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Abstract: The cost of hyperspectral image (HSI) classification primarily stems from the annotation
of image pixels. In real-world classification scenarios, the measurement and annotation process is
both time-consuming and labor-intensive. Therefore, reducing the number of labeled pixels while
maintaining classification accuracy is a key research focus in HSI classification. This paper introduces
a multi-strategy triple network classifier (MSTNC) to address the issue of limited labeled data in HSI
classification by improving learning strategies. First, we use the contrast learning strategy to design a
lightweight triple network classifier (TNC) with low sample dependence. Due to the construction of
triple sample pairs, the number of labeled samples can be increased, which is beneficial for extracting
intra-class and inter-class features of pixels. Second, an active learning strategy is used to label the
most valuable pixels, improving the quality of the labeled data. To address the difficulty of sampling
effectively under extremely limited labeling budgets, we propose a new feature-mixed active learning
(FMAL) method to query valuable samples. Fine-tuning is then used to help the MSTNC learn
a more comprehensive feature distribution, reducing the model’s dependence on accuracy when
querying samples. Therefore, the sample quality is improved. Finally, we propose an innovative
dual-threshold pseudo-active learning (DSPAL) strategy, filtering out pseudo-label samples with
both high confidence and uncertainty. Extending the training set without increasing the labeling
cost further improves the classification accuracy of the model. Extensive experiments are conducted
on three benchmark HSI datasets. Across various labeling ratios, the MSTNC outperforms several
state-of-the-art methods. In particular, under extreme small-sample conditions (five samples per
class), the overall accuracy reaches 82.97% (IP), 87.94% (PU), and 86.57% (WHU).

Keywords: hyperspectral image (HSI) classification; small-sample; triplet network classifier (TNC);
feature mixture based active learning (FMAL); dual-strategy pseudo-active learning (DSPAL)

1. Introduction

Hyperspectral images (HSIs) present rich and unique spatial and spectral features in a
three-dimensional cubic data structure. As one of the key technologies for observation and
exploration in the 21st century, HSI methods have been applied in several crucial fields,
such as environmental monitoring [1], land cover evaluation [2], and ocean monitoring [3].
In addition, HSIs also play a significant role in the military field, such as camouflage
recognition [4], battlefield space information acquisition [5], differentiation of target and
decoy [6], detection of weapons of mass destruction [7], and monitoring of international
treaty compliance [8]. HSIs can also play a significant role at different frequency ranges,
like X-ray, ultraviolet, visible and near-infrared, and terahertz [9–13].

In these applications, HSI’s multiband spectral resolution provides valuable spectral
data support for various industries, significantly improving the accuracy of analysis and
decision making. However, the classification of HSIs remains a primary challenge, making
HSI classification a continuous research hotspot within the academic community. Especially
in the case of limited training samples, classification performance can easily decrease.
Meanwhile, the original HSI is often affected by the spectral changes caused by sensor
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noise and environmental conditions [14,15]. Therefore, how to intelligently construct a
streamlined training set with limited training data and effectively handle the large-scale or
complex feature space constitutes a key problem.

Earlier studies focused on the spectral features of the pixels, covering support vec-
tor machines (SVMs) [16], K-nearest neighbors [17], polynomial logistic regression [18],
sparsity algorithms of object recognition [19], etc. However, since ground targets are
usually spatially continuous, there is strong spatial correlation between adjacent pixels
in hyperspectral images. Fu et al. [20] generated joint spectral–spatial features, while
Mu et al. [21] performed feature extraction in the spectral and spatial domains separately
with two-branch networks. The spectral and spatial processing in these methods is con-
ducted independently, ignoring the joint dependence of spectral and spatial information.
Fu et al. [22] introduced tensor singular spectral analysis (TensorSSA) to extract global and
low-rank features of HSI, while Dai et al. [23] proposed a smart-HOSVD method for 3D
feature extraction in HSI. These methods have yielded promising results in classifying HSIs
with small sample sizes. However, the above methods require manual selection and design
of key spectral–spatial features to train the model.

In recent years, the development and application of deep learning have propelled the
widespread use of convolutional neural networks (CNNs) in areas such as image classifica-
tion and semantic segmentation [24–26]. Compared to traditional methods, deep learning
methods exhibit strong advantages that do not require complex hand-crafted feature en-
gineering or much prior knowledge. Hu et al. [27] were pioneers in using convolutional
neural networks for HSI classification. One-dimensional CNNs (1D-CNNs) can perform
convolution operations along the spectral dimension, effectively capturing the correlations
and features between bands. However, since ground targets are usually spatially continu-
ous, there is a strong spatial correlation between adjacent pixels in hyperspectral images.
However, the method only considers spectral information while ignoring the potential role
of spatial information.

As research in deep learning progressed, researchers designed and adopted 2D-
CNNs [28], which typically excel at capturing spatial variations between pixels. Nev-
ertheless, 2D-CNNs do not fully leverage the abundant spectral information available
in HSIs. To overcome this limitation, G. Cheng [29] developed a robust spectral–spatial
feature representation by fusing spectral features with deep spatial features. Still, 3D-CNNs
are more favored as they utilize 3D convolutional kernels to jointly capture spectral and
spatial information. This innovative and effective method promptly garnered interest.
The HSI cube data extraction approach, implemented using a 3D neural network, does
not necessitate any pre-processing to extract its inherent spectral–spatial characteristics.
Paoletti et al. [30] presented two separate CNN architectures: one designed for extracting
spatial characteristics and the other for extracting spectral characteristics. Zhong et al. [31]
introduced a spectral–spatial residual network (SSRN) for learning spectral–spatial repre-
sentations and employed supervised 3D deep learning for HSI classification. This approach
effectively addresses the issue of accuracy deterioration by utilizing consecutive blocks of
spectral and spatial residuals. These methods successfully extracted spatial and spectral
characteristics and achieved advancements in HSI classification. However, there are still
hurdles in terms of effectively utilizing the information. This is because the spatial resolu-
tion and spectral resolution in HSI data are inconsistent, leading to potential inconsistencies
in the perception capabilities of the 3D convolutional kernel at different scales, which affects
classification performance. To alleviate this issue, Roy et al. [32] introduced a hybrid spectral
CNN model called HybridSN. The HybridSN model integrates the advantages of 3D-CNNs
and 2D-CNNs, effectively learning spatial and spectral features in hyperspectral images.
The 3D-CNN is responsible for the initial extraction of spatial–spectral joint features, while
the 2D-CNN further abstracts high-level spatial features. In this way, the classification
performance of the hybrid convolutional neural network model is enhanced, and compared
to using a 3D-CNN alone, the network complexity is reduced, and classification accuracy is
improved. Yu et al. [33] introduced a contrastive GCN (ConGcn) that improves contrast
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learning performance by incorporating a spectral space prior. This enhances the expres-
sive power of the generated representation and thus improves the classification results.
Xue et al. [34] introduced a network architecture for a spectral–spatial Siamese network
(S3-Net) involving feeding features of different sizes separately into the network. They
employed a weighted loss function to enable the model to learn more features when faced
with limited samples. While the above-mentioned methods have achieved excellent results,
the imbalance between positive and negative sample pairs can impact both the convergence
speed and classification performance of the model. Subsequently, Xue et al. introduced
a differentiated-scale restricted graph convolutional network (DSR-GCN) [35], building
upon S3-Net, to address the issue of missing pixel features caused by sample imbalance.
The accuracy of DSR-GCN was remarkable.

Although these methods have achieved great success in hyperspectral image classifi-
cation, their accuracy heavily depends on a large number of labeled samples.

For HSI classification, the dataset consists of a single hyperspectral image. A portion
of the pixels is used as the training set, while the remaining pixels (excluding background
and irrelevant areas) serve as the test set.

Pixel-level labeling of HSI involves complex calibration calculations and substantial
manual labor, potentially damaging the original features of land cover during extensive
labeling. Labeling specific classes requires expert knowledge for accuracy. Current HSI
classification algorithms heavily rely on labeled data, and obtaining sufficient labeled data
is costly, significantly limiting practical applications. Thus, researching HSI classification
with small samples will greatly reduce application costs, lay the foundation for expanding
hyperspectral image technology applications, and have significant practical implications.

Liu et al. [36] proposed a deep convolutional neural network model for classifying
hyperspectral images with few samples. The training strategy of the model is to gradually
increase the number of samples in each class by 5 samples at a time, with the total number
of samples ranging from 5 to 25. This approach aims to enhance the learning capability of
the model with small batches of data to address the classification challenges in the case
of a limited number of samples. Sun et al. [37] introduced an adversarial representation
module to extract spectral and spatial features, replacing feature fusion approaches with
class consistency. Zhang et al. [38] proposed graph information aggregation cross-domain
few-shot learning (Gia-CFSL) to solve the problems of differences in spatial and spectral
resolutions of different sensors and differences in the same land cover category. It performs
FSL and domain alignment under the condition that all labeled samples are available
in the source data and a few labeled samples are available in the target data. These
methods consider the issue of HSI small-sample classification from different perspectives
and propose various solutions to address the problem.

In the case of small-sample classification, contrastive learning [39] and active learn-
ing [40] are considered by scholars to be important methods for improving classification
accuracy. Common contrastive learning methods include Siamese networks [41], triplet
networks [42], SimCLR [43] (simple framework for contrastive learning of visual represen-
tations), and MoCo [44] (momentum contrast). Zhao et al. [45] developed a two-branch
concatenated network with common parameters to acquire knowledge about the distinc-
tions among various attributes. Cao et al. [46] introduced a contrast learning approach for
a 3D convolutional Siamese network to address the challenge of HSI classification when
there is a lack of appropriate data. By integrating contrast learning with conventional
label-based supervised learning, the labels are effectively utilized in conjunction with
the inherent information present in the data. Jia et al. [47] introduced a semi-supervised
Siamese network called 3DAES. This network combines an autoencoder module with a
Siamese network to analyze the information contained in a substantial volume of unlabeled
data, rectifying it using a small collection of labeled samples. Corrections can effectively
mitigate numerous issues arising from limited training data.

Active learning is a method that involves selecting the most valuable samples from an
unlabeled dataset for labeling. These samples are typically the ones about which the model
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is most uncertain, most representative, or most important to the classification boundary.
By labeling these samples, the benefit of each labeling effort is maximized, improving the
model’s learning efficiency and classification accuracy [48–50]. Active learning algorithms
commonly employed in remote sensing include disconnection [51], normalized entropy [52],
uncertainty sampling [53], and marginal sampling [54]. In HSI classification, a significant
number of labeled samples may be redundant and unnecessary. Through active learning, it
is possible to reduce annotation costs [55]. Haut [56] designed a Bayesian convolutional
neural network (B-CNN); this method performs active learning on the proposed B-CNN
based on a three-step training phase, thereby addressing the difficulties caused by high-
dimensional data and overfitting.

