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Abstract: As an alternative to true isotropic 3D imaging, image super-resolution (SR) has been
applied to reconstruct an isotropic 3D volume from multiple anisotropic scans. However, traditional
SR methods struggle with inadequate performance, prolonged processing times, and the necessity
for manual feature extraction. Motivated by the exceptional representational ability and automatic
feature extraction of convolutional neural networks (CNNs), in this work, we present an end-to-
end isotropic MRI reconstruction strategy based on deep learning. The proposed method is based
on 3D convolutional neural networks (3D CNNs), which can effectively capture the 3D structural
features of MRI volumes and accurately predict potential structure. In addition, the proposed method
takes multiple orthogonal scans as input and thus enables the model to use more complementary
information from different dimensions for precise inference. Experimental results show that the
proposed algorithm achieves promising performance in terms of both quantitative and qualitative
assessments. In addition, it can process a 3D volume with a size of 256 × 256 × 256 in less than
1 min with the support of an NVIDIA GeForce GTX 1080Ti GPU, which suggests that it is not only a
quantitatively superior method but also a practical one.

Keywords: 3D convolutional neural network; isotropic reconstruction; magnetic resonance imaging;
super-resolution; orthogonal scans

1. Introduction

Magnetic resonance imaging (MRI) is a crucial and versatile medical imaging modality
broadly used in clinical diagnosis and image-guided therapeutics. In principle, it utilizes
the magnetic resonance phenomenon to collect data in the frequency domain and then
generates images through inverse Fourier Transformation in situations where many sensors
are involved in the process of generating MR images, including magnetic field generation,
pulse signal excitation and reception, etc. [1,2]. In many MRI experiments, a basic consider-
ation is how to achieve a good equilibrium between spatial resolution, signal-to-noise ratio
(SNR), and acquisition time [3]. For instance, to reduce motion artifacts and improve the
SNR of MR slices, many MRI scans are performed with relatively few slices and rather large
slice thicknesses [4]. Consequently, most 3D MR volumes are collected as tomographic
sets of image slices, which have higher resolution in imaging planes and lower resolution
along the slice-select direction, causing anisotropic spatial resolution in 3D space [5]. This
could be problematic for downstream tasks, such as computer-aided diagnosis [6], quan-
titative analysis, and visualization since the image will be missing more high-frequency
information in the through-plane direction [4]. Therefore, it is much desired and beneficial
to produce MRI data with 3D isotropic spatial resolution in practical applications.

An intuitive manner to acquire 3D isotropic and high spatial resolution MRI volumes
is to improve the hardware devices of MRI scanners, e.g., higher magnetic fields, stronger
and faster gradients, etc. However, these solutions are often expensive, require hardware
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upgrades, and are still subject to various complex factors, e.g., physical constraints, sensor
performance, and system noise [4,5]. Conversely, to keep a similar SNR, reducing the
voxel size to produce isotropic resolution requires averaging multiple acquisitions, thus
increasing the imaging time and inflexibility in routine practice [7].

Another alternative is to enhance the resolution of magnetic resonance (MR) im-
ages along the through-plane direction using image post-processing techniques. One
popular technique is termed super-resolution (SR) imaging, which aims at recovering a
high-resolution (HR) image from one or more low-resolution (LR) images [8]. As a classical
problem, image SR is still an active yet challenging hotspot in both the natural and medical
image-processing communities [9]. In the literature, a variety of SR methods have been
studied, such as interpolation methods [10], edge-based methods [11], modeling and recon-
struction methods [12], and example-based learning methods [13], as well as dictionary
learning methods [14,15]. In terms of isotropic MRI reconstruction, the methods in [4,16]
adopted 3D block-based self-similarity learning and sparse representation to reconstruct HR
volumes with isotropic resolution, which are essentially shallow learning techniques. These
methods are inherently limited in SR performance because (1) finite additional information
is used for solving the severely ill-posed inverse problem, and (2) the representational
capacity of these models is inadequate for accurate SR inference [8,17].

In recent years, deep-learning-based [18] SR algorithms have been broadly and actively
studied, and significantly facilitated the rapid development of various benchmark SR tasks.
Owing to the powerful capacity of deep models to capture hierarchical features that map
from LR space to HR space [8,19], recent methods based on deep learning [18] techniques
have achieved great improvements in SR performance.

For natural images, a pioneering approach is SRCNN [20], which applies a three-
layer convolutional neural network (CNN) [21] to super-resolve a single input image.
Subsequently, a host of CNN-based SR models have been reported and some strate-
gies have also been developed to improve the performance of deep models, such as
increasing the model scale (including network parameter, depth as well as width) [22,23],
residual learning [24,25], directly mapping from input LR images [26,27], adversarial
training [28,29], etc. Other representative SR models include FC2N [30], SAN [31],
SwinIR [32], ELAN [33], SRFormer [34], etc. In medical image processing, improving
image quality and mitigating image degradation, e.g., image enhancement [35] and ar-
tifact removal [36], has been proposed to help promote the performance of subsequent
processing and analysis. There are also some efforts to utilize deep learning technol-
ogy to deal with medical image SR tasks, such as CSN [17], SERAN [37], DisC-Diff [38],
Dual-ArbNet [39], McMRSR [40], etc. In the context of MRI isotropic reconstruction, how-
ever, there are relatively few works based on deep learning. One of the latest and possibly
the most relevant works on this topic proposed to super-resolve brain MR images through
the use of 3D CNNs [41], but it mainly focused on general image SR tasks, rather than
isotropic MRI reconstruction.

Although significant progress has been made in deep learning in recent years, with
advanced model architectures such as attention mechanisms [31,42,43] and Transform-
ers [44–46] enhancing the performance of related tasks, these advanced structures are not
very suitable for isotropic resolution reconstruction of MR images, as clinical applications
have high requirements for fast inference. For 3D MR volumes, this issue is more prominent.
Therefore, more advanced but complex architectures might not be suitable for isotropic
MRI reconstruction in 3D scenarios.

