
Citation: Cao, X.; Liu, T.; Wang, X.; Yu,

Y.; Li, Y.; Zhang, L. Recent Advances

in Nanozyme-Based Sensing

Technology for Antioxidant Detection.

Sensors 2024, 24, 6616. https://

doi.org/10.3390/s24206616

Academic Editors: Zehui Li

and Kunchan Wang

Received: 18 September 2024

Revised: 9 October 2024

Accepted: 12 October 2024

Published: 14 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Recent Advances in Nanozyme-Based Sensing Technology for
Antioxidant Detection
Xin Cao 1,2,†, Tianyu Liu 1,†, Xianping Wang 1, Yueting Yu 1, Yangguang Li 3,* and Lu Zhang 1,*

1 School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University,
Urumqi 830017, China; caoxin@stu.xju.edu.cn (X.C.); liutianyu@stu.xju.edu.cn (T.L.);
wxp@stu.xju.edu.cn (X.W.); yuyueting@stu.xju.edu.cn (Y.Y.)

2 College of Intelligent Manufacturing and Modern Industry, Xinjiang University, Urumqi 830017, China
3 Bingtuan Energy Development Institute, Shihezi University, Shihezi 832000, China
* Correspondence: liyangguang@shzu.edu.cn (Y.L.); zhanglu@xju.edu.cn (L.Z.)
† These authors contributed equally to this work.

Abstract: Antioxidants are substances that have the ability to resist or delay oxidative damage.
Antioxidants can be used not only for the diagnosis and prevention of vascular diseases, but also for
food preservation and industrial production. However, due to the excessive use of antioxidants, it
can cause environmental pollution and endanger human health. It can be seen that the development
of antioxidant detection technology is important for environment/health maintenance. It is found
that traditional detection methods, including high performance liquid chromatography, gas chro-
matography, etc., have shortcomings such as cumbersome operation and high cost. In contrast, the
nanozyme-based detection method features advantages of low cost, simple operation, and rapidity,
which has been widely used in the detection of various substances such as glucose and antioxi-
dants. This article focuses on the latest research progress of nanozymes for antioxidant detection.
Nanozymes for antioxidant detection are classified according to enzyme-like types. Different types of
nanozyme-based sensing strategies and detection devices are summarized. Based on the summary
and analysis, one can find that the development of commercial nanozyme-based devices for the
practical detection of antioxidants is still challenging. Some emerging technologies (such as artificial
intelligence) should be fully utilized to improve the detection sensitivity and accuracy. This article
aims to emphasize the application prospects of nanozymes in antioxidant detection and to provide
new ideas and inspiration for the development of detection methods.

Keywords: antioxidant; nanozyme; colorimetric detection; fluorescence detection; electrochemical
technology

1. Introduction

Antioxidant is defined as any substance that has the ability to prevent or mitigate
oxidative damage from free radicals and is widely found in foods, cosmetics, and pharma-
ceuticals. Antioxidants come from a rich variety of sources, including plants and animals.
Antioxidants are common in nature, with polyphenols, carotenoids, and vitamins being
the major antioxidant compounds. These antioxidants have been shown to have the ability
to prevent oxidative damage caused by free radicals and protect the human body from
oxidative stress. Moreover, they can be used in the treatment of many types of diseases,
such as cardiovascular [1–3], diabetes [4,5], Parkinson [6–8], and cancer [9,10]. At the same
time, antioxidants serve to maintain the freshness of foodstuffs by preventing or delaying
the oxidation process. Vitamin E is frequently employed in the storage of vegetable oils to
prevent the oxidation of their oils. Additionally, ascorbic acid (AA) is often used to prevent
the oxidation of dried fruits and nuts in order to preserve their color and nutritional value.
The proper use of antioxidants not only helps to extend the storage and marketing period
of food products, bringing great economic benefit to both producers and consumers, but
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also ensures the food safety of consumers. Furthermore, thanks to their low cost and ease
of production, antioxidants are often used in the production of daily necessities such as
plastics and rubber to prevent oxidation and corrosion [11]. On the other hand, due to
the excessive use of antioxidants, they are ubiquitous in natural environments such as the
ocean and atmosphere, resulting in accumulation within organisms. There is also a growing
concern regarding the potential adverse effects of antioxidants on biological populations.
Therefore, the detection of antioxidants is crucial for human health, industrial production,
food preservation, and environmental protection.

In recent years, many methods have been used to detect antioxidant substances, in-
cluding high performance liquid chromatography [12–15], gas chromatography [16–19],
2,2-Diphenyl-1-picrylhydrazyl free radical scavenging assay [20–24], 2,2′-Azino-bis(3-ethyl
benzothiazoline-6-sulfonic acid) free radical scavenging assay [25–28], protein oxidative
damage assay [29], fluorescence recovery after photobleaching [30,31] and oxygen radical
absorbance capacity [32,33], enzyme assay [34,35], etc. Using enzymes to detect antioxidant
properties is an effective method. Based on the source of enzymes, they can be classified into
natural and artificial enzymes. Natural enzymes have a wide range of prospects and applica-
tions. However, they have disadvantages, such as high preparation costs and poor stabil-
ity [36]. In order to overcome these drawbacks, researchers have begun to study nanozymes,
artificial enzymes based on nanomaterials [37]. Over the past decades, nanozymes have
emerged as an interdisciplinary field in nanotechnology, catalysis, and biomedicine [38,39].
Nanozymes are nanomaterials with catalytic activity similar to that of natural enzymes.
They exhibit excellent biological enzyme activity. Due to their distinctive structural features,
nanozymes display unique physicochemical properties at the nanoscale. These properties
enable them to perform functions analogous to natural enzymes, including hydrolysis, redox
reactions and cleavage. Nanozymes are prepared by a variety of methods, subdivided into
three main categories: chemical synthesis, biosynthesis, and self-assembly. Chemical syn-
thesis method, is usually considered as the simplest preparation method, includes sol-gel
method [40,41], precipitation method [42–46], solvothermal synthesis [47–50], hydrothermal
method [51–59], etc. It has the advantages of simple operation, low requirements, and good
controllability. The large-scale preparation of nanozymes can be easily achieved by using
suitable chemical synthesis methods. Compared with natural enzymes, nanozymes have the
advantage of high stability, low production costs, high activity, and are easier to produce
and recycle [60]. With the booming development of biotechnology, nanotechnology, and
catalysis technology, nanozymes are gradually used instead of natural enzymes in industrial
production [36], pharmaceutical field [61–65], environmental monitoring [66], energy devel-
opment [67], food testing [68], and ecological protection [69]. In daily life, nanozymes are
often used to detect the antioxidant properties of substances efficiently and rapidly.

As of 2024, many works on nanozymes have been published. Humans gradually
master more detection technologies using nanozymes. At present, there are some reviews
on the application of nanozymes in specific fields, such as food detection [70–72], environ-
mental monitoring [73–76], medical diagnosis [77,78], and so on. However, comprehensive
classification or summary of the applications of nanozymes and nanozyme-based deriva-
tive devices in terms of antioxidant properties is lacking. The purpose of this work is
to systematically review the application of novel nanozymes for antioxidant detection.
In this work, various detection devices and sensing strategies based on nanozymes are
described in detail. At the same time, the basic principles and advantages of detection
devices, such as sensor arrays, in terms of oxidation resistance are reviewed. We believe
that this paper will not only facilitate an understanding of the application of nanozymes in
antioxidant detection but also encourage further exploration of the potential applications
of nanomaterials in the field of biosensing.