In small-sample HSI classification, the limited size of the training sample set often
restricts the classification model due to insufficient information, which leads to inaccurate
model classification results [57]. Model training errors subsequently influence sample
query strategies, which results in the selection of suboptimal candidate samples based on
misclassification information. Lei et al. [58] introduced a novel rank learning loss function
into an active learning model, forming an uncertainty predictor, and achieved end-to-end
uncertainty learning. Wang et al. [59] introduced a dual-branch domain adaptation few-
shot learning (DBDAFSL) method to transfer knowledge obtained from a source domain to
a completely different target domain efficiently. Wang et al. [60] proposed a collaborative
active learning (CAL) scheme that takes into account the uncertainty and diversity of
actively selected samples, as well as the cost of expert annotations.

While the aforementioned models have achieved positive results in the field of HSI
classification, the crucial challenge remains in leveraging a limited amount of training
sample data to extract deep feature information effectively and enhance classification
accuracy. Our goal is to address the issue of decreased prediction accuracy in scenarios with
few or extremely few samples. We recognize that models struggle to learn complete features
from a limited number of training samples, leading to prediction biases. Therefore, on the
one hand, we leverage contrastive learning and pseudo-active learning to fully explore the
type features of both labeled and unlabeled samples. On the other hand, we focus on the
quality of training samples by employing active learning methods to query representative
samples, helping the model learn comprehensive features. We designed a novel multi-
strategy triplet network classifier (MSTNC) in this study. This multi-strategy learning
method optimizes multiple related tasks simultaneously, leveraging shared information
between tasks to improve the model’s generalization ability and classification performance.
Inspired by [42], we first designed a triplet network classifier as the backbone, which
includes contrastive and classification modules, with the TNC used for model fine-tuning
and classification.

Secondly, we consider ways to improve the classification accuracy of the model without
increasing the cost of sample labeling from the perspective of the training strategy. To
address the limitation that traditional active learning only considers the sample values on
one side of the decision boundary, inspired by [61], a feature-mixture-based active learning
(FMAL) method is proposed. This approach aims to explore more valuable samples,
enabling the model to learn richer and more detailed features.

Finally, a dual-strategy pseudo-active learning method is proposed to screen out
samples with high accuracy and diversity, which can provide more feature information for
the model and effectively compensate for the lack of samples in the training set. Regarding
the pseudo-active learning method, we provide a detailed introduction in Section 3.4.

Through the joint training of these strategies, the small-sample hyperspectral image
classification method can fully utilize the potential of data and models, improve classifica-
tion accuracy and robustness in situations with extremely limited samples, and overcome
the limitations of traditional methods in small-sample environments.

The main contributions of this article are summarized as follows:

(1) Addressing the challenge of HSI classification with small samples and multiple classes,
we employ a composite three-input neural network structure to enhance the capability
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of capturing intra-class and inter-class features. This method expands the triple
sample pair to optimize the model’s classification performance. The triplet network
composed of the three-input neural network, projection head, and classifier is used as
the backbone for feature extraction and classification tasks.

(2) In this paper, a novel active learning method based on feature mixing is proposed.
By blending certain features of labeled samples into unlabeled samples, the predicted
changes in the mixed samples can reveal new features in the unlabeled samples. With
FMAL, the dependence of sample selection on the quality of the initial model is reduced;
thus, representative samples with high information richness are selected. Analytical
experiments verify that our method is more effective than the classical methods.

(3) We propose a dual-strategy pseudo-active learning method. Two filters were used to
select valuable samples in unannotated samples as pseudo-samples. The two filters
adopt different filtering strategies, and the aim is to identify samples with both certain
confidence and certain new features. Pseudo-samples are added to the training set,
enriching it to improve the accuracy of the model without increasing the labeling
costs. The results show that compared with several existing state-of-the-art methods,
the MSTNC strategy enhances the overall accuracy in the three generic datasets
by 8.34–28.22%, 2.34–12.19%, and 7.07–23.66%, respectively, under the condition of
limited training samples (five samples per class).

The remainder of this paper is organized as follows. Section 2 introduces the basic
concepts of the triplet network and features mixture-based active learning as well as pseudo-
active learning methods. A detailed description of the proposed MSTNC model and the
sample construction process is provided in Section 3. In Section 4, a series of elaborately
designed experiments validate the effectiveness and necessity of the strategies employed in
the proposed model. Section 5 provides a discussion about the proposed method. Finally,
Section 6 summarizes the conclusions and provides prospects for future research.

2. Related Work
2.1. Triplet Network

Triplet network (TN) models [42] are primarily applied in situations where there are
numerous (or uncertain) sample classes; at the same time, the number of samples in the
training dataset is limited (this is exactly the problem facing HSI classification). The TN
comprises three identical feed forward networks (with shared parameters). The input
consists of a triplet composed of three different samples: a reference sample (x), a sample
from the same class (x−), and a sample from a different class (x+). Their relationship is
represented by the Euclidean distance. The training parameters bring x closer to x+ and
away from x−, thus enabling the classification task. Triplet loss is expressed as follows:

L = max(d(x, x+)− d(x, x−) + margin, 0),

where d(·) represents the Euclidean distance.
This similarity-based approach allows for a more detailed characterization of dif-

ferences between different classes without increasing the number of labeled samples.
Consequently, it facilitates better capture of both intra-class and inter-class features. Florian
Schroff et al. [62] used the triplet network for the face recognition system. Chengliang
Liu et al. [63] used the triplet network for tactile grasp outcomes prediction.

In this study, we applied the TN to the field of HSI classification and enriched the TN
structure by integrating the TN and the classifier into a framework that mainly consists
of an encoder, a classifier, and a projection head. The data dimension of hyperspectral
images is extremely high and contains a lot of redundant information. The encoder maps
high-dimensional data to a lower dimensional latent feature space through the multi-layer
structure of deep neural networks. This can not only effectively reduce the dimensionality
of the data but also improve the performance of the classifier by learning to capture
high-order feature representations in spectral and spatial information. The main purpose
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of the projection head is to map feature vectors from a high-dimensional feature space
to another target space (usually a low-dimensional space). In the process of contrastive
learning, the projection head can project the feature vector into a new space to perform
more effective feature comparison in the training phase to improve, in turn, the model’s
ability to extract potential features. A small number of labeled samples can be used to
create a large number of triple training samples, expanding the training set. Projection
head contrastive training and classifier classification training are performed alternately so
that the model can learn richer feature representations so as to maximize the classification
accuracy of the model.

2.2. Active Learning

Active learning is a method that involves selecting the most valuable samples from an
unlabeled dataset for labeling. These samples are typically the ones about which the model
is most uncertain, most representative, or most important to the classification boundary.
By labeling these samples, the benefit of each labeling effort is maximized, improving the
model’s learning efficiency and classification accuracy [64–66]. Ajay J et al. [67] proposed
an uncertainty measure that generalizes margin-based uncertainty to the multi-class case
and is easy to compute. Because this approach relies on both the best guess and the second-
best guess, it is referred to as the best and suboptimal (BvSB) method. If the probability
difference between the best and second-best categories for a sample is small, it means that
the classifier is highly uncertain about this sample, indicating that it has a higher value for
labeling. This is a commonly used classic active learning method.

Cao [68] integrated the best-versus-second-best (BvSB) method with a CNN into a
framework, leveraging the CNN’s powerful feature extraction ability and the annotation
efficiency of active learning.

Despite the effectiveness of the above method, it is still difficult when applied to deep
neural networks, high-dimensional data, and low-data states. It remains to be explored
whether active learning methods based on posterior probability can identify truly valuable
samples under the premise of minimum labeling cost.

Amin Parvaneh et al. [61] introduced an active learning method called ALFA-Mix,
which constructs interpolations between the representations of labelled and unlabeled
samples and then examines the predicted labels. This method identifies unlabeled samples
with sufficiently distinct features by seeking inconsistencies in predictions resulting from
interventions on their representations.

Specifically, the following conclusions and methods are presented:

1. The characteristics of the latent space play a crucial role in identifying the most
valuable samples to be labeled.

2. The model’s incorrect predictions mainly stem from novel “features” in the input that
are not recognizable.

3. Interpolation between the representations of unlabeled and labeled instances is
adopted to achieve sampling of new instances, without explicitly modeling the joint
probability of labeled and unlabeled instances [69–72].

4. The model predicts the loss of the pseudo-label of an unlabeled instance at its interpo-
lation with a labelled one. By utilizing losses, it is possible to calculate which features
are novel to the model.

In small-sample HSI classification, the limited size of the training sample set often
restricts the classification model due to insufficient information, which leads to inaccurate
model classification results [73]. Model training errors subsequently influence sample
query strategies, resulting in the selection of suboptimal candidate samples based on
misclassification information. To address the challenges of small-sample HSI classification,
this paper draws on the theories and methods and introduces a feature-mixing-based active
learning (FMAL) method. We refer to the feature vectors output by the encoding layer as
encoding-layer features. Encoding-layer features play a crucial role in identifying valuable
unlabeled samples. The changes in the prediction values of the model are observed by
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mixing the encoding-layer features of the labeled samples with the encoding-layer features
of the unlabeled samples. These changes in predicted values can assist the model in
discovering new features within unlabeled samples that are overlooked or unrecognized
by the model. Subsequently, valuable samples can be selected based on these discoveries.
The samples queried by the FMAL method contain substantial information and strong
representation, effectively improving the model’s accuracy while working with a small-
sample dataset.

2.3. Pseudo-Active Learning

The pseudo-label model [74], as a simple and effective semi-supervised learning
method, has two core ideas:

1. Using the trained model to give unlabeled data a pseudo label. The method is very
straightforward: use the training model to predict unlabeled data and use the category
with the highest probability as the pseudo label for unlabeled data.

2. Applying entropy regularization to transform unsupervised data into regularization
terms of the objective function (loss).

Haofeng Zhang et al. [75] used pseudo-labelling for image retrieval. Wenying
Zhu et al. [76] used pseudo-labelling for bearing fault diagnosis.

HSIs contain a significant number of unannotated pixels that can be used as candidate
pseudo-label samples. In this study, we combine the above ideas into model training and
propose a pseudo-active learning strategy.

Distinguishing from AL with oracle labeling, we label unlabeled samples based on
the model’s predicted values. The predicted values of unlabeled samples generated by the
classifier are referred to as pseudo-labels. The samples labeled with the predicted values of
the classifier are called pseudo-labeled samples or pseudo-samples.

Using pseudo-label samples may decrease the model’s performance. This is mainly
due to the following two reasons:

1. Noise caused by incorrect labeling of pseudo-label samples;
2. The lack of new features between the pseudo-label samples and the training set

samples, leading to model overfitting.

To reduce noise interference, it is necessary to select samples with high confidence.
Meanwhile, in order to avoid overfitting, it is necessary to select samples with high uncer-
tainty. In order to meet the needs of both aspects, a new pseudo-label filtering method, the
dual strategy dual threshold filtering method, is proposed.

After screening, the pseudo-labeled samples that meet the criteria are merged into the
training set for retraining. This approach effectively expands the training set and improves
model classification accuracy without increasing the cost of sample labeling.