In this work, we propose an isotropic reconstruction super-resolution network (isoSRN)
to solve the problem of isotropic MRI reconstruction. For local feature fusion, our isoSRN
extends weighted channel concatenation [30] and wide activation [47] to 3D space to cap-
ture sufficient 3D structural information, thereby contributing to accurate nonlinear SR
inference. As with many other SR models [17,22,32,34], we introduce residual global skip
connection (RGSC) to ease the training difficulty of the deep models. In addition, our
isoSRN takes 3D orthogonal scans as input to make full use of orthogonal supplementary
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information, as in [4]. However, we utilize this information for deep feature learning in-
stead of traditional sparse representation. The overall structure of our isoSRN is illustrated
in Figure 1. With the strong representational capacity of 3D CNN models, our isoSRN can
recover isotropic HR volumes more accurately. Extensive experiments show that our model
is noticeably superior to other methods both quantitatively and qualitatively. The main
contributions of this paper can be summarized as follows:

• We present a simple yet efficient 3D model for isotropic MRI reconstruction that
utilizes multiple orthogonal LR volumes with anisotropic resolution to generate an
isotropic HR volume.

• The proposed model is built upon simply extending wide activation [47] and weighted
channel concatenation [30] to 3D space, which can promote 3D feature learning while
maintaining efficient inference of the model.

• The proposed model is evaluated on several simulated and real MRI datasets, and it
shows significant superiority to other compared methods in terms of both quantitative
evaluations and qualitative analyses.
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Figure 1. The overall network structure of the proposed 3D CNN model for isotropic MRI reconstruc-
tion. The feature extraction contains only one 3D conv layer and the image recovery part consists of
two 3D conv layers. The nonlinear inference part is composed of several 3D concat blocks (3D-CBs),
each of which is built with two 3D conv layers with one ReLU layer in the middle. Note that our
3D-CB is different from the residual block in [22].

The rest of this work is arranged as follows. We first present the SR problem formula-
tion in Section 2, and the details of the proposed model in Section 3. Then, the experimental
results and analyses are given in Section 4. Finally, we conclude and discuss the whole
paper in Section 6.

2. Problem Formulation

Image SR is usually formalized as an inverse problem with an ill-posed nature, which
reconstructs an HR MR volume from one or more LR MR volumes according to the MRI
imaging model. Given V LR observations x1, x2, . . . , xV ∈ Rh×w×d and their HR volume
y ∈ RH×W×D, the imaging model (or HR volume degradation model) can be usually
formulated as:

xv = DvMvy + nv, v = 1, 2, . . . , V, (1)

where Mv represents the joint degradation operations on HR volume y to generate the
v-th LR volume xv, such as blurring and geometric transformations, etc., and Dv is a
downsampling operation that reduces the shape of HR volume to that of the LR volume
xv. nv usually denotes the Rician noise [48]. This formulation describes the task as a
multiple-image SR (MISR) problem and it degrades to a single-image SR (SISR) problem
when V = 1. In the context of unsupervised learning, the SR image can be solved by
optimizing the following loss:

y∗ = arg min
y

V

∑
v=1

||xv − DvMvy||22, (2)
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where y∗ is the prediction of HR image y. Directly optimizing Equation (2) typically leads
to unstable solutions that require the utilization of appropriate regularization terms to well
pose and stabilize the solution. Therefore, the general form of the target for image SR is
usually expressed as:

y∗ = arg min
y

V

∑
v=1

||xv − DvMvy||22 + γϕ(y), (3)

where ϕ(y) is the regularization term associated with an image prior, and γ is a non-
negative trade-off parameter that governs the compromise between the regularization term
ϕ(y) and the fidelity term. However, the use of regularization still suffers from unstable
solutions as it modifies implicitly the acceptable solution space without any guarantee of
recovering realistic HR volumes [41], and how to choose a suitable regularization term and
optimal trade-off parameter γ is practically difficult.

Compared with unsupervised learning, supervised learning techniques are superior
in that they can reconstruct novel details that are not available in LR images. In a super-
vised context, the HR image y can be recovered with the following formulation, in which
regularization is implicitly contained:

y∗ = arg min
y

V

∑
v=1

||y − HvUvxv||22, (4)

where Hv and Uv formalize the process of HR reconstruction and upsampling for xv. For
easier HR reconstruction and SR inference, we convert the MISR problem in Equation (4)
to an SISR problem as follows: (i) upsample each LR volume xv by, e.g., interpolation:
xu

v = Uvxv; (ii) fuse these upsampled volumes by simple element-wise average:

x =
1
V

V

∑
v=1

xu
v =

1
V

V

∑
v=1

Uvxv. (5)

As for HR reconstruction operation Hv, we assume that it behaves in the same manner
for each xv (or the fused LR volume x) after the upsampling operation Uv. Therefore, let
Hv = H and then, Equation (4) can be rewritten as:

y∗ = arg min
y

||y − Hx||22, (6)

which evolves into the optimization objective of a typical SISR problem in the context of
supervised learning. In the case of deep learning, H is usually modeled as an artificial
neural network (ANN), for instance, a typical CNN architecture for complex nonlinear
SR inference.

However, as far as image SR is concerned, it has been shown that L1 loss has better
convergence than L2 loss, which is more beneficial to MR image SR tasks [17,22]. We,
therefore, optimize a L1 loss to solve Equation (6). Given a training dataset D consisting of
|D| paired HR volumes y and the corresponding LR volumes x, the L1 loss can is defined as:

L1(θ) =
1
|D|

|D|

∑
i=1

∥∥y(i) −F
(
x(i); θ

)∥∥
1, (7)

where F (·) = H represents the mapping function of the CNN structure from x to y, and θ
denotes the parameter set of the network. ŷ = F (x; θ) is the estimate of sample label y.
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3. Isotropic Super-Resolution Network
3.1. 3D Feature Extraction

Most current models based on CNNs adopt convolutions with zero-padding to keep
the spatial size of the output features unchanged, such as [17,20,22,30,34,43,49], etc. In this
paper, all the convolutional layers we discuss are with zero-filling and single stride.

