
those models.
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Table 7. Comparison to the SOTA and baselines. A comparison of our supervised baseline (STL),
multi-task learning with shared encoder and decoder (CAE), and the proposed multi-task learning
multi-channel AE (MCAE) with the state of the art based on F1 score.

Model UCI-HAR MHealth PAMAP2 USC-HAD Alpine
Skiing

SOTA HAR Models

Zhang et al. [53] 98.42 - - - -

Abedin et al. [47] - - 90.08 - -

Li et al. [49] - - 97.35 - -

Zhang et al. [54] 99.00 86.00 -

Sena et al. [48] - 93.49 75.82 80.65 -

Auh et al. [43] - 96.37 85.85 - -

Abbaspour et al. [44] - - 95.12 - -

Tong et al. [50] 95.45 - - - -

Ek et al. [51] 97.67 - - - -

Single Task Learning Supervised Baseline (STL) 97.53 99.23 92.66 76.17 87.64

Multi-Task Learning
Classical AE (CAE) 94.61 97.33 91.00 75.69 62.08

Multi-Channel AE (MCAE) 98.55 99.58 94.88 83.90 91.24

5. Discussion

This study aims to investigate the role of signal reconstruction in representation
learning to boost model generalization. We proposed a multi-channel asymmetric auto-
encoder to reconstruct IMU signals and generate temporal features in the latent space.
Initially, we investigated the role of different activation functions in reconstructing IMU
signals. Further, we added a classification head to the unsupervised model to offer a
multi-task learning architecture for HAR. Finally, we tested our model using four publicly
available datasets and an alpine skiing dataset.

We proposed a novel multi-channel asymmetric auto-encoder to reconstruct the IMU
signals and examined how signal reconstruction improves model generalization for the
HAR task. Our quantitative (Figure 4) and qualitative results (Figure 5) show that the
right choice of activation function reduces the reconstruction error and can help recreate
IMU signals. Further, we formed a latent representation using the unsupervised baseline
capable of precise signal reconstruction to answer the first proposed question: does such a
latent space exist where human activities are recognizable using features generated in an
automatic and unsupervised way, due to signal compression and reconstruction? Although
the shaped latent space on UCI-HAR (Figure 6) was not perfectly representative of the
activities, the unsupervised model created several groups of similar activities. Thus, we
concluded that a precise signal reconstruction alone cannot form a latent space where all
the activities are recognizable.

Further, we added a classification head to the multi-channel asymmetric auto-encoder
to develop a multi-task learning model, which benefits from the model generalization to
address the HAR task. Also, we demonstrated “How does a classifier affect the latent space
created by the unsupervised block in a multi-task learning model?” in Figures 6 and 7.
We examined the HAR task performance against unseen data from various datasets
(Tables 2–6). Our results (Figures 7–15) show that the signal reconstruction helps the
model generalization considerably, especially when activities are complex, such as skiing
and crunching, or very similar, such as running and jogging. This can be verified by
the outcomes from the supervised baseline, shown in Table 7, which exhibit a decline in
accuracy due to the lack of signal reconstruction.

Even though the proposed model achieved high accuracy in the HAR task, it had
some difficulties distinguishing two activities, namely “elevator up” and “elevator down”,
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from standing in the USC-HAD dataset. We believe recognizing such activities requires
data recording using other sensors, such as Magnetometer. Additionally, except when an
elevator starts moving, there is not much difference between standing anywhere or in the
elevator, a confusion we see in Figure 14, as the acceleration is zero when the lift reaches a
constant velocity.

Using multi-task learning again raises the following question: “Which tasks should
and should not be learned together in one network when employing multi-task learn-
ing?” [74]. Although the main purpose of our study is the HAR task, we treated the
unsupervised task the same way as the primary goal, to see how these two tasks help
the overall performance. In the other studies, regarding what we discussed in the signal
reconstruction section, it seems that multi-task learning sacrifices the signal reconstruction
task in favor of the HAR task. As “Relu” has been widely used in the literature and showed
the poorest performance in signal reconstruction, Figure 4, we investigate the performance
of our model using “Relu” activation functions to elaborate on the effect of precise signal
reconstruction on the HAR task. We present the results of multi-task learning using differ-
ent settings in Table 8. Although the performance of the multi-task learning using “Relu”
and classical auto-encoder are still acceptable, Table 8, none of these models could precisely
reconstruct input signals and often converged to the average of the signal. Consequently,
the accuracy of these two models dropped in comparison to the proposed model trained by
the “Selu” activation function. Therefore, we argue that the accuracy of auxiliary tasks in
multi-task learning impacts the overall performance and should not be sacrificed in favor
of the primary task.

Table 8. A comparison of F1 score, multi-task learning with our proposed multi-channel AE (MCAE)
trained by Selu and Relu, and multi-task learning with shared encoder and decoder (CAE).