3. Materials and Methods
3.1. The MSTNC Framework

This study proposes a multi-strategy learning method based on triplet networks.
As shown in Figure 1, given an HSI dataset denoted as H ϵ RH×W×B, where H, W, and
B represent the height, width, and spectral dimensions of the image, respectively, we
first applied traditional principal component analysis (PCA) [77] to the spectral bands of
the initial HSI data to reduce the number of spectral bands, resulting in dimensionality-
reduced HSI data with spectral dimension C, denoted as I ϵ RH×W×C. This process retains
the critical spectral information for classification while reducing the computational load.
The height and width of the original data remain unchanged, such that it preserves the
spatial information, which is crucial for recognizing any object. The HSI data cube (I) is
divided into small overlapping 3D patches O ϵ RS×S×C, where S denotes the height and
width, and the truth-label of each small patch is determined by the label of the center pixel.
These small 3D patches cover the S × S window spatial extent and all C spectral bands and
constitute the original training and test sets. The TNC serves as the backbone and is trained
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with samples from the original training set to obtain TNC1. Subsequently, FMAL utilizes
the encoding-layer feature vectors generated by the encoder part of TNC1 to query the
most valuable unlabeled samples in the test set for oracle labeling. The labeled samples are
removed from the test set and added to the training set, and the TNC is retrained to obtain
TNC2. TNC2 is used to predict the remaining samples in the test set, and the predicted
values serve as labels for the sample. The high-quality samples that meet the requirements
are selected by the PAL strategy and added to the training set. Then, the latest training set
is used to train the TNC, resulting in TNC3. Finally, the softmax calculation is performed
on the classifier results to output the classification results.
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learning strategy, which includes two filters that filter high-confidence samples and high-uncertainty
samples, respectively.

3.2. Triplet Network Classifier

As shown in Figure 2, the TNC in this study comprises three main components: an
encoder fe, projection head fp, and classifier fc. The encoder fe consists of three cascaded
3D convolutional layers, followed by a 2D convolutional layer, and finally linked to a global
average pooling layer (GAP). Both fp and fc consist of two fully connected (FC) layers.

The contrastive learning module of the TNC network is formed by fp and fe. The
classification learning module is formed by fc and fe. The fc is connected to a softmax layer
to output the classification results.

The TNC will be trained as a backbone in two stages. The first stage is the con-
trastive learning phase. Specifically, in a dataset containing samples of Cls classes of land
cover, initially, each class selects n labeled samples xl to form the initial training dataset

Dtrain =
{(

xl
i , yi

)}n×Cls

i=0
, where yi is the label of the i-th sample. Let N be the total number of

samples and the remaining unlabeled samples xu constitute the test set Dtest =
{

xu
i
}N−n×Cls

i=0 .
For a sample xl, it forms a triplet sample with other samples xl+ and xl− in the contrastive
training set, where xl+ shares the same class as xl (positive pair), and xl− belongs to a
different class (negative pair). In this way, the total n × Cls samples of Dtrain can form
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n × (n − 1)× n × (Cls − 1) triple samples. These triplet samples constitute a contrastive
training set, which greatly enriches the number of training samples. To ensure training ef-
ficiency, not all samples in the contrastive training set will be used for contrastive learning;
instead, a randomly selected number of samples, as a multiple of n × Cls, will be utilized. In
the first stage, fe is used to process xl, xl+, and xl−. After processing by fe, z = fe(x), three
D-dimensional encoding-layer feature vectors, z, z+, and z−, are generated. Encoding-layer
feature vectors are crucial for improving model accuracy. These feature vectors are then input
into fp to generate three P-dimensional feature vectors: v, v+, and v−. The model is fine-tuned
and updated through the triplet loss function, which is described as

Ltrip = max
(

d2
pos − d2

neg + margin, 0
)

, (1)

d2
pos =

∥∥ fp(z)− fp
(
z+

)∥∥2
2, (2)

d2
neg =

∥∥ fp(z)− fp
(
z−

)∥∥2
2. (3)Sensors 2024, 24, x FOR PEER REVIEW 9 of 32 
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The ultimate optimization goal is to minimize the distance between positive pairs and
maximize the distance between negative pairs. Let θe, θc, and θ f represent the parameters
of the encoder fe, classifier f c, and projection head f p in the TNC, which can be updated
using Equation (4). During the contrastive learning phase, the parameters θc of the classifier
fc are not updated.

θe,p = argmin
θe,p

Ltrip

 fp

(
fe

(
xl
))

, fp

(
fe

(
xl+

))
,

fp

(
fe

(
xl−

))
; θe,p

 (4)

The second stage is the classification learning phase. As illustrated in Figure 2, the
input x is processed by the updated fe to generate a D-dimensional feature representation
vector z. Subsequently, it undergoes processing by fc to produce a Cls-dimensional output
vector. Training is guided by computing the cross-entropy loss
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:

Lclass = −
Cls

∑
i=1

yi ∗ logŷi, (5)

θe,c = argmax
θe,c

{Lclass[ fc( fe(xi)), yi; θe,c]}, (6)

where yi represents the value of the i-th class in the ground truth labels (0 or 1) and ŷi
denotes the probability predicted by the model for the i-th class. The parameters θe,c of the
encoder fe and classifier fc can be updated using Equation (6). During the classification
learning phase, the parameters θp of the projection head fp are not updated.

After fine-tuning and updating the parameters of the backbone, the final classification
results are obtained through the softmax classifier. Joint training of the TNC through the
two stages enables the encoding-layer feature vectors to be more conducive to classifying
different classes. Simultaneously, this joint learning strategy can enable the model to
achieve better classification performance.

3.3. Feature-Mixture-Based Active Learning

Active learning can enhance the classification ability of a model by acquiring the most
valuable samples with the minimum annotation cost. In the small-sample scenario, the
initial performance of the general classifier is poor. The active learning method based on
posterior probability cannot guarantee that the samples queried by it have the strongest
uncertainty, and the effect of adding them to the training set to improve the accuracy of
the model is not ideal. Therefore, we actively select labeled samples to add to Dtrain in
a gradually released fashion, rather than extracting them all at once. As the accuracy of
the model predictions continues to improve, the quality of the queried samples will also
gradually improve.

Specifically, given the total number of samples M that can be chosen. S is the set of
the number of target samples to be identified in each iteration. S = {s0, s1, s2, · · · si · · ·},
where si = min

{
M − ∑i−1

k=0 sk, ∑i−1
k=0 sk

}
, s0 represents the number of samples in the initial

training set, and si denotes the number of samples selected in the i-th iteration. The
iteration concludes when the number of samples in the training set reaches M. s0 samples
are initially randomly selected as the training set (and the rest as the test set) to train the
model TNC. Then, the active learning method is used to select s1 samples in the test set;
these samples are removed from the test set and then labeled and added to the training
set. Subsequently, the model is retrained using the updated training set. Then, the active
learning method is used to select s2 samples in the test set, and these samples are removed
from the test set, labeled, and added to the training set. The model is then retrained using
the updated training set. The above process is repeated until the number of training set
samples reaches M. In this way, the M most valuable samples can be selected. The accuracy
of the model trained with the training set composed of these samples is higher than that of
the training set composed of randomly selected samples.

The iteration process is illustrated in Figure 3.
In the following, the sample selection method in each iteration is elaborated in detail.

We refer to the feature vectors output by the encoding layer as encoding-layer features.
Encoding-layer features play a crucial role in identifying valuable unlabeled samples. This
is because the encoding layer, typically positioned in the middle of deep learning mod-
els, extracts high-level features from the input data. Compared to raw data or primary
features, these high-level features can better capture the essence and complex patterns of
the data. Therefore, encoding-layer feature vectors can provide richer and more mean-
ingful representations than the original spectral data. Secondly, raw hyperspectral data
typically have very high dimensions and may contain a lot of redundant information. The
encoding layer, through the training process of the neural network, can effectively reduce
the dimensionality, remove redundant information, and retain only the most important
features that represent class differences. These main features after dimensionality reduc-
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tion are more concise and clearer, highlighting the essential differences between different
classes. Last, but not least, encoding-layer feature vectors can be used to calculate the
similarity and differences between samples, as well as the model’s uncertainty in predicting
a particular sample.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 32 
 

 

test-set

train-set

test-set

train-set

feature mix

classifier

...

...

𝑧𝑙

𝑧𝑢

...

e
nco

de
r

TNC

...

Zl

𝑎𝑟𝑔𝑚𝑎𝑥𝑓𝑐(𝑧̃ ) ≠ 𝑎𝑟𝑔𝑚𝑎𝑥𝑓𝑐(𝑧𝑢)

selected samples

𝑓𝑐(𝑧𝑢)

× Repeat

`𝑧 𝑧̃ 

𝑓𝑐(𝑧 ̃ )

 
Figure 3. Feature mixing-based active learning (FMAL) illustration. ⊕: add selected sample to the 
train-set; ⊖: remove selected sample from the test-set; Repeat: number of iterations; : training 
TNC with train-set. 

In the following, the sample selection method in each iteration is elaborated in detail. 
We refer to the feature vectors output by the encoding layer as encoding-layer features. 
Encoding-layer features play a crucial role in identifying valuable unlabeled samples. This 
is because the encoding layer, typically positioned in the middle of deep learning models, 
extracts high-level features from the input data. Compared to raw data or primary fea-
tures, these high-level features can beĴer capture the essence and complex paĴerns of the 
data. Therefore, encoding-layer feature vectors can provide richer and more meaningful 
representations than the original spectral data. Secondly, raw hyperspectral data typically 
have very high dimensions and may contain a lot of redundant information. The encoding 
layer, through the training process of the neural network, can effectively reduce the di-
mensionality, remove redundant information, and retain only the most important features 
that represent class differences. These main features after dimensionality reduction are 
more concise and clearer, highlighting the essential differences between different classes. 
Last, but not least, encoding-layer feature vectors can be used to calculate the similarity 
and differences between samples, as well as the model’s uncertainty in predicting a par-
ticular sample.  

We draw on [50] for the feature mixing method by mixing the encoding-layer features 
of labeled samples with those of unlabeled samples to observe changes in the prediction 
values of the unlabeled samples.  

If the model’s predictions remain unchanged, it indicates that the proportion of un-
certain features in the sample is relatively low, which suggests that there are fewer novel 
features in the sample. Conversely, if the predictions change, it suggests that the sample 
contains a sufficient number of novel features, which meet the criteria for the samples we 
are seeking. 

Specifically, we calculate the average value of encoding-layer features of each class 
of labeled samples in 𝐷௧௥௔௜௡ as the representative value for each class of labeled samples, 
which is referred to as the anchor value and denoted as 𝑧̅. 𝑧௨ represents the encoding-
layer feature representation of the samples in 𝐷௧௘௦௧. 

Figure 3. Feature mixing-based active learning (FMAL) illustration. ⊕: add selected sample to the
train-set; ⊖: remove selected sample from the test-set; Repeat: number of iterations;

Sensors 2024, 24, x FOR PEER REVIEW 11 of 32 
 

 

test-set

train-set

test-set

train-set

feature mix

classifier

...

...

  

  

...

e
n
c
o

d
e

r

TNC

...