In principle, each dimension of the LR volume xv may have anisotropic scaling factors
to achieve isotropic reconstruction as the resolutions of all dimensions can be different from
each other, while in practice, xv usually has the same high spatial resolution in the imaging
plane and different low resolution in the through-plane direction. Therefore, the isotropic
reconstruction of MR volumes is essentially a 1D SR problem that can even be solved
through 1D CNN models. In this case, assume that vt ∈ RL×Ct denotes the intermediate
feature tensor of the t-th layer with length L and channel number Ct, then, the feature
tensor at the (t + 1)-th layer is computed by:

vt+1
m (x) = σ

[
bt

m +
Ct

∑
n=1

Kl

∑
k=1

wt
nm(k)v

t
n(x̃)

]
, (8)

where m = 1, . . . , Ct+1 indexes over feature channels of vt+1 and n indexes over those of
vt. Kl indicates the length of 1D convolutional kernel wt ∈ RKl×Ct×Ct+1 . The parentheses
are employed to indicate the spatial position of feature tensors and x̃ = x + k − Kl/2. σ(·)
represents a nonlinear function, e.g., a ReLU, and bt is the biases at the t-th layer whose
length follows the number of output channels Ct+1. Therefore, only the information along
the dimension to be upscaled is adopted to infer the feature map of the next layer, as
demonstrated in Figure 2a. To use more information for inference, it is intuitive to extend
the 1D convolution layer to a 3D convolution layer. Let vt ∈ RH×W×D×Ct represent the
feature map at the t-th layer with Ct channels, then, the feature map at the (t + 1)-th layer
is computed as follows in the 3D case:

vt+1
m (x, y, z) = σ

[
bt

m + ψt
m(x, y, z)

]
. (9)

Here ψt
m(x, y, z) is given by:

ψt
m(x, y, z) =

Ct

∑
n=1

Kh

∑
i=1

Kw

∑
j=1

Kd

∑
k=1

wt
nm(i, j, k)vt

n(x̃, ỹ, z̃), (10)

where m and n have the same meanings as in the 1D case, and wt ∈ RKh×Kw×Kd×Ct×Ct+1

denotes the 3D convolutional kernel of the t-th layer with spatial size of Kh × Kw × Kd, and:

x̃ = x + i − Kh/2,

ỹ = y + j − Kw/2,

z̃ = z + k − Kd/2.

(11)

Therefore, in the case of 3D, in addition to exploring features with multiple channels,
the network will also make full use of information in the 3D space to perform inference.
Moreover, 3D convolutional kernels increase network parameters, obviously enlarging the
representational capacity of the model.
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Figure 2. For isotropic MRI restoration, convolutional operations covering more dimensions can
extract richer and more useful information. For instance, the information for inferring the feature
map of the next layer, in the 1D case, is only from the dimension that requires to be scaled. However,
in the 3D case (our work), the information in a 3D cube can be used to compute the feature map of
the next layer.

3.2. Joint Linear Attention

Attention mechanisms are widely used to process the different components of an
input signal distinctively. They decide the allocation of processing resources according
to the information amount and importance of these signal components. Attention has
been adopted extensively in deep learning and it shows the potential to improve model
performance in many tasks such as image classification [50,51], object localisation [52],
image restoration [49], etc. It is typically implemented by integrating a nonlinear function
(e.g., a ReLU or sigmoid) with sequential operations [50], in the form of self-attention.

Unlike the above works, Zhao et al. [30] presented a novel joint linear attention mech-
anism for linear and nonlinear features in the network, which is proven to be conducive to
the full mining of model representational capacity. However, they mainly aim at natural
image SR tasks in 2D. In this paper, we extend the joint linear attention to 3D space and use
it for the isotropic reconstruction of MRI volumes. Let [. . .] denote the operation of channel
concatenation, then a channel concatenation block in 3D space (3D CB) can be formulated
as the following:

xi = L
(
[πixi−1, λiH(xi−1)]

)
, (12)

where L(·) corresponds to the 1×1×1 convolutional layer at the end of a CB, as shown in
Figure 1. Furthermore, H(·) represents the function of the nonlinear mapping branch, and
πi and λi represent the weighting factors of the identity branch and nonlinear mapping
branch, respectively. Let t = i − 1 and ut = H(xi−1), and we remove the spatial dimensions
of the 1 × 1 × 1 convolutional kernel wt ∈ R1×1×1×2Ct×Ct+1 for ease of representation.
Then, we can follow the convention in Section 3.1 to reformulate the 3D weighted channel
concatenation:

xt+1
m (x, y, z) =

Ct

∑
n=1

πt+1wt
nmxt

n(x, y, z)

+
Ct

∑
n=1

λt+1wt
(n+Ct)m

ut
n(x, y, z).

(13)

Since the overall process fuses identity mapping and nonlinear mapping, and no activation
is attached to the 1 × 1 × 1 convolutional layer, it can be viewed as a joint linear attention
of the linear and nonlinear features. In addition, owing to the learnability of w, λ and π,
when (i) wt

nn = wt
(n+Ct)n

= 1 for n = 1, 2, . . . , Ct and the other elements in wt are 0, and
(ii) πt+1 = λt+1 = 1, then the weighted channel concatenation actually degrades to the
residual connection. In this case, if π and λ are learnable in the 2D case, it degrades to
adaptive residual learning [30].
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3.3. Network Architecture

The overall network architecture is shown in Figure 1. Similar to many previous SR
networks, such as [17,22,30] etc., the proposed isoSRN is modularized and consists of three
phases: feature extraction, non-linear mapping, and image reconstruction.