2. Principle of Nanozymes in Antioxidant Detection

Nanozymes range in size from 1 to 100 nm [79]. Two key factors for evaluating their
catalytic performance are catalytic activity and specificity [80]. The catalytic activity of
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a nanozyme is affected by the composition, spatial structure, substrate characteristics,
interface effect, morphology, and environment. The catalytic specificity of a nanozyme
is divided into four types: reaction specificity, substrate specificity, regional specificity,
and stereospecificity [80], which are affected by surface properties, substance composition,
substrate structure, kinetic factors, steric hindrance, and other factors. Nanozymes are
a type of nanomaterial that can imitate the catalytic activity of natural enzymes [81–84]
and can exhibit extremely similar kinetic behavior to natural enzymes [60]. Therefore,
they are promising candidates as new artificial enzymes [85–87]. Based on their catalytic
properties, nanozymes are classified into several categories: peroxidases (POD), oxidases
(OXD), catalases, superoxide dismutase, laccases, etc. [79]. Among these, POD nanozymes,
OXD nanozymes, and laccase are often used in antioxidant assays (see Figure 1).
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2.1. POD Nanozymes for Antioxidant Detection

POD-like nanozyme is a class of oxidoreductases that has similar biological activity to
natural POD and is able to participate in many types of redox reactions [88]. The specificity
of POD nanozymes is stronger than that of other types of enzymes, and they are mainly
involved in catalyzing the redox reaction between H2O2 and the substrate, giving them
high specificity in the antioxidant detection reactions containing H2O2. POD nanozyme is
frequently employed as substitutes for natural POD in assay and fermentation applications,
where they play a pivotal role, particularly in the detection of antioxidant properties of
substances (see Table 1). Furthermore, in comparison to natural POD, POD nanozyme
exhibits enhanced specificity and selectivity, as well as the capacity to effectively catalyze
intricate chemical reactions. Qin et al. have developed a metal-based nanozyme with a
three-dimensional network structure using four metals (Co, Fe, Cu, Zn) [89], which led to
the creation of a simulated enzyme with exceptional POD properties. In Figure 2A–C, a
sensor array based on three metal-based POD nanozymes can be used to sensitively detect a
variety of antioxidants, including seven antioxidants at concentrations as low as 10 nmol/L.
The consumption of foods with high total antioxidant capacity (TAC) can reduce the inci-
dence of many diseases. Therefore, the establishment of a platform for the testing of TAC is
particularly important. Dan et al. have established a TAC detection platform using 3,3′,5,5′-
Tetramethylbenzidine (TMB) by synthesizing the high POD nanozyme Bi0.3Fe1.7MoO6
under H2O2 conditions [90]. The Bi0.3Fe1.7MoO6 nanozyme displayed varying relative cat-
alytic activities at different temperatures, exhibiting high catalytic activity within the range
of 10 ◦C to 30 ◦C. Consequently, this nanozyme can be applied at room temperature (see
Figure 2D). At the same time, due to the high affinity of Bi0.3Fe1.7MoO6 for H2O2 and TMB,
it achieved a detection limit as low as 0.77 µmol/L and a linear range of 8 to 64 µmol/L,
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with an excellent correlation coefficient (R2 = 0.994). Figure 2E demonstrates that this assay
platform is suitable for the detection of AA, exhibiting a minimal detection level and a
satisfactory linear range (8–64 µmol/L) with an excellent correlation coefficient (R2 = 0.994).
Wang et al. have successfully developed a nitrogen, phosphorus, and sulfur co-doped
carbon nanoparticle enzyme (NPS-C) through the process of high-temperature pyrolysis.
NPS-C nanozymes exhibited superior specific activity and enhanced substrate binding
affinity compared to NP-C, NS-C, and N-C nanozymes. Furthermore, the TMB-H2O2
system can be efficiently catalyzed by doping with NPS-C nanozyme, which generated
reactive oxygen intermediates and superoxide anion radicals (•O2−) with high oxidative
capacity. This promoted the electron-loss oxidation reaction process of TMB. Consequently,
NPS-C was capable of ascertaining the antioxidant characteristics of compounds such
as AA, l-cystine (L-Cys), and glutathione (GSH) through the indirect detection of TAC.
Figure 2F illustrates that NPS-C exhibits an excess of microporous and mesoporous struc-
tures, along with a substantial specific surface area, which provides an adequate number of
binding sites for the antioxidant assay process.

2.2. OXD Nanozymes for Antioxidant Detection

The principal distinction between OXD-like nanozymes and nanozymes such as POD
is that OXD possess a more expansive range of substrates, and are capable of participating
in a multitude of redox reactions. They are predominantly involved in reactions involving
oxygen as the ultimate electron acceptor. OXD combines the unique properties of nanoma-
terials and the efficient catalytic ability of biological enzymes, with the advantages of low
production cost, high stability, and easy regulation of activity. In comparison to conven-
tional natural enzymes, OXD nanozymes show a wide range of application potential in the
fields of biology, medicine, analytical sensing, and environmental treatment. In contrast
to other forms of nanozymes, the conditions for the utilization of OXD were particularly
rigorous, necessitating precise pH and temperature control. The data (Table 2) show that
OXD nanozymes exhibit a markedly higher sensitivity than other types of enzymes [91–93],
enabling the detection of lower concentrations of antioxidants. In the context of antioxi-
dant assays, OXD nanozymes typically demonstrate antioxidant activity by catalyzing a
specific substrate. To detect antioxidants in fruits, Li et al. proposed a practical strategy
for TAC assessment [94]. An active CD nanozyme with OXD-like activity was developed
by utilizing precursors with abundant electron-donating and electron-drawing groups. Its
activity was controlled by light, as illustrated in Figure 2G. As shown in Figure 2H, CDs
with OXD-like activity display favorable compatibility with TMB, with an affinity as low as
0.22 mmol/L. Li et al. have constructed a sensor through a coupling reaction between CDs
and TMB [94], achieving the successful detection of antioxidants and TAC in fruits with
high sensitivity and accuracy. Similarly, Ni et al. have established a simple, sensitive, and
efficient antioxidant checking method using photoresponsive BSA-AuNCs with OXD-like
activity [95]. The detection principle is that antioxidants can inhibit the photoactivated
OXD simulation activity of BSA-AuNCs [95], thus achieving the purpose of inhibiting the
formation of fluorescent thiopigments. At the same time, relevant experiments showed
that the OXD had higher sensitivity and accuracy in some environments. For example, in
an unstable H2O2 environment, the POD-catalyzed reaction may face problems with the
reproducibility of the sensed signal, which can affect the accuracy of the detection. Wang
et al. have constructed a Pt-Ni NPs-like OXD nanozymes, consisting of a Pt-rich shell and
a Ni-rich nucleus, which solved the challenge of reproducibility of POD under unstable
H2O2 conditions [96]. This OXD nanozyme was successfully used for the detection of many
types of antioxidant substances, such as small bioactive molecules, nanomaterials, cells, etc.,
which provided a new solution for the preparation of OXD nanozymes with high activity.