Zl

        (   )           (  )

selected samples

  (  )

× Repeat

`    

  (   )

 

Figure 3. Feature mixing-based active learning (FMAL) illustration. ⊕: add selected sample to the 

train-set; ⊖: remove selected sample from the test-set; Repeat: number of iterations; : training 

TNC with train-set. 

In the following, the sample selection method in each iteration is elaborated in detail. 

We refer to the feature vectors output by the encoding layer as encoding-layer features. 

Encoding-layer features play a crucial role in identifying valuable unlabeled samples. This 

is because the encoding layer, typically positioned in the middle of deep learning models, 

extracts high-level features from the input data. Compared to raw data or primary fea-

tures, these high-level features can better capture the essence and complex patterns of the 

data. Therefore, encoding-layer feature vectors can provide richer and more meaningful 

representations than the original spectral data. Secondly, raw hyperspectral data typically 

have very high dimensions and may contain a lot of redundant information. The encoding 

layer, through the training process of the neural network, can effectively reduce the di-

mensionality, remove redundant information, and retain only the most important features 

that represent class differences. These main features after dimensionality reduction are 

more concise and clearer, highlighting the essential differences between different classes. 

Last, but not least, encoding-layer feature vectors can be used to calculate the similarity 

and differences between samples, as well as the model’s uncertainty in predicting a par-

ticular sample.  

We draw on [50] for the feature mixing method by mixing the encoding-layer features 

of labeled samples with those of unlabeled samples to observe changes in the prediction 

values of the unlabeled samples.  

If the model’s predictions remain unchanged, it indicates that the proportion of un-

certain features in the sample is relatively low, which suggests that there are fewer novel 

features in the sample. Conversely, if the predictions change, it suggests that the sample 

contains a sufficient number of novel features, which meet the criteria for the samples we 

are seeking. 

Specifically, we calculate the average value of encoding-layer features of each class 

of labeled samples in 𝐷𝑡𝑟𝑎𝑖𝑛 as the representative value for each class of labeled samples, 

which is referred to as the anchor value and denoted as 𝑧̅. 𝑧𝑢 represents the encoding-

layer feature representation of the samples in 𝐷𝑡𝑒𝑠𝑡. 

: training
TNC with train-set.

We draw on [50] for the feature mixing method by mixing the encoding-layer features
of labeled samples with those of unlabeled samples to observe changes in the prediction
values of the unlabeled samples.

If the model’s predictions remain unchanged, it indicates that the proportion of
uncertain features in the sample is relatively low, which suggests that there are fewer
novel features in the sample. Conversely, if the predictions change, it suggests that the
sample contains a sufficient number of novel features, which meet the criteria for the
samples we are seeking.

Specifically, we calculate the average value of encoding-layer features of each class
of labeled samples in Dtrain as the representative value for each class of labeled samples,
which is referred to as the anchor value and denoted as z. zu represents the encoding-layer
feature representation of the samples in Dtest.

We mix each z of different classes with each zu in a certain proportion:

∼
z i = αizi + (1 − αi)zu, αi ∈ [0, 1 )D, ∥αi∥2 ≤ ε,

argmaxfc(zu) = k, i = (1, 2, . . . k − 1, k + 1, . . . cls),
(7)

where zi represents the anchor value of the i-th class of samples and αi acts as a weight
determining the proportion of features that are chosen to be mixed. αi is specific to zi and zu.

For each sample xu in Dtest, we compute its encoding-layer feature zu (assuming its
model prediction is k, i.e., argmax fc(zu) = k). Then, we mix zu with all anchor values
except for class k using certain proportions (αi). Let

∼
z i denote the mixed feature value. If

the model predictions for all
∼
z i remain unchanged and still belong to class k, this indicates

high consistency between this sample and the k-class samples in the training set. However,
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if the prediction of any
∼
z i changes, i.e., ∃i (argmax fc

(∼
z i

)
̸= k), this suggests that this

sample may contain a sufficient number of new features. This is the sample with training
value that we need to retrieve.

ε is the threshold controlling the mixing proportion, and it determines the uncertainty
of the selected sample. If ε is smaller, then the selected samples have stronger uncertainty,
which means a greater degree of novel features in the samples.

The selection of αi is specific to the input and determines the features to be chosen.
Given the ε threshold, αi should be chosen to induce a change in the prediction of the model
for

∼
z. We study the impact of feature mixing on the prediction of zu by examining the

changes in the loss function.
Using a first-order Taylor expansion with respect to zu, the loss of the model for

predicting the class of
∼
z i as k can be rewritten as

Lcls

(
fc

(∼
z i

)
, yk

)
≈ Lcls( fc(zu), yk) +

(∼
z i − zu

)T
·gradzu Lcls( fc(zu), yk). (8)

From Equations (7) and (8), we obtain

Lcls

(
fc

(∼
z i

)
, yk

)
− Lcls( fc(zu), yk) ≈ (αi(zi − zu))T ·gradzu Lcls( fc(zu), yk). (9)

The choice of αi determines the features to be selected with the aim of maximizing the
change in loss:

α∗i = argmax
∥αi∥2≤ε

(αi(zi − zu))T ·gradzu Lcls( fc(zu), yk). (10)

The optimal value α∗i is determined by satisfying the threshold constraint, which
maximizes the change in the loss function. α∗i is calculated as follows:

∥αi(zi − zu)∥2 ≤ ∥αi∥2·∥zi − zu∥2.

Substitute the constraint ∥αi∥2 ≤ ε.

∥αi(zi − zu)∥2 ≤ ε·∥zi − zu∥2 Let α′i = αi(zi − zu), ε′ = ε·∥zi − zu∥2, and
grad = gradzu Lcls( fc(zu), yk).

Equation (10) can be rewritten as

(α′i)
∗
= argmax

∥α′i∥2≤ε′

(
α′i
)T ·grad.

This is solved using the dual norm formula:

(α′i)
∗
= ε′· grad

∥grad∥2
.

Substitute α′i, ε′:

α∗i =
ε·∥zi − zu∥2
∥grad∥2

· grad
(zi − zu)

. (11)

The size of ε determines the quantity of samples identified, and the required number
of samples is found step by step by means of fine-tuning ε := ε + ∆ε. Our experiments
demonstrate that using this method effectively controls the number of samples identified
while maintaining low computational complexity.

3.4. Dual-Strategy Pseudo-Active Learning

After the training with the FMAL strategy, the model acquires a certain level of
classification ability. At this point, a significant portion of the model’s predicted values for
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the samples in the test set are accurate, which means that the number of correctly predicted
samples is much larger than the number of samples in the training set. Moreover, the
correctly predicted samples often include new features distinct from those found in the
training set.

The above analysis inspires us to consider the possibility of using a strategy to identify
a certain proportion of high confidence samples and then using a strategy to identify
semantically rich samples within these samples. The predicted values of the model are
used as labels to label these samples, and then these samples are expanded to the training
set. We refer to this novel method as dual-strategy pseudo-active learning (DSPAL). Unlike
AL with oracle labeling, we label unlabeled samples using the model’s predicted values.

The goal of DSPAL is to expand the training set using pseudo-labeled samples and
then retrain the model to further improve the model’s accuracy. Obviously, the quality of
pseudo-label samples has a significant impact on the performance of the model, so it is
necessary to design a high-quality pseudo-label sample selection strategy.

To enable the model to learn reliable representations of the data during the DSPAL
phase, an iterative training approach is adopted. At each iteration, the filter adds filter-
qualified pseudo-labeled samples to Dtrain and then retrains the model with an updated
Dtrain. The DSPAL training process is illustrated in Figure 4.
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The filter sets two thresholds, P1 and P2, which represent the P1% of high-confidence
samples and P2% of valuable samples selected for each class of unlabeled samples, respectively.

When selecting high confidence samples, we choose to use the BvSB [65] measure. The
BvSB measure is specifically designed for multi-class classification problems. Its core idea
is to determine the confidence level of the predicted value by comparing the difference in
prediction probabilities between the best and second-best classes of the model. The greater
the difference, the higher the confidence level; conversely, the smaller the difference, the
lower the confidence level. The BvSB values for all samples in Dtest are computed.

BvSB = PB(xu)− PSB(xu) (12)

Here, PB(xu) and PSB(xu) represent the conditional probabilities of sample xu belong-
ing to the optimal and suboptimal classes, respectively.

A greater BvSB value indicates greater confidence in the fc classification results, which
suggests more accurate predictions. Conversely, a smaller BvSB value signifies greater
sample uncertainty, making it more likely to contain new features.

Qi = sort(BvSBi(xu)) (13)

BvSBi denotes the BvSB value of the i-th class sample, and Qi denotes the queue with
the BvSB values of the i-th class samples in descending order. Among them, the samples
whose position is less than P1% in the queue are regarded as reliable samples.
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We chose the FMAL’s feature mixing method as the filter’s strategy for selecting
samples with new characteristics. Among the high-confidence samples selected above, the
FMAL screening method is used to select the P2% of samples with novel features in each
class. It should be noted that the anchor values used here are calculated from the updated
training set.

The filter uses these two strategies to filter out samples from Dtest that meet these
criteria, yielding candidate samples with high reliability and strong uncertainty. These
samples are then added to Dtrain and used to train the TNC with the updated training set.

The above process is repeated to improve the model accuracy by continuously expand-
ing the number of samples in the training set.

The complete procedures of our MSTNC are summarized in Algorithm 1.

Algorithm 1. MSTNC model.

Input: HSI patch x ∈ RS×S×C, The total number of samples is denoted as M.
Initialization: train-set: Dtrain, test-set: Dtest

1. Obtain: Triplet samples (xl
i , xl+

i , xl−
i )

2. Train the TNC with Dtrain, Obtain the model TNC1
3. while: Dtrain Number of samples < M:
4. Compute the anchor values z for Dtrain

5. Encoding-layer features mixing
∼
z i = αizi + (1 − αi)zu

6. Put all xu corresponding to zu that meet the condition argmax fc(
∼
z) ̸=

argmax fc(zu) into Dtrain, update Dtrain, Dtest

7. Train TNC with the updated Dtrain to obtain the model TNC2
8. while: iterations < 4
9. Calculate the BvSB values f Dtest

10. Sorting the BvSB values for each class of samples. Qi = sort(BvSBi(xu))
11. Put the samples in Q between 0 and P1 into candidate set Dcand

12. while: Dtrain Number of samples < P2:
13. Compute the anchor values z for Dtrain

14. Encoding-layer features mixing
∼
z i = αizi + (1 − αi)zcand

15. Put all xcand corresponding to zcand that meet the condition

argmax fc

(∼
z
)
̸= argmax fc(zu) into Dtrain, update Dtrain

16. Train TNC with the updated Dtrain and obtain the model TNC3
17. Output: Predict test sample with the model TNC3

4. Results
4.1. Hyperspectral Datasets

(1) The Indian Pines (IP) dataset was acquired using an airborne visible and infrared
imaging spectrometer (AVI-331 RIS). The image size is 145 × 145 pixels, with a wavelength
range of 400–2000 nm, a spatial resolution of 20 m, and 200 spectral bands after excluding
noisy bands. The dataset contains a total of 10,249 labeled pixels, which span 16 classes,
including crops, wood, and other perennial plants. The false-color image and ground-truth
map are illustrated in Figure 5.