Feature extraction is achieved by a 3 × 3 × 3 convolutional layer, which is used to
simulate the dense patch extraction in many conventional methods such as sparse represen-
tation and dictionary learning. To protect low-level visual features, it is usually embedded
in the network without a nonlinear activation function. The nonlinear inference part of
the proposed isoSRN model consists of a group of cascaded 3D CB blocks, whose internal
structure is shown in Figure 1. For the nonlinear branch of a CB block, the sequential
operations of Conv-ReLU-Conv are adopted with wide activation [47]. Suppose there are n
CB blocks in the network and the mapping function of the i-th block is denoted as Bi(·),
then the entire nonlinear mapping process of our isoSRN can be iteratively formulated as:

xn = Bn(xn−1) = Bn(Bn−1(· · · (B1(x0)) · · · )), (14)

where x0 denotes the extracted feature by the first 3× 3× 3 convolutional layer, as illustrated
in Figure 1, and xn implies the deep features of the network. Next, the shallow features
x0 and deep features xn are integrated by a commonly-used residual connection: x0 + xn.
Image reconstruction is implemented by two 3 × 3 × 3 convolutional layers. The first
convolutional layer is used for further fusion of shallow and deep features and the second
one is employed to map these features into HR image space, as shown in Figure 1. We also
demonstrate the architecture of our model in Algorithm 1.

Algorithm 1: The isoSRN Model for Isotropic MRI Reconstruction
Input: LR anisotropic volumes x1, x2, x3, the number of CB blocks n, HR isotropic

volume y
Output: HR isotropic predication y∗

1 Init: initialize network parameters with Xavier initialization
2 for Convergence Condition Unsatisfied do
3 /∗ Initial Isotropic LR Input with Spline Resampling ∗/

4 x =
1
V

V

∑
v=1

xu
v =

1
V

V

∑
v=1

Uvxv, V = 3 and Uv = spline(·) // Equation (5)

5 /∗ Shallow Feature Extraction ∗/
6 x0 = Conv3×3×3(x)
7 /∗ Deep Feature Extraction ∗/
8 for i = 1 : n do
9 xi = Bn(xi−1) // Equation (14)

10 /∗ Isotropic Volume Reconstruction ∗/
11 y = Conv3×3×3(Conv3×3×3(x0 + Conv3×3×3(xn)))
12 /∗ Loss Optimization for Parameter Determination ∗/
13 y∗ = miny L1(θ) // Equation (7)

3.4. Network Scale

Network scale usually refers to the depth, width, and number of parameters of the
network. In general, a larger network scale indicates a stronger representational ability of
the model, as well as better performance. In particular, the depth and number of parameters
have a significant impact on the performance of the model. The depth of a deep network
is typically defined as the longest path from the input to output [17]. As for the proposed
isoSRN, the depth can be formulated according to Figure 1:

D = 3n + 4, (15)
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where n denotes the number of 3D-CBs. We set n = 16 in our implementation, and D
therefore is 52. It can be seen that D is independent of the scaling factor since the nonlinear
inference is in HR image space. This increases the computational effort of the model, but
the advantage is that it is easy to implement and can deal with arbitrary scaling factors,
including fractional factors. Conversely, the proposed isoSRN takes ≈ 3.63 M learnable
parameters according to Figure 1 and the description in Section 4.1. This is a moderate
amount of parameters, which is also amenable to practical deployment.

4. Experimental Results
4.1. Datasets and Implementation Details

We randomly chose 155 pair structural MR volumes from the HCP dataset (https:
//www.humanconnectome.org/, accessed on 5 September 2022) [53] (including both T1
and T2 data). These volumes were collected with 0.7 mm × 0.7 mm × 0.7 mm isotropic
resolution and matrix size of 260 × 311 × 260. We divided these 155 volumes into 100 train-
ing samples, 50 testing samples, and 5 fast validation samples. To verify the ability of the
proposed isoSRN model to process other MR data, we collected three other datasets: Sim-H,
Sim-P, and Set7, which contain two, four, and seven volumes, respectively. The detailed
information of these datasets is shown in Table 1. Note that Sim-H and Sim-P are gener-
ated from simulated data from BrainWeb (https://brainweb.bic.mni.mcgill.ca/brainweb/,
accessed on 12 August 2022) [54], while Set7 consists of in vivo data acquired using a
3T GE scanner with a T1-3D FSPGR sequence (TR/TE = 5.936 ms/1.956 ms and flip
angle [FA] = 9◦, matrix size = 256 × 256, and field of view [FOV] = 25.6 × 25.6 cm2, slice
thickness = 1 mm).

Table 1. Details of the testing datasets used in this work. Note that these data are collected with
isotropic resolution. # denotes the volume number of a dataset.

Datasets Mode Dims # Volumes Voxel Size Source

HCPtest [53] T1/T2 260 × 311 × 260 50 0.7 mm HCP

Sim-H [54] T1/T2 217 × 181 × 181 2 1.0 mm Brainweb

Sim-P [54] T1/T2 217 × 181 × 181 4 1.0 mm Brainweb

Set7 (Collected) T1 256 × 256 × 154 7 1.0 mm in vivo

The kernel size of the proposed isoSRN follows the annotation of Figure 1, and we
set the number of 3D CB blocks to 16. The number of feature maps is set to 32, which is
magnified by a factor of 4 in the wide activation [47]. The learnable weighting factors λi
and πi are initialized to 1.0 before model training. We extract 24 × 24 × 24 cubes from LR
volumes with their corresponding HR cubes from HR volumes to train the model. Data
augmentation is completed by flipping up and down, left and right, and back and forth.
We set the batch size to 8 for fast training. The L1 loss function in Equation (7) is minimized
using the Adam optimizer [55] by setting β1 = 0.9, β2 = 0.999 and ϵ = 10−8. The learning
rate is initialized as 2× 10−4 and halved at every 105 iterations, with 4× 105 iterations in total.