2.3. Laccase-like Nanozymes for Antioxidant Detection

The high cost, short storage life, and poor reusability of natural lacquers have hindered
their widespread use in industry [97]. However, the simulated laccase nanozyme solves
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these limitations, and is widely used in the fields of sensors, environmental monitoring,
medical diagnosis, and treatment. In antioxidant capacity assays, laccase-like nanozymes
are demonstrably more effective than other types of enzymes in terms of assay flexibility.
Laccase-like nanozymes can catalyze the reaction of polyphenols with hydrogen peroxide to
produce quinones or free radical products, which can be quantified by means of colorimetry,
electrochemistry, etc. As shown in Table 3, the concentration and nature of the oxidation
products produced by this process can indirectly reflect the phenolic content and thus
assess the antioxidant capacity of the samples. For example, Huang et al. have prepared an
AMP-Cu nanozyme with laccase-like catalytic properties, which catalyzed the oxidation
of phenolic compounds. Furthermore, the researchers have employed 2,4-dinitrophenol
(2,4-DP) as the substrate and 4-Aminophenol (4-AP) as the color developer to quantify
the absorbance of the products at 510 nm, thereby detecting phenolic compounds and
evaluating the antioxidant capacity of various fruit juices [98]. This approach enabled the
sensitive and cost-effective detection of polyphenols and antioxidant properties. Similarly,
Wang et al. have been used an I-Cu nanozyme with high laccase activity [69], which can
generate different colored products by oxidizing phenolic compounds. After completing
the color development reaction, the antioxidant capacity of the sample can be assessed
using the smartphone, combined with the accurate measurement of the antioxidant content
in the sample (see Figure 2I). The efficacy of laccase-like nanozymes in antioxidant assays
was contingent not only upon their simulated catalytic activity but also upon a multitude of
environmental factors, including pH, temperature, substrate concentration, and substrate
species. Consequently, the potential of nanozymes in determining antioxidant capacity can
be further elucidated through the control and the optimization of these conditions.
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Figure 2. (A–C) Center of mass diagram for differentiation of seven antioxidants [89]. (D) Relative
catalytic activity of the catalysts at different temperatures [90]. (E) Detection of calibration curves
corresponding to AA [90]. (F) Pore width distribution of NPS-C nano-enzymes [99]. (G) Photo-
controllable mimic OXD activity of CDs [94]. (H) Lineweaver-Burk plot of the light-responsive
OXD-like activity of CDs [94]. (I) Detection of dopamine (DA) concentration [69].



Sensors 2024, 24, 6616 6 of 27

2.4. Multi-Enzyme Nanozymes for Antioxidant Detection

A multi-enzyme nanozyme, is nanozyme with two or more enzyme-like activities [100].
Table 4 shows that, unlike other types of nanozymes, multi-enzyme nanozyme has a wide
range of catalytic abilities and potential applications, gradually taking their place in the field
of antioxidant assays. The multi-enzymatic nanozyme, such as MnCo@C NCs nanozyme,
has highly efficient catalytic properties and multiple enzyme mimetic activities of OXD,
laccases, and POD. Meanwhile, MnCo@C NCs nanozyme also has the advantages of
high stability and reproducibility, and can maintain high catalytic activity under harsh
environments. Zhu et al. have employed MnCo@C NCs nanozymes to detect the antioxi-
dant properties of a range of samples, including vegetables, fruits, beverages, and human
serum [101]. The assay process achieved a synergistic effect of multiple enzyme activities.
The MnCo@C NCs nanozymes displayed POD activity, which enabled the decomposition
of hydrogen peroxide within the original reaction system and the prevention of its oxidation
of vitamin C. This ensured that the competitive reaction between vitamin C and reactive
oxygen species proceeded in a normal and smooth manner. The MnCo@C NCs nanozymes
displayed OXD activity, oxidizing the colorless TMB substrate to produce the blue ox-TMB
product in a synergistic detection process (see Figure 3A). The nanozyme produced by
MnCo@C exhibited higher levels of activity than natural laccase across a pH range of
4 to 9. However, both enzymes appear to display optimal performance at a pH level of
approximately 6, as shown in Figure 3B. In the synergistic process, laccase activity primarily
served as a catalyst for the oxidation of phenolic compounds, with high sensitivity reflected
in Figure 3C. The remarkable activity of the MnCo@C NCs nanozymes was attributed to
the collective action of multiple reactive oxygen species. By enabling sensitive detection of
vitamin C and indirectly assessing the TAC of the samples, a robust foundation is estab-
lished for the use of multienzyme nanozymes in assay applications (see Figure 3D). The
absorbance difference obtained during the detection of AA using MnCo@C NCs nanozymes
demonstrated an excellent linear relationship with AA concentration, with a limit of detec-
tion (LOD) of 0.29 µmol/L [101], as illustrated in Figure 3E. The variety of enzyme activities
made multi-enzymes a new type of multifunctional catalyst that not only played a key role
in the detection of antioxidants, but also allowed other enzyme activities to be used for the
detection and catalysis of other substances. Liu and colleagues have synthesized a bimetal-
lic oxide Co1.5Mn1.5O4 through a chemical process [102]. This material displayed four
distinct enzyme mimetic activities, namely POD activity, OXD activity, catalase activity and
laccase activity. The laccase and OXD activities of Co1.5Mn1.5O4 nanozyme were employed
for the detection of catechol (CC) and hydroquinone (HQ), respectively, while the remain-
ing two enzyme activities could be used for the detection or catalysis of other substances.
The detection of the antioxidant substance CC depended on the laccase activity. Laccase
was employed to oxidate CC and form o-benzoquinone, which resulted in an increase in
the absorbance of the reaction solution, thus enabling the quantitative detection of CC. The
OXD enzyme activity of Co1.5Mn1.5O4 nanozyme can form an assay system with TMB,
which was oxidated to ox-TMB. Meanwhile, HQ reduced ox-TMB, resulting in a decrease in
the absorbance. As a result, the decrease in absorbance allowed for the quantitative deter-
mination of HQ. The advent of multi-enzymatic nanozyme heralds a new era of nanozyme
research, offering a plethora of novel concepts for the advancement of nanozyme in the
area of immediate detection technology in food regulation, environmental monitoring, and
human health.

3. Application of Nanozymes in Antioxidant Detection
3.1. Nanozymes-Based Densing Dethods for Dntioxidant Detection

Nanozyme, as an emerging biocatalyst, demonstrates distinctive advantages in the
detection of antioxidant capacity. A variety of methods have been developed to determine
antioxidant capacity, including colorimetry [93,103–105], fluorimetry [96], and electrochem-
ical methods [106].
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3.1.1. Colorimetric Methods for Antioxidants Determination