(2) The Pavia University (PU) dataset was captured over the city of Pavia, Italy, using
an airborne hyperspectral imaging spectrometer from Germany. The image has dimensions
of 610 × 340 pixels, covers a wavelength range of 430–860 nm, has a spatial resolution of
1.3 m, and consists of 103 spectral bands.

The total number of labeled pixels in this dataset is 42,776, and there are nine classes
of labeled samples, most of which are urban land cover, such as metal plates, roofs, and
concrete pavements. The false-color image and ground-truth map are illustrated in Figure 6.

(3) The WHU-Hi-HanChuan (WHU) dataset covers the agricultural area of Hanchuan
City, Hubei Province, China. The images was acquired by a Headwall nano-hyperspectral
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imaging sensor mounted on a UAV platform. The scene size is 1217 × 303 pixels with a
spatial resolution of 0.109 m. The images were acquired by the Headwall Nano Hyper-
spectral Imaging Sensor (HNHIS). It consists of 274 bands with wavelengths ranging from
0.4 to 1.0 µm. The ground truth data consisted of 253,580 labeled pixels from 16 different
crop type classes. The distribution of the false-color image and ground-truth map are
illustrated in Figure 7.

Sensors 2024, 24, x FOR PEER REVIEW 15 of 32 
 

 

including crops, wood, and other perennial plants. The false-color image and ground-
truth map are illustrated in Figure 5. 

(46)

(1428)

(830)

(237)

(483)

(730)

(28)

(478)

(20)

(972)

(2455)

(593)

(205)

(1265)

(386)

(93)

(a) (b)  
Figure 5. Indian Pines dataset: (a) false-color map; (b) ground-truth map. The numbers in parenthe-
ses represent the total number of samples in each class. 

(2) The Pavia University (PU) dataset was captured over the city of Pavia, Italy, using 
an airborne hyperspectral imaging spectrometer from Germany. The image has dimen-
sions of 610 × 340 pixels, covers a wavelength range of 430–860 nm, has a spatial resolution 
of 1.3 m, and consists of 103 spectral bands. 

The total number of labeled pixels in this dataset is 42,776, and there are nine classes 
of labeled samples, most of which are urban land cover, such as metal plates, roofs, and 
concrete pavements. The false-color image and ground-truth map are illustrated in Figure 
6. 

(b)(a)

(6631)

(18,649)

(2099)

(3064)

(1345)

(5029)

(1330)

(3682)

(947)

 
Figure 6. Pavia University dataset: (a) false-color map; (b) ground-truth map. The numbers in pa-
rentheses represent the total number of samples in each class. 

(3) The WHU-Hi-HanChuan (WHU) dataset covers the agricultural area of Han-
chuan City, Hubei Province, China. The images was acquired by a Headwall nano-hyper-
spectral imaging sensor mounted on a UAV platform. The scene size is 1217 × 303 pixels 
with a spatial resolution of 0.109 m. The images were acquired by the Headwall Nano 
Hyperspectral Imaging Sensor (HNHIS). It consists of 274 bands with wavelengths rang-
ing from 0.4 to 1.0 µm. The ground truth data consisted of 253,580 labeled pixels from 16 
different crop type classes. The distribution of the false-color image and ground-truth map 
are illustrated in Figure 7. 

Figure 5. Indian Pines dataset: (a) false-color map; (b) ground-truth map. The numbers in parentheses
represent the total number of samples in each class.

Sensors 2024, 24, x FOR PEER REVIEW 15 of 32 
 

 

including crops, wood, and other perennial plants. The false-color image and ground-
truth map are illustrated in Figure 5. 

(46)

(1428)

(830)

(237)

(483)

(730)

(28)

(478)

(20)

(972)

(2455)

(593)

(205)

(1265)

(386)

(93)

(a) (b)  
Figure 5. Indian Pines dataset: (a) false-color map; (b) ground-truth map. The numbers in parenthe-
ses represent the total number of samples in each class. 

(2) The Pavia University (PU) dataset was captured over the city of Pavia, Italy, using 
an airborne hyperspectral imaging spectrometer from Germany. The image has dimen-
sions of 610 × 340 pixels, covers a wavelength range of 430–860 nm, has a spatial resolution 
of 1.3 m, and consists of 103 spectral bands. 

The total number of labeled pixels in this dataset is 42,776, and there are nine classes 
of labeled samples, most of which are urban land cover, such as metal plates, roofs, and 
concrete pavements. The false-color image and ground-truth map are illustrated in Figure 
6. 

(b)(a)

(6631)

(18,649)

(2099)

(3064)

(1345)

(5029)

(1330)

(3682)

(947)

 
Figure 6. Pavia University dataset: (a) false-color map; (b) ground-truth map. The numbers in pa-
rentheses represent the total number of samples in each class. 

(3) The WHU-Hi-HanChuan (WHU) dataset covers the agricultural area of Han-
chuan City, Hubei Province, China. The images was acquired by a Headwall nano-hyper-
spectral imaging sensor mounted on a UAV platform. The scene size is 1217 × 303 pixels 
with a spatial resolution of 0.109 m. The images were acquired by the Headwall Nano 
Hyperspectral Imaging Sensor (HNHIS). It consists of 274 bands with wavelengths rang-
ing from 0.4 to 1.0 µm. The ground truth data consisted of 253,580 labeled pixels from 16 
different crop type classes. The distribution of the false-color image and ground-truth map 
are illustrated in Figure 7. 

Figure 6. Pavia University dataset: (a) false-color map; (b) ground-truth map. The numbers in
parentheses represent the total number of samples in each class.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 32 
 

 

(a) (b)

Soybean （10,292）

Sorghum （5358）

Water spinach （1205）

Road （18,565）

Bright object （1141）

Water （75,406）

Watermelon （4538）

Greens（5908）

Trees （17,983）

Grass （9474）

Red roof （10,521）

Gray roof （16,916）

Plastic （3684）

Bare soil （9121）

Strawberry (44,740)

Cowpea (22,758)

 
Figure 7. Wuhan Han Chuan dataset: (a) false-color map; (b) ground-truth map. The numbers in 
parentheses represent the total number of samples in each class. 

4.2. Experimental SeĴings 
All experiments in this paper are conducted on a server equipped with an Intel(R) 

Core (TM) i7-12700 CPU @ 1.7 GHz 2.19 GHz, 64 GB DDR5 RAM, and an RTX 4090-24 GB 
GPU. The specific programs were implemented on the Ubuntu operating system using 
PyTorch 2.0.0 deep learning framework and Python 3.8 compiler. Evaluation metrics in-
clude producer accuracy (PA), overall accuracy (OA), average accuracy (AA), and the 
Kappa statistic (Kappa). Higher values of these metrics indicate that the model is more 
capable of classifying. Moreover, train time (s) and test time (s) were used for complexity 
comparison. During the experiments, a batch size of 64 is set, the initial learning rate is set 
to 0.0001, and the Adam optimizer is employed to facilitate rapid convergence of the 
model.  

4.3. Comparison of Classification Results 
To verify the effectiveness of the MSTNC, we studied methods outlined in the litera-

ture and designed the following sets of comparative experiments. The choice of compari-
son methods takes into account its properties and the setup of the original experimental 
sample. 

To ensure a fair comparison, we reproduced all of these methods, and all hyperpa-
rameters were also based on publicly available original code or papers. All experiments 
were conducted using the same hardware, and the ratio of training to test samples was 
the same. Each datum represents the average of 10 repetitions of the experiment. Tables 
1–3 give per-class quantitative results for the three datasets.  

Table 1. Classification results of each method in Indian Pines. 

Number/Class 3DCNN [20] DFSL-NN [36] 
DFSL-SVM 

[36] Gia-CFSL [38] 
DBDAFSL 

[59] CapsGLOM [60] 
MSTNC 
(Ours) 

1. Alfalfa 90.11 98.23 97.56 100 100 100 100 

2. Corn-notill 58.56 49.24 52.93 68.37 45.2 41.2 96.76 

3. Corn-mintill 43.42 62.96 69.21 66.33 61.62 65.62 77.91 

4. Corn 44.98 53.77 57.31 87.01 83.23 79.23 88.05 

Figure 7. Wuhan Han Chuan dataset: (a) false-color map; (b) ground-truth map. The numbers in
parentheses represent the total number of samples in each class.

4.2. Experimental Settings

All experiments in this paper are conducted on a server equipped with an Intel(R)
Core (TM) i7-12700 CPU @ 1.7 GHz 2.19 GHz, 64 GB DDR5 RAM, and an RTX 4090-24 GB
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GPU. The specific programs were implemented on the Ubuntu operating system using
PyTorch 2.0.0 deep learning framework and Python 3.8 compiler. Evaluation metrics
include producer accuracy (PA), overall accuracy (OA), average accuracy (AA), and the
Kappa statistic (Kappa). Higher values of these metrics indicate that the model is more
capable of classifying. Moreover, train time (s) and test time (s) were used for complexity
comparison. During the experiments, a batch size of 64 is set, the initial learning rate is set to
0.0001, and the Adam optimizer is employed to facilitate rapid convergence of the model.

4.3. Comparison of Classification Results

To verify the effectiveness of the MSTNC, we studied methods outlined in the literature
and designed the following sets of comparative experiments. The choice of comparison
methods takes into account its properties and the setup of the original experimental sample.

To ensure a fair comparison, we reproduced all of these methods, and all hyperpa-
rameters were also based on publicly available original code or papers. All experiments
were conducted using the same hardware, and the ratio of training to test samples was the
same. Each datum represents the average of 10 repetitions of the experiment. Tables 1–3
give per-class quantitative results for the three datasets.

Table 1. Classification results of each method in Indian Pines.