4.2. Training Example Generation

Given a HR volume y with isotropic resolution, we generate the corresponding LR
volumes xv, vs. = 1, . . . , V, according to the procedure shown in Figure 3. We utilize three
orthogonal scans for isotropic MRI reconstruction in this paper, therefore, V = 3 here.
Firstly, we downsample the isotropic HR volume y along three orthogonal directions to
generate three LR volumes with anisotropic resolution, which simulates three orthogonal
scans. For downsampling, we apply spline interpolation to fuse multiple slices into one
single slice (weighted average). This simulates the partial volume effect (PVE) that increases
as the slice thickness increases.

https://www.humanconnectome.org/
https://www.humanconnectome.org/
https://brainweb.bic.mni.mcgill.ca/brainweb/
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Subsequently, we upscale these anisotropic volumes to the expected size by the same
interpolation. This implements the upsampling operation Uv in Equation (5). Lastly, these
upsampled LR volumes xu

v are fused into a single LR volume x by simple element-wise
averaging corresponding to the operation “M” in Figure 3 and Equation (5). In this manner,
the LR volume x and HR volume y constitute a pair of samples for model training.

Axial 

Sagittal

Coronal

M

Figure 3. Sample generation. y represents a 3D HR volume with isotropic resolution and x denotes
the corresponding LR volume with isotropic resolution. M is an operation of element-wise averaging.
[d] ↓r and [d] ↑r stand for r-fold downsampling and upsampling along the dimension d, which could
be A (Axial), S (Sagittal), or C (Coronal).

4.3. Evaluations of the Proposed Method

In this subsection, we evaluate the proposed isoSRN model on both simulated and
clinical MR volumes (T1w and T2w) to verify its effectiveness in terms of various scenarios
including scaling factor, noise level, pathology, and the number of orthogonal scans, as
well as testing on in vivo MR data. We compare our isoSRN model with two traditional
methods and a CNN-based method, namely, CubeAvg [4], NLM [56], and SRCNN-3D [20],
respectively, for a comprehensive evaluation.

For a quantitative evaluation, we employ peak signal-to-noise ratio (PSNR), structural
similarity index measurement (SSIM) [57], and image sharpness [58] as evaluation metrics.
We also utilize the geometric self-ensemble [22] to further boost model performance, which
is represented as isoSRN+.

4.3.1. Slice Thickness

In this work, anisotropic LR images are generated by fusing multiple adjacent slices
into a single slice in a weighted-average manner. This process is used to simulate the PVE in
anisotropic acquisition. Typically, it gets stronger as the slice thickness increases [4], which
corresponds to the scaling factor of image SR. To verify the effectiveness of the proposed
isoSRN model under different MR image types and scaling factors, we experiment on
both T1 and T2 data with six scaling factors: ×2∼×7. This indicates that we are going to
reconstruct isotropic HR volumes with voxel size 0.7 mm × 0.7 mm × 0.7 mm from three
orthogonal anisotropic scans with slice thicknesses of 1.4mm, 2.1mm, 2.8 mm, 3.5 mm,
4.2 mm, and 4.9 mm, respectively.

Table 2 exhibits the quantitative comparison between these methods in terms of PSNR
and SSIM. It can be seen that our isoSRN model outperforms other methods by a large
margin for all scaling factors. For instance, compared with CubeAvg [4], the PSNR value of
isoSRN+ on T1w MR data for SR × 2 is 11.68 dB higher. For all the compared methods, we
can observe that PSNR/SSIM values decrease as the scaling factor increases. Nevertheless,
for SR × 7 on T2w data, our isoSRN+ still obtains PSNR/SSIM gains of 7.67 dB/0.0851.

Figure 4 displays three orthogonal slices of the reconstructed T1w MR volume in the
HCPtest dataset when the slice thickness is 3.5mm, i.e., SR × 5. For display purposes, the
anisotropic scans are resampled to the same size as the HR isotropic volume via spline
interpolation. As can be seen, the slices generated by resampling are heavily blurred and
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many details are lost in the 2nd∼4th columns in Figure 4, due to the PVE. However, our
isoSRN and isoSRN+ can produce pleasing visual results with isotropic and high resolution.

Table 2. Performance comparison on HCPtest dataset in terms of different scaling factors (×2∼×7).
The largest values are marked in red, and the second-largest are marked in blue (PSNR (dB)/SSIM).
Both T1- and T2-weighted MR volumes are included here.

Methods Type SR × 2 SR × 3 SR × 4 SR × 5 SR × 6 SR × 7

CubeAvg [4]

T1

45.61/0.9937 40.19/0.9803 37.45/0.9648 35.66/0.9482 34.22/0.9292 33.29/0.9130
NLM [56] 46.44/0.9949 40.95/0.9834 38.42/0.9716 36.35/0.9559 34.85/0.9329 33.72/0.9220

SRCNN3D [20] 53.10/0.9986 45.66/0.9928 42.20/0.9850 39.87/0.9754 38.14/0.9646 36.86/0.9538
isoSRN [Ours] 57.19/0.9993 49.35/0.9965 46.23/0.9933 44.33/0.9901 42.84/0.9866 41.78/0.9834

isoSRN+ [Ours] 57.29/0.9993 49.46/0.9966 46.34/0.9934 44.44/0.9903 42.95/0.9869 41.92/0.9838

CubeAvg [4]

T2

41.01/0.9920 35.58/0.9736 33.10/0.9543 31.53/0.9345 30.25/0.9121 29.41/0.8932
NLM [56] 41.77/0.9935 36.36/0.9784 33.99/0.9632 32.11/0.9437 30.77/0.9235 29.77/0.9036

SRCNN3D [20] 49.29/0.9985 40.91/0.9909 37.23/0.9800 34.86/0.9662 33.12/0.9507 31.94/0.9360
isoSRN [Ours] 55.02/0.9994 45.51/0.9961 41.91/0.9919 39.77/0.9875 38.13/0.9825 36.91/0.9776

isoSRN+ [Ours] 55.19/0.9994 45.66/0.9962 42.05/0.9921 39.92/0.9878 38.28/0.9829 37.08/0.9783

Resampled

Sagittal Scan 

Resampled

Axial Scan

Resampled

Coronal Scan  
isoSRN isoSRN+Ground Truth

31.93 / 0.924431.68 / 0.9206 30.91 / 0.9076 44.27 / 0.9923 44.39 / 0.9925PSNR / SSIM

Figure 4. The visualization of the proposed isoSRN on a T1 volume in HCPtest (SR × 5, slice
thickness = 3.5 mm). Top to bottom: Axial, Coronal, and Sagittal views. The 2nd to 4th columns are
resampled scans through spline interpolation. The best result is marked in red, and the second-best
is marked in blue.