In colorimetry assays, the nanozymes catalyze the colorimetric substrates (e.g., TMB
and ABTS), which produce a colorimetric output signal. Due to its simplicity, convenience,
speed, and economy, colorimetry is considered as the most common sensing mode and is
often used for on-site testing of antioxidant capacity [107,108]. Li et al. have constructed
a multifunctional colorimetric sensing platform by synthesizing modified carbon nitride
nano-enzymes. For the first time, the self-cascade photocatalytic H2O2 production strategy
was successfully applied to AA detection and TAC assessment, which proved the feasi-
bility of this strategy in detecting antioxidant systems, as illustrated in Figure 3H. The
chromogenic substrate TMB was employed in the experiments and the oxidation led to the
formation of blue OX-TMB, exhibiting a characteristic absorption peak at a wavelength of
652 nm [109]. Li et al. have developed a novel light-responsive carbon dot with OXD-like
activity that can catalyze an oxidation reaction to change the color of the color-developing
substrate TMB under light stimulation. The characteristic absorption peak was observed at
a wavelength of 652 nm by UV–Vis spectroscopy. Furthermore, the wavelength conditions
of AA concentration and the change in absorbance of OX-TMB exhibited an excellent linear
relationship, demonstrating the high sensitivity of the detection system, as depicted in
Figure 3F,G. The TAC of three fruits— kiwifruit, orange, and tomato—was successfully
detected by this colorimetric sensing with high accuracy and excellent selectivity, as shown
in Figure 4A,B. This light-responsive property offers new possibilities for the modulation
of oxidative enzyme activities, with enhanced environmental compatibility and biocom-
patibility [94]. Nitrogen, phosphorus, and sulfur co-doped carbon nanozyme (NPS-C) has
been designed by Wang et al. through a one-step high-temperature calcination process.
Compared with single-doped nanozymes, NPS-C exhibited enhanced POD-like activity
and substrate binding affinity. It rapidly activated the oxidation substrate H2O2 within
5 min, which in turn promoted the oxidation reaction of the color-developing substrate
TMB. The oxidation product showed an enhanced absorption signal in the UV–Vis ab-
sorption spectrum at 652 nm. The method exhibited excellent selectivity and resilience
to interference in authentic samples, accurately quantifying AA and TAC in commer-
cial beverages in the presence of interference from metal ions, amino acids, and small
molecules [99]. Similarly, Wang et al. have prepared platinum-nickel nano-case rich in
platinum shell and nickel core through a one-step high-temperature reduction strategy, re-
sulting in unique structural characteristics. In contrast to POD-like nanozymes that depend
on unstable hydrogen peroxide, Pt-NiNPs were capable of activating molecular oxygen
and oxidizing the chromogenic substrate TMB in the absence of H2O2, thus producing an
oxidate product with a distinctive absorption peak at 652 nm. This process avoided the
challenge in reproducibility associated with the use of unstable H2O2. Platinum-nickel
nanozyme was used to develop a bioassay platform for colorimetric detection of TAC. The
antioxidant capacity of four small molecules—AA, glutathione, Cys, and 6-hydroxy-2,5,7,
8-tetramethylchromo-2-carboxylic acid—and three cells—Hela cells, human umbilical vein
endothelial cells, and senescent HUVECs—was successfully detected [96]. Ni et al. have
successfully prepared CuBi (copper-bismuth) bimetallic aerogel nanozymes with a porous
structure and interlocked pores by a one-step reduction strategy. AA was employed as
a representative antioxidant model to develop a colorimetric method for the detection of
TAC. In the experiments, the CuBi bimetallic aerogel catalyzed the production of •OH
from H2O2 and oxidated the colorless TMB, resulting in a blue product with an absorption
peak at 652 nm. Three antioxidants—AA, glutathione, and Cys—were quantified, and the
TAC of two different types of vitamin tablets, two types of fruits, and six beverages was
accurately assessed, opening new research directions in the field of application of metal
aerogels [110]. This method can be used in the field of food storage, as demonstrated in
Figure 4C, which shows that lemon and orange exhibit a gradual decrease in storage.
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3.1.2. Fluorescence Method for Antioxidants Determination

The fluorescence assay is principally based on the phenomenon of target-mediated
fluorescence enhancement (on) or fluorescence burst (off). It utilizes alterations in fluores-
cence signals generated by nanozymes catalyzed reactions to detect antioxidant capacity.
In comparison to colorimetric methods, fluorescence methods exhibit a relative advantage
in terms of high sensitivity [111]. Chen et al. have designed a novel single-atom copper
nano-enzyme with dual enzyme mimetic activity of ascorbate OXD and POD [112]. The
nanozyme oxidized the substrate AA, generating an oxidated fluorescent product that fluo-
resced at an excitation light of 350 nm, with the peak wavelength of its emitted light located
at 425 nm (see Figure 4D). A fluorescent AA assay was developed and used to accurately
determine AA and TAC in real samples (fruits, beverages, and vitamin C tablets) with high
selectivity and a broader detection range. The Cu-N/C nanozyme possessed a uniform
elemental distribution and exhibited higher catalytic efficiency and superior stability than
natural enzymes [112]. Ni et al. have developed a fluorescence assay for the detection of
antioxidant capacity using photo responsive BSA-AuNCs with OXD simulation activity
for the first time. Thiamine was used as a substrate, oxidized under the catalysis of gold
nanoclusters. The oxidized sulfur pigments fluoresced at the excitation light of 370 nm,
with the central emission peak at 440 nm. However, the presence of antioxidants inhibited
the oxidation of thiamine as shown in Figure 4E. This led to a reduction in the fluorescence
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signal, which enabled the quantitative detection of antioxidants. The antioxidants and
TAC of vitamin C tablets, as well as some commercial fruit juices, were successfully de-
tected, showing good applicability and reproducibility [95]. This fluorometric assay had
significant advantages, such as mild detection conditions, short time, high sensitivity, etc.,
which can broaden the application of light-responsive nanozymes and provide a new idea
for fluorometric determination. Wang et al. have investigated a fluorescent nanozymes
(Cu-BDC-NH2) with CC oxidase activity. This nanozyme combined the dual functions of
CC recognition and signal output, enabling CC detection without the addition of other
color developers. In this fluorescence method, a porous organic polymer of porphyrin
(FePPOP-1) was used as a fluorescent substrate. Its excitation and emission wavelengths
were 330 nm and 420 nm, respectively. When reacted with CC, it catalyzed the oxidation
of CC to form quinones or polymers with strong electron-absorbing capacity. It led to
a significant burst change in the fluorescence intensity of FePPOP-1 at 420 nm, which
quantified the concentration of CC. The detection limit was calculated to be 0.997 µmol/L,
which met the need for high sensitivity detection and did not produce effective fluorescence
burst with other antioxidants. This study demonstrated the advantages and potential of Cu-
BDC-NH2 nanozyme in the field of antioxidant detection [113]. Galal et al. have introduced
synchronous fluorescence spectroscopy for the simultaneous detection of curcumin and
resveratrol (two natural antioxidants in plasma). By varying the value of ∆λ (spectral shift)
in the synchrotron fluorescence mode, they have investigated the fluorescence properties
of the fluorescent substance curcumin and resveratrol and finally determined the optimal
value of ∆λ to be 80 nm. At this ∆λ value, the fluorescence intensities of resveratrol and
curcumin reached their maximum at 304 nm and 443 nm, respectively, allowing them to
be detected simultaneously without interfering with each other. The method was highly
selective and capable of accurately determining target compounds in complex biological
matrices without interference from plasma components. In comparison to conventional
high performance liquid chromatography methods, the proposed method was more envi-
ronmentally friendly and offered high accuracy and a low LOD [114]. Huang et al. have
developed a novel fluorescence detection method based on a fluorescent nanocomposite
material with PPO activity (Pdots@AMP-Cu) for the detection of DA, as shown in Figure 4F.
In the experiment, Pdots@AMP-Cu was used as a fluorescent substance with excitation
wavelength of 428 nm and emission wavelength of 668 nm, respectively. Pdots@AMP-Cu
featured significant PPO catalytic activity and high stability and can catalyze 2,4-DP and
4-AP reactions in 2-(n-morpholino) ethanesulfonic acid buffer solution at pH 7. Figure 4G
illustrates chemical products with distinct absorption peaks. After reacting with DA, the
fluorescence was effectively quenched due to electron transfer, thus enabling the detection
of DA. These nanozymes can be used for clinical diagnosis of neurological syndromes, such
as schizophrenia, Parkinson’s syndrome, and Huntington’s disease. The DA in human
serum samples was detected by the standard addition method, obtaining a recovery value
of 97% to 105% and a relative standard deviation of no more than 4.1%, demonstrating
the accuracy and reproducibility of this method in the detection of actual samples [115].
Ye et al. have synthesized zeolitic imidazolate framework-67 (ZIF-67) nanozymes by a
three-step process [116]. ZIF-67 nanozymes had excellent oxidase activity and peroxidase
activity, which were used to construct a highly sensitive fluorescent assay for antioxidant
properties. Currently, the method enabled TA assay for nine different food products, which
is expected to be used for real-time monitoring of food production safety.
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reaction solutions in MES buffer solution at pH = 7 [115].