Number/Class 3DCNN
[20]

DFSL-NN
[36]

DFSL-SVM
[36]

Gia-CFSL
[38]

DBDAFSL
[59]

CapsGLOM
[60]

MSTNC
(Ours)

1. Alfalfa 90.11 98.23 97.56 100 100 100 100
2. Corn-notill 58.56 49.24 52.93 68.37 45.2 41.2 96.76
3. Corn-mintill 43.42 62.96 69.21 66.33 61.62 65.62 77.91
4. Corn 44.98 53.77 57.31 87.01 83.23 79.23 88.05
5. Grass-pasture 67.88 84.89 84.71 71.75 76.72 86.72 69.21
6. Grass-trees 89.42 92.38 92.56 84.72 92.55 93.55 86.63
7. Grass-pasture-mowed 91.92 98.01 98.65 99.45 100 100 100
8. Hay-windrowed 81.22 85.59 85.59 98.73 99.22 100 99.78
9. Oats 98.11 90.9 90.9 99.71 98.66 84.21 100
10. Soybean-notill 66.93 65.66 30.21 71.21 62.57 26.57 73.34
11. Soybean-mintill 19.67 73.64 95.78 44.78 70.77 85.77 73.71
12. Soybean-clean 30.73 21.08 39.96 54.96 38.02 89.02 79.06
13. Wheat 92.67 75.26 81.63 89.63 97.44 100 92.85
14. Woods 89.37 90.81 89.87 76.87 84.59 93.59 84.92
15. Buildings-Grass-
Trees-Drives 55.1 58.43 40.42 80.42 88.18 78.18 100

16. Stone-Steel-Towers 95.06 96.53 97.8 99.02 93.52 81.52 100

OA 54.75 ± 3.53 65.90 ± 4.64 66.49 ± 3.37 67.52 ± 3.79 70.52 ± 3.62 74.63 ± 3.62 82.97 ± 2.44
AA 63.91 ± 1.45 71.25 ± 3.34 70.34 ± 2.51 80.94 ± 1.78 80.97 ± 1.77 81.58 ± 1.77 88.89 ± 1.51

Kappa 52.21 ± 3.71 60.63 ± 4.17 60.09 ± 3.28 63.67 ± 3.92 66.67 ± 2.89 70.60 ± 2.89 80.70 ± 2.48

Table 2. Classification results of each method in Pavia University.

Number/Class 3DCNN
[20]

DFSL-NN
[36]

DFSL-SVM
[36]

Gia-CFSL
[38]

DBDAFSL
[59]

CapsGLOM
[60]

MSTNC
(Ours)

1. Asphalt 80.94 75.63 47.22 84.01 80.01 79.51 85.06
2. Meadows 90.56 83.78 85.31 84.83 81.83 95.22 92.74
3. Gravel 36.61 51.41 83.25 54.98 92.98 35.31 79.44
4. Trees 61.20 74.22 66.96 86.99 65.99 94.87 71.06
5. Painted metal sheets 99.69 98.15 99.83 100.00 99.77 100.00 100.00
6. Bitumen 55.92 85.46 85.2 73.22 99.22 60.79 83.85
7. Bare Soil 90.76 96.28 95.3 98.14 99.14 89.24 94.23
8. Self-Blocking Bricks 37.22 71.12 70.41 19.41 54.41 92.47 88.69
9. Shadows 81.49 94.98 34.12 62.02 90.02 99.36 86.62

OA 75.75 ± 5.56 80.47 ± 5.68 76.33 ± 3.86 76.79 ± 6.74 82.07 ± 6.74 85.60 ± 4.85 87.94 ± 3.45
AA 70.49 ± 3.39 81.34 ± 3.85 75.20 ± 2.59 73.73 ± 5.63 84.90 ± 5.63 82.98 ± 2.64 86.85 ± 2.37

Kappa 67.47 ± 6.45 74.64 ± 6.71 69.55 ± 4.77 69.73 ± 4.59 77.02 ± 4.59 80.76 ± 5.69 84.11 ± 4.22
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Table 3. Classification results of each method in WHU-Hi-HanChuan.

Number/Class 3DCNN
[20]

DFSL-NN
[36]

DFSL-SVM
[36]

Gia-CFSL
[38]

DBDAFSL
[59]

CapsGLOM
[60]

MSTNC
(Ours)

1. Strawberry 85.97 68.26 55.16 51.52 57.36 71.22 91.25
2. Cowpea 80.89 45.93 46.96 67.86 58.85 76.45 83.07
3. Soybean 42.70 86.21 85.5 79.62 78.00 77.45 86.90
4. Sorghum 88.92 96.31 96.85 95.74 97.35 97.33 97.36
5. Water spinach 30.80 86.71 99.84 89.81 96.99 100.00 98.58
6. Watermelon 0.11 59.93 66.97 84.73 48.50 74.55 81.76
7. Greens 2.55 81.02 98.71 95.38 82.49 79.94 83.94
8. Trees 44.75 61.29 35.29 59.14 31.21 65.98 76.21
9. Grass 11.35 56.32 26.96 53.61 62.21 63.20 83.70
10. Red roof 39.77 66.53 73.74 61.03 91.39 81.54 84.47
11. Gray roof 0.04 87.74 67.8 65.52 79.59 89.06 96.75
12. Plastic 34.34 43.86 59.24 70.56 74.70 73.57 51.94
13. Bare soil 13.34 39.19 48.63 36.20 36.44 41.22 55.11
14. Road 24.37 65.21 34.46 30.51 52.45 57.59 80.80
15. Bright object 68.10 53.08 65.68 57.24 67.99 58.21 57.07
16. Water 98.06 72.67 98.1 96.39 98.97 97.72 96.48

OA 62.91 ± 2.21 67.85 ± 2.81 68.04 ± 1.65 70.15 ± 1.85 72.22 ± 2.71 79.50 ± 2.67 86.57 ± 1.17
AA 41.71 ± 1.75 67.05 ± 2.65 66.08 ± 2.38 68.51 ± 1.78 69.58 ± 2.14 75.60 ± 1.65 79.18 ± 1.05

Kappa 55.30 ± 2.71 63.53 ± 2.31 63.00 ± 2.42 65.67 ± 1.56 67.97 ± 2.31 76.22 ± 2.51 84.36 ± 1.13

A. Performance with very few training samples

To evaluate the superiority of the proposed method in a few labeled sample scenarios,
we selected five samples for each class in the dataset to form the training set. In this
way, the proportion of samples in the training set in the three datasets was 0.78% (IP),
0.1% (PU), and 0.03% (WHU). The methods 3D-CNN [20], DFSL-NN [36], DFSL-SVM [36],
graph information aggregation cross-domain few-shot learning (Gia-CFSL) [38], dual-
branch domain adaptation few-shot learning (DBDAFSL) [59], and CapsGLOM [60] were
adopted for comparison with our proposed MSTNC. These HSI classification methods
are representative state-of-the-art deep learning methods specifically designed for small
sample classification.

The first five methods randomly select five samples per class for experimentation.
CapsGLOM uses its original sample selection method; i.e., one sample per class is randomly
selected and iterates four times according to the AL method it provided, resulting in the
final selection of five samples per class. The MSTNC randomly selects three samples per
class and then uses the AL method proposed in this study to select two more samples
per class. Tables 1–3 give per-class quantitative results for the three datasets.

From Tables 1–3, it can be observed that our proposed MSTNC consistently outper-
forms other methods in terms of OA, AA, and Kappa on the three datasets. OA is higher
by 8.34–28.22%, 2.34–12.19%, and 7.07–23.66%, respectively, AA is higher by 7.31–25.06%,
1.95–16.36%, and 3.58–37.47%, while Kappa is higher by 10.10–28.49%, 3.35–16.64%, and
8.14–29.06%, respectively. Examining the classification accuracy for each class, it can be
noted that the IP dataset exhibits its lowest accuracy for class 5 at 69.21%, which surpasses
the lowest accuracy of other methods by 24.43–48.98%. For the PU dataset, the lowest
accuracy is in class 4 at 71.06%, which surpasses the lowest accuracy of other methods by
16.65–51.6%. In the case of the WHU dataset, the lowest accuracy is in class 12 at 51.94%,
which surpasses the lowest accuracy of other methods by 8.51–51.90%.

Figures 8–10 show the classification maps of all the methods on the IP, PU, and WHU
datasets. The maps demonstrate that our proposed model exhibits superior classification
performance and clearer boundaries. For example, in Figure 8 (IP dataset), it can be
observed that other models incorrectly label some pixels of class 2 (Corn—no-till) as class
11 (Soybean—no-till) or class 14 (Soybean—min-till); in Figure 9 (PU dataset), other models
exhibit considerable confusion in class 8 (self-blocking bricks); and in Figure 10 (WHU
dataset), it is apparent that other models incorrectly classify class 8 (trees) and class 10
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(red roof) as other classes. However, the MSTNC achieves considerably high classification
accuracy for these classes.
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Conclusively, the proposed method shows advantages in improving the classification
performance of all datasets. Compared to other methods, the proposed model demon-
strates superior classification of background pixels, which affirms the effectiveness of
this approach.

B. Performance with limited training samples

To make a broader comparison with the representative and state-of-the-art classifica-
tion methods under multiple technical routes, we performed the following experiments:

The training set represented 2% (IP), 1% (PU), and 0.5% (WHU) of the categories in
each sample, respectively.

The spectral–spatial residual network (SSRN) [31], semi-supervised Siamese network
(3DAES) [47], contrastive GCN (ConGcn) [33], TensorSSA [22], and SmaT-HOSVD [23]
models were adopted for comparison with our proposed MSTNC.

The sample size selected for this experiment is slightly larger than that of the previous
group. Especially for the PU dataset and WHU dataset, as these two datasets are relatively
large, the absolute sample size of the training set is also large. Therefore, the accuracy is
generally higher than the previous group.

Table 4 provides quantitative results for the three datasets.

Table 4. Quantitative results for the three data sets.

DATASET Measure SSRN [31] 3DAES [47] ConGcn [33] TensorSSA [22] SmaT-HOSVD [23] MSTNC (Ours)

IP
OA (%) 76.16 78.93 79.94 87.55 92.45 96.36
AA (%) 82.25 78.25 78.42 88.92 91.89 96.29
κ × 100 72.49 75.26 77.85 86.68 93.01 95.85

PU
OA (%) 91.27 92.76 91.18 94.48 96.88 100
AA (%) 88.50 88.50 86.50 93.45 94.45 100
κ × 100 88.37 92.60 90.60 92.52 95.79 100

WHU
OA (%) 96.21 95.54 95.04 96.78 97.88 100
AA (%) 97.21 97.91 96.01 98.02 99.01 100
κ × 100 92.59 92.61 90.55 96.24 97.95 100

As can be observed from Table 4, our proposed MSTNC method has significant
advantages over other methods in terms of OA, AA, and Kappa coefficients on all three
datasets. On the Indian Pines (IP) dataset, the MSTNC outperforms OA by 3.91–20.2%, AA
by 4.4–14.77%, and Kappa coefficient by 2.84–23.36%. For the Pavia University (PU) dataset,
the MSTNC achieved 100% for OA, AA, and Kappa, which were 3.12–8.73%, 5.55–11.5%,
and 2.12–12% higher, respectively, than the other method. On the WHU dataset, the MSTNC
also achieved 100% for OA, AA, and Kappa, improving by 1.99–10.09%, 1.33–8.79%, and
2.05–7.41%, respectively, compared to the other method. By specifically analyzing each
dataset, it can be seen that the MSTNC method consistently outperforms other methods
in all the metrics, especially in the PU and WHU datasets, where the MSTNC achieves
100% classification accuracy and Kappa coefficient, which further proves the excellent
performance of the method in the hyperspectral image classification task.