4.3.2. Noise Power

In MRI, raw data is intrinsically complex-valued and usually corrupted with zero
mean Gaussian noise with equal variance [59]. After inverse Fourier transformation,
MR magnitude data has been shown to be Rician distributed [58]. Since Rician noise is
commonly found in MR images, it is important to study the influence of noise on model
performance. To this end, we simply add (Note that Rician noise is not additive but
data-dependent [58], here “add” just means to make the MR magnitude data be Rician-
distributed). Rician noise with σ = 0, 5, 10, 15, 20, and 25 to anisotropic scans xv, and train
the models with noise-free labels. Therefore, the proposed isoSRN model still works in an
end-to-end manner without additional denoising steps when dealing with noisy samples.

Table 3 shows the reconstruction accuracy of the compared methods on the simulated
dataset Sim-H, which contains two volumes representing T1w and T2w data of a healthy
subject in the BrainWeb dataset. It can be observed that the proposed isoSRN (or isoSRN+)
model greatly surpasses the traditional methods at all noise levels. For instance, in the case
of Rician noise level σ = 5 and slice thickness = 3.5 mm (SR × 5), the isoSRN+ achieves a
significant PSNR/SSIM improvement of 10.79 dB/0.093 relative to CubeAvg. Even with
a large Rician noise power, e.g., σ = 20 or 25, the superiority of the proposed isoSRN
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model over other methods is still remarkable. Another observation in Table 3 is that the
reconstruction accuracy of all methods decreases as the noise power increases. This is easy
to understand because the increased noise power makes image degradation more serious
and the reconstruction problem of MRI images more difficult.

Table 3. Performance comparison on the Sim-H dataset in terms of Rician noise power (σ = 0 ∼ 25).
The largest values are marked in red, and the second-largest are marked in blue (PSNR (dB)/SSIM).

Rician Noise Scale σ = 0 σ = 5 σ = 10 σ = 15 σ = 20 σ = 25

CubeAvg [4]

SR × 5

26.50/0.9206 26.45/0.8979 26.30/0.8546 26.07/0.8184 25.77/0.7902 25.43/0.7668
NLM [56] 27.21/0.9352 27.17/0.9142 27.05/0.8739 26.86/0.8413 26.62/0.8166 26.33/0.7966

isoSRN [Ours] 37.80/0.9923 36.86/0.9899 36.18/0.9882 35.67/0.9856 35.21/0.9828 34.81/0.9810
isoSRN+ [Ours] 38.02/0.9929 37.24/0.9909 36.65/0.9894 36.15/0.9873 35.70/0.9841 35.29/0.9829

CubeAvg [4]

SR × 7

23.68/0.8500 23.59/0.8294 23.52/0.7899 23.41/0.7567 23.26/0.7307 23.08/0.7089
NLM [56] 24.07/0.8668 24.05/0.8477 24.00/0.8127 23.92/0.7839 23.81/0.7615 23.67/0.7434

isoSRN [Ours] 33.43/0.9789 32.75/0.9760 32.34/0.9729 32.05/0.9688 31.81/0.9666 31.51/0.9627
isoSRN+ [Ours] 33.68/0.9809 33.24/0.9788 32.83/0.9755 32.60/0.9722 32.33/0.9701 32.05/0.9662

4.3.3. Pathology

To study the reconstruction performance of the proposed isoSRN model on pathologic
scans, we collected a multiple sclerosis (MS) dataset Sim-P extracted from the BrainWeb dataset,
which contains four volumes with normal, mild, moderate, and severe MS, respectively.

The quantitative performance of the compared methods on this dataset is shown in
Table 4. Note that these results are obtained by testing the model trained with HCP data
directly on the Sim-P dataset. We can observe that our isoSRN+ model still outperforms
traditional methods significantly, e.g., for SR × 2 on T1w data, the PSNR of the isoSRN+ is
12.65 dB higher than that of the CubeAvg [4], which is a large increment. Even with a large
slice thickness of 4.9 mm, the increment still reaches 10.60 dB. Similar results can also be
observed in the T2w data.

Table 4. Quantitative performance of the compared methods on the simulated pathologic dataset
Sim-P, which contains four MR volumes with four different degrees of multiple sclerosis and two
image types T1w and T2w. The largest values are marked in red, and the second-largest are marked
in blue (PSNR (dB)/SSIM).

Methods Type SR × 2 SR × 3 SR × 4 SR × 5 SR × 6 SR × 7

CubeAvg [4]

T1

44.10/0.9977 37.46/0.9901 33.44/0.9760 30.65/0.9557 28.75/0.9329 27.17/0.9043
NLM [56] 44.39/0.9980 38.04/0.9921 34.32/0.9816 31.52/0.9642 29.55/0.9444 27.73/0.9151

SRCNN3D [20] 51.23/0.9995 43.47/0.9970 38.31/0.9903 35.11/0.9799 32.71/0.9650 30.56/0.9421
isoSRN [Ours] 56.58/0.9998 48.93/0.9990 44.79/0.9977 41.91/0.9953 39.71/0.9921 37.47/0.9868

isoSRN+ [Ours] 56.75/0.9998 49.14/0.9991 45.00/0.9978 42.12/0.9956 39.96/0.9925 37.77/0.9878

CubeAvg [4]

T2

44.10/0.9977 37.46/0.9901 33.44/0.9760 30.65/0.9557 28.75/0.9329 27.17/0.9043
NLM [56] 44.39/0.9980 38.04/0.9921 34.32/0.9816 31.52/0.9642 29.55/0.9444 27.73/0.9151