3.1.3. Electrochemical Method for Antioxidants Determination

Electrochemical methods typically employ a target recognition unit that initially
reacts with an analyte and subsequently transduces the resulting recognition event into a
detectable electrical signal. Then, this electrical signal is correlated with the concentration
of the analyte, enabling qualitative or quantitative detection. Electrochemical sensing
strategies have attracted great attention in antioxidant capacity detection due to their
rapid, sensitive, and accurate analyses. However, nanozymes are not easy to form effective
electrocatalytic interfaces and can be interfered by oxidizable substances, resulting in fewer
reports of nanozymes-based electrochemical assays [117]. Cristina et al. have developed
a disposable electrochemical sensor based on the biomimetic properties of nano-cerium
particles (CeNPs) [118]. CeNPs nanozymes can sensitively detect TAC in samples, ensuring
the safety of wine or other beverages. In the experiment, an oxidation-reduction reaction
occurred on the surface of the electrode modified by CeNPs, resulting in a change in current.
Subsequently, cyclic voltammetry was employed, utilizing a 1.1 mmol/L solution of K3[Fe
(CN)6] as a probe, to scan for alterations in the current, resulting in the emergence of peaks.
A range of common antioxidants in wine was successfully tested by this method [118],
including gallic acid (GA), caffeic acid (CA), quercetin (Q), and t-resveratrol (t-R) as shown
in Figure 5A–E. This single-use sensor provided a simpler, cost-effective, and portable
method without secondary reagents compared to traditional spectrophotometric methods.
Similarly, David et al. have developed a gold nano-enzymatic electrochemical sensor with
POD-like catalytic activity for the determination of antioxidants and TAC of water-soluble
extracts. The electrode, modified with AuNPs, was able to detect the presence of H2O2 by



Sensors 2024, 24, 6616 11 of 27

generating an oxidation peak. Herein, the antioxidant can react with H2O2 thus affecting
the current at the electrode. Differential pulse voltammetry was employed to assess the
TAC of the extracts. The electrochemical indices, as a new quantitative method, were
introduced for assessing the ‘total natural antioxidant’ or ‘total polyphenol’ content of a
sample, which could be used to assess TAC of multiple samples in a short period of time.
This experiment accurately assessed TAC of extracts of Sea buckthorn and Narrow-leaved
Lavender, providing a new method for the assessment of TAC of plant extracts [119]. Zhang
et al. have synthesized manganese dioxide nanosheets (MnO2 NSs) with simulated activity
of catechol OXD by chemical precipitation method for the ultra-sensitive and selective
electrochemical detection of DA. DA was catalytically oxidated to DA quinone on the
modified electrode, which underwent electrochemical reduction at the electrode. In this
process, two protons and two electrons were transferred, and by measuring the change in
current at a specific potential by amperometry, the DA concentration could be quantitatively
analyzed. In the presence of oxidizing substances (e.g., AA, uric acid (UA) and Cys
in biological systems that may coexist with DA, there was no significant interference,
demonstrating good selectivity [117]. Liu et al. have developed single-atom nanozymes
with superior OXD activity for the simultaneous analysis of DA and UA in biofluids. Using
Co-NNC as the active center, the nanozyme catalyzed redox reactions of DA and UA to
generate electrical signals. Alterations in the electrical signal were gauged using differential
pulse voltammetry and cyclic voltammetry. The experiments also employed polyvinyl
alcohol hydrogel as a sweat collector in conjunction with Ppy-Co-NNC/SPCE, thereby
facilitating the real-time detection of UA in sweat and the simultaneous detection of UA and
DA in urine. The results demonstrated an excellent degree of selectivity, reproducibility, and
stability. This novel, non-invasive biofluidic detection strategy holds important implications
for personalized medical testing [120].
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Figure 5. (A–E) Modified SPE sensors including OHT-069 (red circle), OHT-102 (blue circle), and
OHT-000 (green circle) for antioxidant detection [118]. (F) Detection of H2O2 and antioxidant capacity
of FeS@CNs nanozymes. (G) Rapid trace detection of TAC in yellow wine [121].
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3.1.4. Other Methods for Antioxidants Determination

There are also innovative approaches, such as the surface enhanced Raman scattering
(SERS) technique, which enables highly sensitive detection of very low concentrations of
antioxidants through the interaction of nanozymes with Raman-active substrates [122].
Shang et al. have developed a polyoxometalate cluster nanozymes with POD activity and
have constructed a novel TAC sensing platform for the rapid and highly sensitive detection
of TAC in yellow wine [121]. The HPW-CuBTC material, mixed with methyl blue molecules,
can be excited by a 633 nm laser line, generating Raman scattering signals. Because of the
antioxidant effect of catechin, it competed with TMB for the catalytic site of HPW-CuBTC.
This reduced the generation of ox-TMB, leading to changes in Raman scattering signals
and thus quantitatively assessing TAC in yellow wine samples, as shown in Figure 5G. In
the study, not only was the local surface plasmon resonance enhancement mechanism used,
but the charge transfer mechanism was also introduced, with the synergistic effect of the
two significantly enhancing the SERS signal [121]. Similarly, Dong et al. have employed
enhanced luminol chemiluminescence and have used CoMoO4 nanorods as a catalyst for
chemiluminescence for the first time. By catalyzing the decomposition of H2O2, hydroxyl
radicals (OH·) and superoxide anions (O2

−) were produced. These reactive oxygen species
reacted with luminal to produce intermediates in the excited state. When these intermedi-
ates returned to the ground state, they emitted light, thus enhancing the chemiluminescent
signal. However, DA can react with reactive oxygen species, thereby reducing their number
and leading to a decrease in luminescence intensity. Therefore, the DA in serum samples
was successfully measured by this way, showing satisfactory recoveries of 97.2–104.3%,
highlighting the promising application of this method in the detection of TAC [123]. In
recent years, dual-mode sensing strategies [124–128] have been widely used to further
enhance the comprehensiveness, reliability, and specificity of detection. For example, Song
et al. have investigated embedded FeS@CNs nanozymes particles, which could effectively
achieve the encapsulation of FeS nanozymes [125]. These particles exhibited good catalytic
activity over a wide pH range and possessed both colorimetric and fluorescent dual sensing
detection, as shown in Figure 5F. By creating different recognition channels, various target
objects can be distinguished and the specificity and reliability of the sensing platform can
be improved. These innovative methods not only improved the accuracy, sensitivity, and
specificity of detection, but also provided diversified options and long-term prospects for
the assessment of antioxidant capacity.

Tables 1–4 summarize the parameters of antioxidant detection based on nanozymes
using different enzyme activities and detection methods in the recent reported works.

Table 1. POD-like activity for antioxidant detection.

Enzyme Detection
Method Detection Object Detection Range (µmol/L) LOD (µmol/L) Reference

POD - AA 8~64 0.77 [90]

POD colorimetry AA, Cys, GSH 0.01~50,000

Fe-based nanozyme: AA
(0.00517), GSH (0.00628)

Cu-based nanozyme: AA
(0.00377), Cys (0.00340)

Zn-based nanozyme: AA
(0.0063), GSH (0.00712)

[89]

POD colorimetry AA, Cys AA: 0.5~120, Cys: 0.1~20 AA: 0.15, Cys: 0.06 [129]

POD colorimetry AA, GA, CA AA: 0.5~50, GA: 40~600,
CA: 400~1800 AA: 0.23, GA: 0.11, CA: 0.20 [107]
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Table 1. Cont.