C. Performance with Different Training Percentages

To validate the generalization performance of the proposed MSTNC, we compared
the classification results of different methods with different numbers of training samples.
Here, we selected the seven most representative deep learning methods in experiments
A and B. Considering the great disparity in the number of samples in different datasets,
different percentages of training samples were selected. Experiments were conducted with
selected samples of 1%, 2%, 5%, 10%, and 15% of the IP dataset; 0.1%, 0.2%, 0.5%, 1%, and
5% of the PU dataset; and 0.05%, 0.1%, 0.25%, 0.5, and 2.5% of the WHU dataset as the
training set, with the rest of the samples as the test set. The experimental results are shown
in Figures 11–13. Our proposed MSTNC consistently achieves the highest accuracy across
different sample quantities on the three datasets, which demonstrates its superiority in
terms of generalization performance.



Sensors 2024, 24, 6647 20 of 31

Sensors 2024, 24, x FOR PEER REVIEW 21 of 32 
 

 

by 4.4–14.77%, and Kappa coefficient by 2.84–23.36%. For the Pavia University (PU) da-
taset, the MSTNC achieved 100% for OA, AA, and Kappa, which were 3.12–8.73%, 5.55–

11.5%, and 2.12–12% higher, respectively, than the other method. On the WHU dataset, 
the MSTNC also achieved 100% for OA, AA, and Kappa, improving by 1.99–10.09%, 1.33–

8.79%, and 2.05–7.41%, respectively, compared to the other method. By specifically ana-
lyzing each dataset, it can be seen that the MSTNC method consistently outperforms other 
methods in all the metrics, especially in the PU and WHU datasets, where the MSTNC 
achieves 100% classification accuracy and Kappa coefficient, which further proves the ex-
cellent performance of the method in the hyperspectral image classification task. 
C. Performance with Different Training Percentages 

To validate the generalization performance of the proposed MSTNC, we compared 
the classification results of different methods with different numbers of training samples. 
Here, we selected the seven most representative deep learning methods in experiments A 
and B. Considering the great disparity in the number of samples in different datasets, dif-
ferent percentages of training samples were selected. Experiments were conducted with 
selected samples of 1%, 2%, 5%, 10%, and 15% of the IP dataset; 0.1%, 0.2%, 0.5%, 1%, and 
5% of the PU dataset; and 0.05%, 0.1%, 0.25%, 0.5, and 2.5% of the WHU dataset as the 
training set, with the rest of the samples as the test set. The experimental results are shown 
in Figures 11–13. Our proposed MSTNC consistently achieves the highest accuracy across 
different sample quantities on the three datasets, which demonstrates its superiority in 
terms of generalization performance. 

   
(a) (b) (c) 

Figure 11. Evolution of OA as a function of the number of training samples per class: (a) IP dataset; 
(b) PU dataset; (c) WHU dataset. 

   
(a) (b) (c) 

Figure 12. Evolution of AA as a function of the number of training samples per class: (a) IP dataset; 
(b) PU dataset; (c) WHU dataset. 

Figure 11. Evolution of OA as a function of the number of training samples per class: (a) IP dataset;
(b) PU dataset; (c) WHU dataset.

Sensors 2024, 24, x FOR PEER REVIEW 21 of 32 
 

 

by 4.4–14.77%, and Kappa coefficient by 2.84–23.36%. For the Pavia University (PU) da-
taset, the MSTNC achieved 100% for OA, AA, and Kappa, which were 3.12–8.73%, 5.55–

11.5%, and 2.12–12% higher, respectively, than the other method. On the WHU dataset, 
the MSTNC also achieved 100% for OA, AA, and Kappa, improving by 1.99–10.09%, 1.33–

8.79%, and 2.05–7.41%, respectively, compared to the other method. By specifically ana-
lyzing each dataset, it can be seen that the MSTNC method consistently outperforms other 
methods in all the metrics, especially in the PU and WHU datasets, where the MSTNC 
achieves 100% classification accuracy and Kappa coefficient, which further proves the ex-
cellent performance of the method in the hyperspectral image classification task. 
C. Performance with Different Training Percentages 

To validate the generalization performance of the proposed MSTNC, we compared 
the classification results of different methods with different numbers of training samples. 
Here, we selected the seven most representative deep learning methods in experiments A 
and B. Considering the great disparity in the number of samples in different datasets, dif-
ferent percentages of training samples were selected. Experiments were conducted with 
selected samples of 1%, 2%, 5%, 10%, and 15% of the IP dataset; 0.1%, 0.2%, 0.5%, 1%, and 
5% of the PU dataset; and 0.05%, 0.1%, 0.25%, 0.5, and 2.5% of the WHU dataset as the 
training set, with the rest of the samples as the test set. The experimental results are shown 
in Figures 11–13. Our proposed MSTNC consistently achieves the highest accuracy across 
different sample quantities on the three datasets, which demonstrates its superiority in 
terms of generalization performance. 

   
(a) (b) (c) 

Figure 11. Evolution of OA as a function of the number of training samples per class: (a) IP dataset; 
(b) PU dataset; (c) WHU dataset. 

   
(a) (b) (c) 

Figure 12. Evolution of AA as a function of the number of training samples per class: (a) IP dataset; 
(b) PU dataset; (c) WHU dataset. 

Figure 12. Evolution of AA as a function of the number of training samples per class: (a) IP dataset;
(b) PU dataset; (c) WHU dataset.

Sensors 2024, 24, x FOR PEER REVIEW 22 of 32 
 

 

   
(a) (b) (c) 

Figure 13. Evolution of Kappa as a function of the number of training samples per class: (a) IP da-
taset; (b) PU dataset; (c) WHU dataset. 

From Figures 11–13, it can be observed that on the IP dataset, when the proportion 
of samples is 5%, the MSTNC method achieves more than 99% for all three metrics. It 
performs 5.11–9.52%, 5.95–16.68%, and 4.70–14.02% beĴer than other methods. Other 
methods require a sample proportion of 15% to achieve a similar level of accuracy. 

On the PU dataset, when the proportion of samples is 0.5%, the MSTNC method 
achieves over 98% for all three metrics. It performs 3.86–15.68%, 7.01–30.43%, and 5.07–

23.21% beĴer than other methods. Other methods require a sample proportion of 5% to 
achieve a similar level of accuracy. 

On the WHU dataset, when the proportion of samples is 0.25%, the MSTNC method 
achieves over 98% for all three metrics. It performs 3.01–7.86%, 2.28–11.09%, and 3.11–

15.15% beĴer than other methods. Other methods require a sample proportion of 2.5% to 
achieve a similar level of accuracy. 
D. Complexity Analysis 

In order to control the complexity of the model, we chose a lightweight model struc-
ture suitable for small samples to reduce the complexity of the model. GAP is used to 
replace the fully connected layer to reduce the number of parameters and the amount of 
computation. At the same time, we adopt the PCA dimensionality reduction technique to 
further reduce the dimension of the input data to reduce the computational overhead. 

To balance model complexity and computational efficiency, we fine-tuned the model 
structure and hyperparameters through multiple experiments. This ensured that we could 
simplify the model as much as possible without compromising classification accuracy sig-
nificantly. Taking the IP dataset as an example, the OA of the model is 82.97%. In the case 
of, we reduce the inference time of the model to 1.32 s by reducing the number of layers 
and parameters. Thus, a balance between accuracy and efficiency is achieved. 

The training time and test time of different models on different datasets are reported 
in Figure 14.  

PU WHU
0

30

60

90

120

150

180

210

240

T
ra

in
in

g
 ti

m
e
(s

)

IP

 3DCNN
 DFSL-NN
 DFSL-SVM
 Gia-CFSL
 DBDAFSL
 CapsGLOM
 TensorSSA
 SmaT-HOSVD
 MSTNC

 
Figure 14. Training time and testing time of different methods. 
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From Figures 11–13, it can be observed that on the IP dataset, when the proportion
of samples is 5%, the MSTNC method achieves more than 99% for all three metrics. It
performs 5.11–9.52%, 5.95–16.68%, and 4.70–14.02% better than other methods. Other
methods require a sample proportion of 15% to achieve a similar level of accuracy.

On the PU dataset, when the proportion of samples is 0.5%, the MSTNC method achieves
over 98% for all three metrics. It performs 3.86–15.68%, 7.01–30.43%, and 5.07–23.21% better
than other methods. Other methods require a sample proportion of 5% to achieve a similar
level of accuracy.

On the WHU dataset, when the proportion of samples is 0.25%, the MSTNC method
achieves over 98% for all three metrics. It performs 3.01–7.86%, 2.28–11.09%, and 3.11–15.15%
better than other methods. Other methods require a sample proportion of 2.5% to achieve a
similar level of accuracy.

D. Complexity Analysis

In order to control the complexity of the model, we chose a lightweight model structure
suitable for small samples to reduce the complexity of the model. GAP is used to replace the
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fully connected layer to reduce the number of parameters and the amount of computation.
At the same time, we adopt the PCA dimensionality reduction technique to further reduce
the dimension of the input data to reduce the computational overhead.

To balance model complexity and computational efficiency, we fine-tuned the model
structure and hyperparameters through multiple experiments. This ensured that we could
simplify the model as much as possible without compromising classification accuracy
significantly. Taking the IP dataset as an example, the OA of the model is 82.97%. In the
case of, we reduce the inference time of the model to 1.32 s by reducing the number of
layers and parameters. Thus, a balance between accuracy and efficiency is achieved.

The training time and test time of different models on different datasets are reported
in Figure 14.
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From the figure, it is evident that TensorSSA and SmaT-HOSVD boast the shortest
training time, significantly shorter than other deep-learning-based methods, thus exhibiting
considerable advantages. However, during the testing phase, the disparity narrows consid-
erably, with all methods falling below 12 s. Among the deep learning methods, CapsGLOM
and MSTNC necessitate active learning techniques for sample querying, resulting in longer
training durations. Nevertheless, their testing times are moderate. Notably, the MSTNC
excels in testing efficiency by utilizing learning strategies to enhance model efficiency,
coupled with a lightweight classifier.

Unlike ordinary images, a hyperspectral image of a scene often corresponds to a
very wide area of space in the actual range. The pixel-level labeling of hyperspectral
images involves many complicated works. Therefore, controlling the number of samples
and improving the model accuracy is the primary goal of HSI classification. The MSTNC
achieves high accuracy in extremely small sample scenarios with moderate time complexity.

4.4. Ablation Analysis

In order to eliminate the effect of different training samples on each ablation method,
we unified the training samples using fixed random seeds.

4.4.1. Effectiveness of Triplet Contrastive Learning

To validate the effectiveness of triplet contrastive learning, experiments were con-
ducted to compare the complete TNC with the TNC containing only fe and fc. In these
experiments, three labeled samples per class were randomly selected for training. The re-
sults of the evaluation metrics are shown in Figure 15. On the three datasets, OA improved
by 3.24%, 4.21%, and 3.86%, respectively. AA improved by 3.16%, 9.85%, and 2.44%, and
Kappa improved by 4.20%, 4.50%, and 2.31%. Thus, the expansion of the triplet training
set effectively extracts richer features and information by reducing the intra-class distance
and increasing inter-class distance. This approach significantly enhances the model’s clas-
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sification. The reason why this method is effective is that it uses triple sample pairs in
training. A small number of training samples can form enough triple sample pairs, greatly
expanding the training set.
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4.4.2. Effectiveness of AL and PAL Strategies

To validate the effectiveness of AL and PAL strategies, three sets of experiments were
conducted on the IP dataset.