SRCNN3D [20] 50.97/0.9995 43.11/0.9969 38.24/0.9907 34.96/0.9789 32.67/0.9638 30.39/0.9407
isoSRN [Ours] 55.98/0.9998 48.54/0.9991 44.33/0.9975 41.49/0.9950 39.31/0.9916 37.01/0.9858

isoSRN+ [Ours] 56.18/0.9998 48.75/0.9991 44.56/0.9976 41.71/0.9953 39.57/0.9920 37.31/0.9867

Figure 5 shows the reconstruction results of the proposed model over the simulated
severe MS T1w volume, accompanied by the anisotropic scans. The red arrows indicate the
locations of multiple sclerosis in different views. Similar to other structures in the image,
the sclerosis can easily become blurred and obscured in the thick-slice scans, making it
difficult to distinguish from other structures. However, in the results using our models,
these lesions are satisfactorily recovered with an appearance close to the ground truth, as
shown in the last two columns of Figure 5.
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Resampled

Sagittal Scan 

Resampled

Axial Scan

Resampled

Coronal Scan  
isoSRN isoSRN+Ground Truth

28.81 / 0.939630.36 / 0.9519 30.46 / 0.9532 44.79 / 0.9976 45.00 / 0.9978PSNR / SSIM

Figure 5. Top to bottom: Axial, Coronal, and Sagittal views of a simulated multiple sclerosis T1
volume in Sim-P (SR×4, slice thickness = 2.8mm). The best result is marked in red, and the second-
best is marked in blue.

4.3.4. The Number of Input Scans

Similar to [4,16], in this section, we also investigate the influence of the number of
input scans on the performance of the proposed method. To this end, we train the proposed
model with different combinations of three orthogonal scans. When the number of input
scans is equal to 1, the input x of the model is equivalent to the simple spline interpolation
of the original LR scans. Once the models are well-trained, they are tested on two simulated
datasets, Sim-H and Sim-P (T1w), with scaling factor SR × 3. Figure 6a shows the validation
curves when training the models with different numbers of input scans. It can be seen that
the model converges rapidly and stably in all cases. An obvious observation is that model
performance remains basically at the same level when the input scan number is the same
(1 or 2), but it is improved significantly when the number of input scans increases. We can
also make the same observation about the testing results shown in Figure 6b,c.

It is worth noting that, unlike traditional optimization-based methods (e.g., [4,16], the
time efficiency of our method is not affected by the number of inputs due to the end-to-end
feature. For an input with a size of 260 × 311 × 260, the running time of the isoSRN model
is about 40 s with the support of a single NVIDIA GeForce GTX 1080 Ti GPU. However, the
method described in [4] takes more than 10 min to perform a complete reconstruction from
three orthogonal scans.
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(c) Testing results on Sim-P

Figure 6. The influence of the number of input anisotropic LR scans (T1, SR×3). When there is only
one input scan, e.g., A, C, or S, CubeAvg is equivalent to simple spline interpolation. A: Axial scan;
C: Coronal scan; S: Sagittal scan.

4.4. Comparison with Other Methods

To fully compare the proposed method with other advanced methods, we introduce
two other comparative models: ReCNN [41] and VDSR3D [23]. The former is a residual
network with 10 Conv+ReLU units that uses a framework similar to ours. The latter is an
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extension of VDSR [23] based on the framework of the proposed solution. We introduce
these methods for comprehensive comparison since they are easy to reproduce and have a
similar scale of parameters to our isoSRN.

4.4.1. Evaluation on In Vivo Data

To verify the generalization of our isoSRN to other data, we also present the compara-
tive results on an in vivo dataset, Set7, as shown in Table 5. Although Set7 is derived from
imaging hardware, the subjects, parameters, and environment are totally different from
the HCP training samples [53], our isoSRN still works well and surpasses the compared
methods by a large margin. For instance, the proposed isoSRN and isoSRN+ produce
10.11 dB and 10.23 dB PSNR gains relative to the baseline CubeAvg [4] for SR × 2. Even
for large scaling factors, e.g., SR × 7, the performance increment is still up to 7.44 dB and
7.56 dB, respectively. This fully illustrates the good adaptability of the proposed method to
in vivo data.

Table 5. Performance comparison on Set7 dataset in terms of different scaling factors (×2∼×7). The
best values are marked in red, and the second-best are marked in blue (PSNR (dB)/SSIM).

Methods Type SR × 2 SR × 3 SR × 4 SR × 5 SR × 6 SR × 7

CubeAvg [4]

T1

43.12/0.9927 38.23/0.9797 35.75/0.9656 34.07/0.9499 32.84/0.9334 32.07/0.9200
NLM [56] 44.62/0.9946 39.03/0.9825 36.65/0.9716 34.63/0.9559 33.34/0.9414 32.29/0.9266

SRCNN3D [20] 49.58/0.9980 42.96/0.9913 39.75/0.9828 37.55/0.9720 35.93/0.9599 34.79/0.9481
ReCNN [41] 52.46/0.9988 46.18/0.9953 43.22/0.9913 41.18/0.9866 39.59/0.9809 38.46/0.9752
VDSR3D [23] 52.42/0.9988 46.38/0.9955 43.50/0.9917 41.52/0.9875 39.95/0.9822 38.88/0.9773

isoSRN [Ours] 53.23/0.9990 46.76/0.9958 43.90/0.9924 42.04/0.9887 40.56/0.9843 39.51/0.9802
isoSRN+ [Ours] 53.35/0.9991 46.87/0.9960 44.02/0.9926 42.16/0.9890 40.68/0.9847 39.63/0.9806

Figure 7 displays the visual comparison between these methods on an in vivo volume
from Set7, for SR × 7. We can clearly see the remarkable visual superiority of deep learning
methods to traditional methods. Meanwhile, Figure 8 shows the residuals between the
results of the compared methods and the ground truth, where we can observe that our
proposed models present a better approximation to the ground truth. This conclusion
is also demonstrated by the quantitative results annotated below the clipped images in
Figure 7.
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SRCNN3D
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Figure 7. Visual comparison between the compared methods on the in vivo dataset Set7 for SR×7.
The best result is marked in red, and the second-best is marked in blue. Top to bottom: Sagittal, Axial,
and Coronal views.
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CubeAvg NLM SRCNN3D ReCNN VDSR3D isoSRN isoSRN+Volume ID = 6

Figure 8. Visualization of the residuals between reconstruction results of different methods and the
ground truth, corresponding to Figure 7. Higher pixel intensity indicates a larger difference between
the reconstruction and ground truth (SR×7). Top to bottom: Sagittal, Axial, and Coronal views.