Enzyme Detection
Method Detection Object Detection Range (µmol/L) LOD (µmol/L) Reference

POD colorimetry Vitamin C, GSH,
CYS, etc.

Vitamin C: 2~32, GSH:
4~20, Cys: 0~16, CA: 1~20,

GA: 2~12

Vitamin C: 0.158, GSH: 124,
CYS: 116.3, CA: 0.259,

GA: 0.1885
[126]

POD colorimetry TAC
absorptiometry: 0~60,

fluorescence
spectrophotometry: 0~60

absorptiometry: 1.3,
fluorescence

spectrophotometry: 0.35
[124]

POD colorimetry
H2O2, AA, ferulic
acid (FA), tannin

acid (TA), GA

H2O2: 5 × 104~4 × 106,
AA: 10~80, FA: 10~100,

TA: 5~60, GA: 5~40

H2O2: 16.0, AA: 8.7, FA: 8.3,
TA: 2.7,
GA: 2.4

[130]

POD colorimetry glucose 0.025~0.5 1.5 [131]

POD colorimetry AA 300~900 59.4 [110]

POD colorimetry,
fluorimetry H2O2

colorimetry: 1~70,
fluorimetry: 5~250

colorimetry: 0.78,
fluorimetry: 0.86 [125]

POD colorimetry AA 2~120 0.41 [132]

POD colorimetry AA 1 × 104~4.5 × 104 6130.0 [133]

POD colorimetry TAC 5~40 1.40 [134]

POD colorimetry AA, 2,4-DP,
adrenaline

AA: 0~25,
2,4-DP: 3.1~613.5,

adrenaline: 1.09~272.93

AA: 0.29, 2,4-DP: 0.76,
adrenaline: 0.7 [101]

POD fluorimetry H2O2, AA, L-Cys,
etc.

H2O2: 0~4000,
L-Cys: 0~4000,

GSH: 0~1000, etc.

H2O2: 29.0, AA: 4.2
(spectroscopy), L-Cys: 680.0,

GSH: 76.0, AA: 68.0
(fluorimetry)

[135]

POD colorimetry H2O2, glucose, AA H2O2: 20~200, glucose:
10~100, AA: 8~80 H2O2: 15, glucose: 10, AA: 8 [136]

POD colorimetry,
fluorimetry H2O2 0~60 colorimetry: 1.3,

fluorimetry: 0.35 [124]

POD colorimetry AA, H2O2
AA: 1.0~20.0,

H2O2: 100~1000 AA: 0.94, H2O2: 45.3 [137]

POD colorimetry AA, Cys, GSH AA: 1~80, Cys: 1~80,
GSH: 1~80 AA: 0.14, Cys: 0.18, GSH: 0.21 [108]

POD colorimetry H2O2, glucose,
AA, etc.

H2O2: 20~1000,
glucose: 15~500,
AA: 1~55, etc.

H2O2: 6.5, glucose: 3,
AA: 0.35, GA: 0.75, TA: 0.048 [138]

POD colorimetry AA, GSH, TA, etc. 0.01~50,000 0.01 [89]

POD colorimetry GLY, GSH, CA, etc. 0.1~10 0.1 [139]

POD colorimetry AA, Cys 0.5~120 0.06 (Cys),
0.15 (AA) [129]

POD colorimetry GSH, AA, Cys, etc. 0.01~50 10 [105]

POD colorimetry Cys, UA,
polyphenols, etc. 0.01~10.0 0.000116(AA), 0.000112 (Cys),

0.000143 (DA), etc. [127]

POD colorimetry AA 10.0~125.0 0.406 [140]

POD colorimetry hydroperoxide 10~10,000 1.55 [141]

-: not illustrated.
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Table 2. OXD-like activity for antioxidant detection.

Enzyme Detection
Method Detection Object Detection Range (µmol/L) LOD (µmol/L) Reference

OXD colorimetry TAC 1.25~10 0.00825 [104]

OXD colorimetry GSH, AA, Cys, etc. - 0.01 [105]

OXD colorimetry AA, GSH, Cys AA: 1~30, GSH: 1~30,
Cys: 2~10

AA: 1.53, GSH: 2.00,
Cys: 0.97 [94]

OXD colorimetry TAC 1~30 1.17 [93]

OXD colorimetry TH, AA, GSH
TH = 7: 0.1~60, TH > 7:

0.005~1, AA: 3~50,
GSH: 1~40, etc.

- [95]

OXD colorimetry AA, 2,4-DP, adrenaline

AA: 0~25, 2,4-DP:
3.1~122.7 and 122.7~613.5,
adrenaline: 1.09~109.2 and

109.2~272.93

AA: 0.29, 2,4-DP: 0.76,
adrenaline: 0.70 [101]

OXD colorimetry,
fluorimetry GA colorimetry: 0~60,

fluorimetry: 0~60
colorimetry: 1.3,
fluorimetry: 0.35 [101]

OXD colorimetry TAC - - [96]

OXD colorimetry AA, GSH, homocysteine
AA: 1~90, GSH,

homocysteine: 3~70,
2.5~50

AA: 0.2, GSH and
homocysteine: 0.8

and 0.9
[142]

OXD colorimetry AA, Cys, GSH AA: 3.0~25, Cys: 3.0~33,
GSH: 3.0~35

AA: 0.04, Cys: 0.047,
GSH: 0.067 [143]

OXD colorimetry GA, 4-hydroxycinnamic
acid, anthocyanidin, etc. 5~100 5 [144]

OXD electrochemical
method phenol 0.01~0.2 0.00294 [145]

-: not illustrated.

Table 3. Laccase-like activity for antioxidant detection.

Enzyme Detection Method Detection Object Detection Range (µmol/L) LOD (µmol/L) Reference

laccase colorimetry CC 5.0~70.0 2 [146]

laccase electrochemical
method CC 0.036~2.5 0.032 [147]

laccase electrochemical
method

polyphenol
compounds 1~250 0.83 [148]

laccase electrochemical
method

total Phenolic
Compounds 0.1~500 0.05 [149]

laccase electrochemical
method phenolic compounds 0.1~500 0.03 [150]

laccase electrochemical
method polyphenol 1~500 0.156 (P-guaiacol) [151]

laccase colorimetry CC,
HQ

1~1000 (CC), HQ:
0.05~100 0.35 (CC), HQ: 0.04 [102]

laccase electrochemical
method

2-aminophenol,
catechol, etc. 50~1000 - [152]
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Table 3. Cont.

Enzyme Detection Method Detection Object Detection Range (µmol/L) LOD (µmol/L) Reference

laccase colorimetry 2,4-dichlorophenol,
phenol, CC, etc. 0.1~100 0.033 [98]

laccase electrochemical
method polyphenol 0.01~10 0.081 [153]

laccase colorimetry 2,4-dichlorophenol,
phenol, CC, etc. 0.1~2000 34,000

(2,4-dichlorophenol) [154]

laccase fluorimetry GA - 7.4 [155]

laccase electrochemical
method CC 3.0~15 0.91 [156]

laccase
electrochemical
method, optics

method

polyphenol, including
GA, CA, etc. 0.1~100 or higher 0.0001~ 0.7 [157]

laccase electrochemical
method RA 0.91~12.1 0.233 [158]

laccase

colorimetry,
combined with

smart phone
platform

AA

AA: 0~25,
2,4-dichlorophenol:

3.1~613.5, adrenaline
1.09~272.93

AA: 0.29,
2,4-dichlorophenol: 0.76,

Adrenaline: 0.70
[101]

laccase fluorimetry,
colorimetry TAC, AA AA: 10~130, TAC: 10~100 AA: 0.70, TAC: 0.30 [112]

laccase fluorimetry
catechins,

epicatechins and
polyphenol, etc.