Model UCI-HAR MHealth PAMAP2 USC-HAD Alpine
Skiing

Ours with Selu 98.55 99.58 94.88 83.90 91.24

Ours with Relu 95.48 99.93 93.95 71.64 86.88

CAE 94.61 97.33 91.00 75.69 62.08

The main drawback of the model is perhaps that the number of layers increases with
the number of sensors and, consequently, the number of trainable parameters. This issue
is more crucial when several sensors are attached to the user’s body. One solution to the
problem could be to reshape the input and pass sensors separately, or have all the channels
as one input. This resolution reduces the model size dramatically and makes the model
very similar to the classical auto-encoder. Although this solution lowers the number of
trainable parameters from nearly 90 thousand to about ten thousand on the UCI-HAR
dataset, it decreases the model’s accuracy by 4%; as reported in Table 7, the accuracy of
MTL is 98.55% while it is 94.61% for CAE.

To keep the size of the proposed model under control, we assigned a lower filter size
to the convolutional layers. Among the trained models in our study, the largest is the model
trained on the PAMAP2. As a comparison, the lightweight model offered by [50] has about
1.1 million parameters for the trained model on the UCI-HAR dataset, while our model has
less than 90 thousand. Additionally, the lightweight model reported by [51] has more than
1.2 million parameters. In Table 9, we provide a short comparison with the other models on
the UCI-HAR and PAMAP2 datasets.
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Table 9. A comparison in terms of the number of parameters and F1 score on the UCI-HAR and
PAMAP2 datasets. Reported values by [46,49] are weighted F1 and accuracy, respectively. M: Million,
K: Thousand.

Model
UCI-HAR PAMAP2

Number of
Parameters F1 Score Number of

Parameters F1 Score

Ours 90 K 98.55 258 K 94.88

CAE 9.7 K 94.61 29 K 91.00

Tong et al. [50] 1.1 M 95.45 - -

Ek et al. [51] 1.27 M 97.67 - -

Li et al. [49] - - 185 K 97.35

Gao et al. [46] - - 3.51 M 93.16

Following the suggestion by [65], a robust and generalized model needs no compli-
cated sensor setup and performs well on available sensors. We tested our model on four
publicly available datasets with various sensor designs ranging from one to five, including
IMU and ECG (Table 1). Our model performed very well and consistently on all these
datasets with comparable accuracy to the state of the art (Tables 2–6). Moreover, we tested
our model on the alpine skiing dataset, where data from only one IMU sensor is provided
to train the model. Regardless of limitations in alpine skiing activities, the model performed
very well when we compared our results to a more complicated and inflexible sensor setup,
reported by [57] in contrast to the alpine skiing dataset, with no fixed phone orientation
and subjects with different skills [66].

6. Conclusions and Future Work

This paper presents a multi-task learning model that consists of a classification head to
carry out the HAR task and a multi-channel asymmetric auto-encoder to guarantee signal
reconstruction. The suggested model makes use of shared representation in both the HAR
and signal reconstruction tasks to boost generalization. We compared the results of signal
reconstruction using different activation functions and discovered that the “Selu” activation
function preserves the periodic activities’ patterns and recreates them in the output. To
evaluate the HAR task, we tested the multi-task model performance using public datasets
such as UCI-HAR, MHealth, PAMAP2, and USC-HAD. Also, we validated our model via
an alpine skiing dataset collected by skiers on their smartphones in the wild. We achieved
F1 accuracies of 98.55%, 99.58%, 94.88%, 83.90%, and 91.24% on the UCI-HAR, MHealth,
PAMAP2, USC-HAD, and alpine skiing datasets, respectively. Finally, we compared our
results with the state of the art. In conclusion, although signal reconstruction alone does
not create representative latent features, in combination with the classifier, it generates a
robust feature representation. The consistent performance across state-of-the-art datasets
shows that the proposed model architecture is robust and generalized.

In this study, we kept the supervised model simple to test the potential of the unsuper-
vised model in representation learning, which can be developed in the future depending
on the data and the accuracy requirements, as the model may perform better using a
multi-layer classification head. Additionally, we set a lower filter size than usual in the
convolutional layers to keep the model size under control. Considering the essentials of
the classification task, it might be required to increase the filter size in the convolutional
layers. Therefore, there are two options for potential improvements, such as developing a
multi-layered classification head and experimenting with the filter size.

Users need a certain level of expertise to perform some activities properly, where
the users’ skills can dramatically affect the activities’ pattern. This effect is particularly
shown in the alpine skiing dataset when we computed the classification metric for an expert
and a novice separately. Our results show that the F1 score drops to 82% for the novice
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skier, which implies that the recognition task becomes more complicated for skiers with
lower skill levels as they introduce more variation in the signal shape. On the other hand,
expert skiers perform activities faster and more consistently, which leads to more clear
patterns [66]. This difference needs further research to address not only activity recognition
but also activity assessment and, as a result, skill level detection in the wild.
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