4.4.2. Running Time

Our solution for isotropic resolution MRI reconstruction is an end-to-end mapping
with three orthogonal anisotropic scans as inputs. Therefore, the running time of the
entire model involves two parts: fusion of isotropic LR volume x from three anisotropic
volumes {xv}3

v=1 and SR inference of isotropic volumes y. Furthermore, the first part
actually corresponds to the baseline CubeAvg [4]. Figure 9 compares the tradeoff of these
methods on HCPtest (T1) for three scaling factors. The results are collected with an Omnisky
workstation equipped with 64 GB memory, two Intel Xeon E5-2630 CPUs (2.20 GHz), and
four NVIDIA GeForce GTX 1080 Ti GPUs. Note that we only consider the running time of
SR inference for NLM [56], SRCNN3D [20], ReCNN [41], VDSR3D [23], and our isoSRN.

It can be seen that although our isoSRN runs slightly slower than other deep-learning-
based methods, it is noticeably faster than the traditional method NLM [56]. Because our
isoSRN performs significantly better than other compared methods (see Tables 2–5), it
provides a better compromise between model performance and running efficiency. More-
over, we can also see that as the input gets larger, the efficiency advantage of end-to-end
mapping over traditional methods becomes more obvious. It can be also seen that the
running efficiency of SR inference is independent of SR scaling factors.
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Figure 9. Inference time versus model performance on HCPtest dataset (T1). Note that except
CubeAvg [4], we only collect the inference time for the mapping from x to y and exclude the time for
fusing xv(v = 1, 2, 3) to x.

5. Discussion and Future Work
5.1. Comparative Methods

In the proposed method, we need to acquire three orthogonal LR scans and upsample
them with spline interpolation; thus, it is hard to make a fair comparison between our
isoSRN model and LRTV [60], which recovers isotropic HR volumes directly from 3D
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LR volumes. Furthermore, we cannot compare our approach with [4,16] because the
authors did not release the source code of their methods. Intuitively, however, the proposed
isoSRN model can perform better than [4,16] in that it performs end-to-end mappings
with some operations in the pipeline of [4,16] implicitly included in the optimization, e.g.,
patch extraction and image recovery. In addition, the techniques utilized in [4,16] can be
substantially viewed as shallow learning models [20] that have limited representational
capacity. Conversely, due to iterative optimization in the implementation, the methods
described in [4,16] should be much slower than our model.

5.2. Multiple and Fractional Scales

In real MRI scenes, the ratio of in-plane resolution to that of slice-select direction can
be arbitrary, even fractional. How then does a single CNN model deal with this case?
In fact, the CNN can be “taught” to do this by simply fusing the corresponding training
samples into the training set [9,23]. In the pipeline of our isoSRN model, this is easy to
implement because we upsample LR volumes with spline interpolation before feeding
them into the network and conduct nonlinear inference in the HR image space. In image
SR, performing nonlinear inference in LR feature space helps to improve the training and
inferring efficiency, but it is inconvenient in the case of multiple and fractional scaling
factors. In this regard, the element-wise average (i.e., “M” in Figure 3 and Equation (5))
used to fuse multiple orthogonal scans is more friendly to practical applications due to its
simplicity and easy implementation.

5.3. Generalization to Other Data

As described in Section 4.1, the proposed model is trained with 100 HCP
samples [53], while tested on four datasets as shown in Table 1. Except in the case of
HCPtest [53], the datasets have very different imaging conditions from those of the training
data. In Section 4, however, we can observe a consistent improvement in the performance
of the proposed isoSRN, which demonstrates its favorable generalization to different types
of datasets. This also reveals the great representational capacity of deep models, and
the ease of use in practical applications when considering the convenience of automatic
feature extraction.

5.4. Extension to Real-World Scenarios

Three orthogonal scans of the subject are required to obtain three anisotropic volumes
xv(v = 1, 2, 3) when deploying our framework in practical applications. The critical issue
is how to fuse xv accurately to generate LR volume x with isotropic resolution for SR
inference. However, due to the discrepancies in brightness, contrast, and displacement
between {xv}3

v=1, it is a challenging problem in itself to accurately fuse these LR volumes.
An intuitive solution is to calibrate and correct these LR volumes before element-wise
averaging but possibly with low accuracy. Another manner may be building a multi-branch
network that takes anisotropic LR volumes {xv}3

v=1 as inputs and generates the fused LR
volume x, or directly produces HR volume y. In future work, we will delve into these
scenarios and drive the practical deployment of the solution.

6. Conclusions

This paper presents an end-to-end method based on deep 3D CNNs for reconstructing
an HR volume with isotropic resolution from multiple anisotropic LR acquisitions. With
the effective characterization of structural features in 3D space by deep 3D CNNs and
the complementary information provided by orthogonal scans, the proposed isoSRN
can surpass traditional methods by a large margin, as shown by our qualitative and
quantitative experiments. Moreover, because it works in an end-to-end manner and does
not require manual feature extraction, it is more practical and clinically flexible than
traditional methods like NLM [56], sparse representation, and dictionary learning [4,16].
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In this study, we presented a preliminary study of the application of CNNs in MRI
fusion and isotropic reconstruction. Similar methods can be extended to other MRI appli-
cations, such as fMRI, dynamic cine MRI, etc., through high-dimensional convolutional
models to capture spatio-temporal features, promoting subsequent diagnosis and computer-
aided analysis of these MRI data.
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