1 ng/mL~100 mg/mL 1 ng/mL [159]

laccase colorimetry CA, GSH, Trolox CA: 0.01~130, Trolox:
0.01~180, GSH: 1~100

CA: 0.00483,
Trolox: 0.00739,
GSH: 0.00889

[91]

-: not illustrated.

Table 4. Multienzyme activity for antioxidant detection.

Enzyme Detection
Method Detection Object Detection Range (µmol/L) LOD (µmol/L) Reference

OXD, catalase,
laccase colorimetry TAC, phenol

compound

AA: 0~25; 2,4-DP:
3.1~613.5; adrenaline:

1.09~272.93

AA: 0.29;
2,4-DP: 0.76;

adrenaline: 0.70
[101]

OXD, POD colorimetry DA, GSH, AA, etc. 0.01~0.25

DA: 0.00826,
AA: 0.00542,

GSH: 0.00289,
Cys: 0.00624

[160]

3.2. Nanozymes-Based Antioxidant Detection Device

Antioxidants are considered essential compounds for monitoring human health. With
the increasing concern about antioxidants, detecting antioxidant levels more accurately and
rapidly has become a new direction for more researchers. In recent years, the combination
of nanozymes and sensor arrays, paper-based devices, and microfluidic devices [145] for the
detection of antioxidants has been gradually increasing, providing new ideas for providing
rapid detection in the field.
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3.2.1. Sensor Array Devices

Sensor arrays are composed of multiple sensing elements, and different elements
will selectively interact with the target to generate special “fingerprints”, thus enabling
the identification of various analytes. It is an outstanding advantage for the identifica-
tion of mixed samples compared with a single sensor that can only detect one physi-
cal or chemical quantity. Wu et al. have designed a colorimetric sensor array consist-
ing of three sensing units with two-dimensional ultrathin manganese dioxide nanofilms
(Mn-uNF) with laccase-like functionality to identify HQ, resorcinol (RC), and CC [144]. As
shown in Figure 6A, the recognition of isomers was achieved by the difference in the color
development reaction of the three isomers with the three sensing units. The Mn-uNF-based
sensing platform possessed good sensitivity and stability. The array was capable of de-
tecting RC down to 2.7 µmol/L and recognizing tetracyclines (TCs) containing phenolic
groups. The Mn-uNF-based sensing platform provided good sensitivity and stability. The
sensor enabled the recognition of tetracyclines containing phenolic moieties using laccase
mimics. In Figure 6B, there is a clear difference between the colorimetric responses of TC,
oxytetracycline (OTC), and chlortetracycline (CTC) with this sensor array, which makes
the recognition of TCs more specific and intuitive and breaks through the limitations of
the traditional cross-reactive sensor arrays. In addition, the designed Mn-uNF had high
catalytic efficiency and good affinity. In Figure 6C, the Vmax of Mn-uNF for o-aminophenol
was 21.1 times higher than that of laccase, and its Km (0.301 mmol/L) was lower than
that of laccase (0.493 mmol/L), indicating a higher affinity for the substrate. Yang et al.
have constructed a sensing array with 15 sensing units using nanozymes (GMP-Cu) [144],
and processed the data using principal component analysis. Different tea polyphenols
produced unique changes in the sensing units, enabling differentiate between different
polyphenols. The differences among various tea polyphenols in green tea were significant.
In Figure 6D, the reactions of nanozymes can be utilized to recognize and differentiate the
content and type of these tea polyphenols. The detection limit of this sensing array was
5 µmol/L, and it was highly accurate in the presence of interferences such as vitamin C,
glucose, K+, Mn2+, etc. Therefore, this system is suitable for accurate antioxidant testing of
tea samples in production. Qin et al. chose Co-based nanozymes as the sensing element,
constructed a colorimetric sensor array using the 3D lattice structure of the nanozymes [89],
and recorded multiple response patterns (2 nanozymes × 7 antioxidants × 5 replicates) for
linear discriminant analysis. The optimal pH, antioxidant time, reaction time, and reaction
temperature conditions of the nanozymes were also optimized. In addition to this, all
three nanozymes in the study were able to detect antioxidants down to 10 nmol/L. The
sensor array was able to recognize seven antioxidants even at low concentrations, with
the metal-based nanozymes -based sensor array providing a good method for antioxidant
detection. Liu et al. have investigated the Co-N-C nanozymes prepared with POD activity
and showed different colorimetric responses to oxidized TMB at pH = 3.8 and pH = 4.6 [105].
Based on this, a sensor array with two sensing units was developed, and the data were
processed using a chemometric method such as linear discriminant analysis (LDA). The
sensor array was able to recognize seven antioxidants at a concentration of 10 nmol/L with
100% accuracy. This study provided a good strategy for recognizing multiple antioxidants.
Some of the sensing arrays have the capability to detect other substances along with an-
tioxidants. For example, Tian et al. have developed a three-channel colorimetric sensing
array based on PDFeNi foam, which incorporated a smartphone for rapid signal reading to
detect antioxidants and pesticides, as shown in Figure 7A. The PDFeNi foam in this sensing
array was a nanomaterial with POD enzyme activity, prepared through polydopamine
modification of the FeNi foam.



Sensors 2024, 24, 6616 17 of 27
Sensors 2024, 24, x FOR PEER REVIEW 17 of 26 
 

 

 
Figure 6. (A) Cross-reactive sensor array [161]. (B) Chemical structures of tetracyclines and results 
of colorimetric reactions. (C) Catalytic activities of laccase, Mn-uNF/Si, and Mn-uNF for the oxida-
tion of various phenolic compounds (Vmax and Km) [161]. (D) Different reactions of nanozymes with 
polyphenol OXD activity to tea polyphenols. 

3.2.2. Paper-Based Devices 
Paper-based detection is a paper-based technology that reduces the cost of manufac-

turing detection devices, simplifies the fabrication process, and can be used to build vari-
ous types of devices, including sensors [162–168], actuators [169–172], etc. Compared with 
traditional detection devices, it has the advantages of low cost and easy operation, and 
can better adapt to the needs of anytime, anywhere detection. Anna et al. have designed 
a multiplexed colorimetric method for the determination of antioxidants in wine by paper 
[173]. This analytical method required only a low-cost x-y plotter, markers, and paper, 
and was environmentally friendly, cost-effective, instrument-free, and rapid. Traditional 
paper-based methods are no longer sufficient to meet the demand for highly sensitive as-
says, so combining nanozymes with paper-based devices and using them for sensitive 
antioxidant assays has become a new development in paper-based devices. K.V. et al. have 
observed for the first time the POD mimetic performance of chitosan against H2O2 and 
TMB by deploying a paper-based colorimetric sensor, which was of great significance in 
the development of biosensors. The sensor was made of chromatographic paper that was 
wax-printed, making the sensing points hydrophilic and the boundaries hydrophobic. 
The detection limit of the chitosan method was 1.55 µmol/L with high sensitivity, allowing 
rapid detection in less than 10 min, which could be read by a smartphone. It was portable 
and responsive for on-site testing. Guan et al. have constructed a paper-based microarray 
for visual detection by embedding AuNPs on paper sheets and utilizing the POD-like 

Figure 6. (A) Cross-reactive sensor array [161]. (B) Chemical structures of tetracyclines and results of
colorimetric reactions. (C) Catalytic activities of laccase, Mn-uNF/Si, and Mn-uNF for the oxidation
of various phenolic compounds (Vmax and Km) [161]. (D) Different reactions of nanozymes with
polyphenol OXD activity to tea polyphenols.

3.2.2. Paper-Based Devices

Paper-based detection is a paper-based technology that reduces the cost of manufac-
turing detection devices, simplifies the fabrication process, and can be used to build various
types of devices, including sensors [162–168], actuators [169–172], etc. Compared with
traditional detection devices, it has the advantages of low cost and easy operation, and
can better adapt to the needs of anytime, anywhere detection. Anna et al. have designed
a multiplexed colorimetric method for the determination of antioxidants in wine by pa-
per [173]. This analytical method required only a low-cost x-y plotter, markers, and paper,
and was environmentally friendly, cost-effective, instrument-free, and rapid. Traditional
paper-based methods are no longer sufficient to meet the demand for highly sensitive
assays, so combining nanozymes with paper-based devices and using them for sensitive
antioxidant assays has become a new development in paper-based devices. K.V. et al. have
observed for the first time the POD mimetic performance of chitosan against H2O2 and
TMB by deploying a paper-based colorimetric sensor, which was of great significance in
the development of biosensors. The sensor was made of chromatographic paper that was
wax-printed, making the sensing points hydrophilic and the boundaries hydrophobic. The
detection limit of the chitosan method was 1.55 µmol/L with high sensitivity, allowing
rapid detection in less than 10 min, which could be read by a smartphone. It was portable
and responsive for on-site testing. Guan et al. have constructed a paper-based microarray
for visual detection by embedding AuNPs on paper sheets and utilizing the POD-like activ-
ity of the nano-enzymes for on-site and quantitative detection of AA [140], the principle of
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the established paper-based platform. In Figure 7B, a mixed solution containing nanozymes
and 3-ethylbenzothiazole-6-sulfonic acid was added to the intermediate area, with a certain
amount of H2O2 added equally to the detection area. Finally, the mixed solution penetrated
the detection area to undergo a color development reaction. The detection limit for antiox-
idants was as low as 0.406 µmol/L with high sensitivity, which provided a new idea for
designing highly active nanozymes for on-site detection of dietary components. Anna et al.
have developed a new instantaneous detection technique for TAC using the POD-like
nature of 5 nmol/L platinum nanoparticles (PtNPs) [174]. PtNPs were combined with a
colorimetric paper device for the detection of antioxidants. The device consisted of a series
of pads (sample, coupling, and absorbent pads), as shown in Figure 7C. The saliva sample
contained physiological antioxidants, and the detection zone consisted of three strips with
different levels of nanozymes. These nanozymes catalyzed reaction, eventually presenting
a certain number of bands, which allowed for the measurement of high, medium, and low
levels of antioxidants.
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3.2.3. Microfluidic Devices

Microfluidic devices use micropipettes to handle or manipulate tiny fluids, allowing
for a range of microfluidic processing and micromanipulation tasks that are difficult to
accomplish with conventional methods. Whereas conventional assays typically require
large sample volumes to perform the assay, microfluidic devices can reduce the amount
of sample required and allow for high-throughput implementation. Lee et al. have de-
veloped a customized spectrometer system with an LED light source and a dual chamber
microfluidic system [175]. A simplified analytical model and a complex finite element
model were built, borrowing from reaction engineering and fluid dynamics. The system
enabled the tracking of the progress of the reaction and detected antioxidant activity of
a substance in a physiologically relevant manner. This microfluidic device featured the
ability to monitor the effect of the chemical reaction in real time, saving detection time
to achieve the purpose of rapid and batch detection. Microfluidic devices are the latest
advances in microfluidic technology, which not only can greatly reduce the cost of the
assay, but also can be more sensitive and faster. Guan et al. have combined paper-based
technology with microfluidic technology to construct a paper-based microfluidic chip based
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on AuNPs nanozymes, integrating the data analysis with smartphones [140]. This method
was strong in anti-interference ability and simple in operation, which provided a new idea
for the application of highly active nanozymes in microfluidic devices. Wu et al. have
developed a novel microfluidic sensor combining nano-enzymes and microfluidic chips to
detect the TAC with a detection limit of 33.4 µmol/L and high sensitivity [176]. The device
consisted of two layers of plastic laminates with glass fiber paper containing nanozymes in
the upper layer and filter paper immobilized with TMB in the lower layer. The method
reduced sample pre-treatment and allowed the assay to be completed in less than 15 min,
saving a great deal of time. The method did not require expensive specialized equipment
and simplified the operation process, which can be applied to the immediate detection in
the field and provided a new idea for the design of testing equipment for the detection
of TAC.

4. Summary and Future Perspectives

In the context of rapid development of nanotechnology, the use of nanozymes and
their associated devices for the detection of antioxidants has become an inevitable trend.
In this review, different enzyme-like activities for antioxidant detection are categorized
according to the catalytic properties of nanozymes. Meanwhile, some nanozymes-based
sensing strategies, including colorimetric, fluorescence, and electrochemical methods, were
introduced. A variety of nanozymes-based antioxidant detection devices, including sensor
arrays, paper-based devices, and microfluidic devices, was reviewed.

At present, the use of nanozymes for antioxidant detection is still challenging. The
design cycle of novel nanozymes is long and expensive. The construction and improvement
of sensing devices are costly. Additionally, due to the complication of the catalytic reaction
process of nanozymes, some mechanisms are still unclear. Materials used for nanozymes
preparation receive great attention, and a large number of non-metallic and metallic ma-
terials are expected to be developed and used for nanozymes production. The toxicity of
nanozymes cannot be ignored in the process of testing the antioxidant. This is a continuous
improvement process, which may take a long time to develop from the foundation to
the completion. Applying the novel nanozyme-based devices to detect antioxidant and
realizing their commercialization is an inevitable trend. Good quality (good sensing perfor-
mance) and detection efficiency are important factors in the process of commercializing and
marketing of antioxidant detection devices. Therefore, in the future, advanced preparation
processes (such as 3D printing, printed electronics, or sol-gel technology, etc.) should be
used to further improve the accuracy and reproducibility of sensing devices. In addition,
self-driven microfluidic chips and humanized integrated software can also be designed to
reduce the difficulty of operation and simplify the operation process.

The rapid development of artificial intelligence (AI) is driving the detection field
into a new era of intelligence and automation. Machine learning (ML) is a subset of
AI. ML, especially models built on artificial neural systems such as feed-forward neural
networks and recurrent neural networks, enables efficient learning through synergistic
effects. ML shows great potential in the field of materials development. ML helps guide the
development of next-generation nanozymes through intelligent enzyme design, effectively
avoiding wasted time and resources. At present, AI techniques, including ML, are being
used for enzyme engineering predictions, such as predicting enzyme function, catalytic
sites, enzyme activity, and unknown reactions. This technology is conducive to promoting
the development of nanozymes for efficient detection of antioxidants. At the same time, AI-
driven detection technology will make antioxidant detection more automated and accurate.
AI algorithms are able to identify and read the most relevant features of a particular
phenomenon from a data model, which in turn enhances the data analysis of nanozymes
based sensors. For example, during a colorimetric assay, ML can interpret and analyze
chromogenic changes for accurate determination of experimental results. This provides
new perspectives and insights to advance fast, efficient, and accurate assays.



Sensors 2024, 24, 6616 20 of 27

In summary, this review clarifies the importance and superiority of nanozymes in
antioxidant detection. The detection equipment based on the AI will make a significant
contribution to achieving antioxidant testing more successfully and economically.
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