In the first set, five labeled samples were randomly selected from each class of the
IP dataset. In the second set, three samples were first randomly selected from each class,
and then two samples were selected by our AL method to form an initial training set for
further training. The experimental results in Figure 16 reveal that compared to training
with randomly selected samples, the AL method resulted in improvements of 5.59%, 1.10%,
and 5.48% in OA, AA, and Kappa, respectively. This proves that the proposed AL strategy
is effective, indicating that its selected samples are more efficient. In the third set, the PAL
strategy was additionally applied to the training process based on the second set. As shown
in Figure 16, compared with AL alone, the OA, AA, and Kappa values increased by 4.26%,
2.95%, and 4.74%, respectively, after PAL application. The results highlight significant
improvement in the predictive accuracy with PAL, showcasing its ability to enhance
classification accuracy without increasing the cost of labeled samples. This underscores
the superiority and feasibility of the proposed method, which confirms that the accuracy
and semantic richness of pseudo-labeled samples align with our theoretical expectations.
It also demonstrates that the joint application of these two strategies effectively enhances
the feature representation of the network, detail capture, and discriminative abilities,
particularly in scenarios with extremely limited initial samples.
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5. Discussion
5.1. Parameter Analysis

Deep learning methods can be considered as end-to-end learning methods. End-to-end
learning can automatically extract features and perform classification through models such
as CNN. This process does not rely on artificial feature selection. This enables the model to
adapt to the influence of noise and improves the generalization ability and robustness of
the model.

Hyperspectral images are characterized by high dimensionality and severe redun-
dancy. With dimension-reduction processing, important spectral information can be effec-
tively retained, while reducing data redundancy and computational complexity. PCA is
one of the most commonly used dimensionality reduction methods. Because it does not
rely on sample labels, it not only effectively reduces the dimensionality of spectral bands
but also maintains the integrity of spatial information. Therefore, this paper adopted PCA
for dimensionality-reduction processing. The high dimensionality of spectral bands is ben-
eficial for information preservation, but it increases redundancy, noise, and the complexity
of model training. On the contrary, the dimensionality of spectral bands is low, which may
lead to information loss but can help remove redundancy and noise.

After dimensionality reduction, the data are normalized along the spectral dimension
to ensure that the mean is 0 and the unit variance is used as the standard. This stan-
dardization helps improve the performance and stability of deep learning models. HSI
classification algorithms are often trained and classified based on hyperspectral image
patches. Hyperspectral image patches are used as input samples and cropped around
the central pixel. The selection of patch size primarily considers the extraction of spatial
features and computational costs. Increasing the patch size provides a larger perceptual
field, which is beneficial for the model. At the same time, it also brings more noise and
chaos, which is harmful to the model.

For the MSTNC model, a patch size of 25 × 25 with 30 bands is used for the IP and WHU
datasets. On the PU dataset, the patch size is set to 19 × 19, with 15 bands. The chosen patch
values and band values are based on reference [47,59,60,78] and extensive experiments [79],
and this article continues to build upon the conclusions drawn from previous work.

In the FMAL method, the threshold (ε, ∆ε) affects the execution efficiency of FMAL. ε
reflects the quality of the selected samples. The larger the value of ε, the fewer new features
the selected sample contains, and vice versa. Therefore, (ε, ∆ε) determines the number of
samples identified at each time.

In the DSPAL method, P1 and P2 are the thresholds of the confidence filter and uncer-
tainty filter, respectively. The larger the P1, the lower the confidence of the selected sample
and vice versa. The larger the P2, the higher the uncertainty of the selected sample, and
vice versa.

For the MSTNC model, ε = 0.006, ∆ε = 0.0005, P1 = 40, and P2 = 39.
The selection of the above four parameters in this article is mainly based on the analysis

of experimental data. More scientific methods need to be further explored.

5.2. Analysis of Various MSTNC Strategies

We conducted extensive experiments to thoroughly validate the effectiveness of our
proposed method.

5.2.1. Comparison of Three Different Sample Selection Methods

To validate the superiority of the FMAL method, we compared it with the classical
BVSB method and random sample selection method. On the IP dataset, we initially
randomly selected 3 samples from each class and then used these 4 methods to choose 3,
5, 7, 9, 11, and 13 samples for training in each class. The experimental results are shown
in Figure 17.

The data clearly show that the FMAL method proposed in this paper has the best
performance. Specifically, when three labeled samples were selected for each class, the OA,
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AA, and Kappa of the FMAL method were 2.36%, 3.15%, and 2.47% higher than those of
the BvSB method, and 7.09%, 2.28%, and 8.23% higher than those of the random method.
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Figure 17. Comparison of accuracy of three different sample selection methods: (a) OA; (b) AA;
(c) Kappa.

The BvSB method’s OA and Kappa are also superior to the random method, as random
sampling may lead to an imbalanced distribution of training samples among different classes,
which results in insufficiently representative features for the selected samples. In Figure 17b,
the AA values of the BvSB method and the random method repeatedly cross. This may be
because the classification accuracy of some classes is low when using the initial model for
classification, and the BvSB method heavily relies on the classification results of the initial
model, which leads to lower-quality samples for these specific classes. In contrast, FMAL
maintains good performance, which indicates that the method of mixing partially labeled
sample characteristics reduces the dependence of sample selection on model accuracy.

Figure 18 shows the classification maps when seven samples per class were selected
using three different sample selection methods, visualizing the classification effect of the
different methods. It is evident that FMAL method exhibits the strongest purposefulness
in sample selection, which results in the best classification performance. On the other
hand, the random method lacks purpose, leading to it having the poorest performance.
Specifically, as can be seen from the red boxed area in Figure 18, the sample selected by
FMAL is more representative and the most efficient. Although the samples selected by
BVSB show slightly higher relevance in some cases, the efficiency is still better than that
of the random method. In addition, the blue boxed area in Figure 18c demonstrates that
selecting too many samples at once results in smaller differences between some of the
samples, highlighting the importance of iteration.
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Figure 18. Classification maps of different methods for Indian Pines. Seven labeled samples were
selected for each class. Light blue dots are randomly selected samples. The red dots is samples selected
with a specific method. Dark blue dots are samples that were incorrectly predicted. (a) Random
method; (b) BvSB method; (c) FMAL method.
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5.2.2. Analysis of AL Iterative Strategy

To validate the role of iteration in active learning, we conducted experiments using
the IP dataset, which is the most representative and has the highest classification difficulty.
Initially, 48 samples (3 samples per class) were randomly selected, which served as the
initial training set. Then, the number of samples gradually increased using three different
methods. AL0 denotes that all desired samples are randomly selected, AL1 denotes that all
desired samples are selected using one active learning method, and ALn denotes that the
desired samples are selected step by step through iterations.

From the results in Figure 19a–c, it is evident that the accuracy of the model using
the Aln method is consistently higher than that of AL0 and AL1. This suggests that model
accuracy has an impact on the quality of the samples selected. The iterative approach
selects samples on the basis of a model with progressively higher accuracy and therefore
achieves better results.
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When the number of samples increases to 192, AL1 surpasses the AL0 method, which
indicates that FMAL’s purposeful identification of uncertain samples is more effective than
randomly selecting samples.

As the number of samples increases to 384, the accuracy improvement rate of AL1
significantly decreases, and during the increment, the accuracy values of AL1 and AL0
cross over, with AL0 subsequently surpassing AL1. The reason behind this phenomenon is
that as the number of samples selected by the AL1 method increases, a phenomenon akin
to “oversampling” emerges. This leads to high consistency among the chosen samples,
which causes the model accuracy to fall even below that of randomly selected samples.

When the total number of samples in the training set reached 768, the classification
accuracy of Aln almost reached 100%, maintaining the highest classification accuracy.
Simultaneously, examining the change in model classification accuracy in Figure 19 reveals
that the accuracy of AL0 approached that of Aln. This is because the coverage of the IP
dataset increased significantly when too many samples were selected, leading to smaller
and smaller differences in the samples selected. Similarly, the accuracy of AL1 did not
significantly decrease for the same reason.

5.2.3. Analysis of the Number of DSPAL Iterations

One iteration of PAL can significantly increase the number of training samples without
increasing the sample labeling cost. To analyze the impact of multiple iterations of DSPAL
on model accuracy, eight iterations of DSPAL were conducted on models trained through
active learning on three datasets. The filter thresholds P1 and P2 were set as [40, 50, 60, 70,
80, 80, 80, 80] and [40-1, 50-2, 60-2, 70-3, 80-3, 80-3, 80-3, 80-3], respectively.

The changes in three metrics during multiple iterations on the three datasets are shown
in Figure 20a–c. It can be observed that the model’s accuracy gradually improved during
the iterations and reached its peak at around the fourth or fifth iteration, after which it
started to fluctuate. DSPAL improved OA from 77.85% to 82.44% on the IP dataset, from
79.43% to 88.95% on the PU dataset, and from 83.31% to 86.16% on the WHU dataset.
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Notably, the first four iterations led to a significant improvement in OA, AA, and Kappa.
On the IP dataset, the OA reached its maximum value in the fourth iteration, while on the
PU and WHU datasets, the OA reached its maximum in the fifth iteration. As the number of
iterations increased, the differences in OA gradually decreased. After the fifth iteration, the
OA did not continue to rise but showed a decline. This is because, after a certain number of
iterations, it becomes challenging to find samples with new feature information from the
remaining test set. This indicates that DSPAL can find samples with new features through
iteration, which significantly improves the model. However, with the decrease in new
feature Information in the selected samples, too many iterations can lead to overfitting,
resulting in a decrease in accuracy.
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The results demonstrate that samples selected through DSPAL iterations have new
features, which contribute to higher network accuracy. However, blindly increasing the
number of iterations does not necessarily continuously improve the classification ability
of the network. The network reaches an optimal state within a certain number of itera-
tions, after which the network accuracy shows little improvement. Therefore, based on
experimental results, this study selected four iterations of pseudo-active learning to achieve
effective accuracy improvements within an appropriate range.

6. Conclusions

The core issues of HSI classification are accuracy and cost. The main method for
reducing costs is to limit the number of annotated samples. This study proposes a multi-
strategy approach to address the small-sample HSI classification problem. On the one
hand, it improves the quality of annotated samples through active learning by introducing
FMAL to identify valuable samples precisely. It takes into consideration the impact of the
initial model accuracy on the quality of identified samples. FMAL creates anchor values
from the encoding-layer features of the original training set samples. By predicting the
values of unlabeled samples mixed with a certain proportion of anchor values, the value
of the samples can be determined. This effectively reduces the dependence of sample
selection on the original model. An efficient implementation of the optimal solution for
calculating the mixed proportional weights of features is given. On the other hand, the
sample size of the training set is increased through contrast learning and pseudo-active
learning. To establish a reliable initial model, we introduce triplet sample pairs to expand
the training samples. On this basis, DSPAL was designed to generate pseudo-label samples.
This method uses two strategies to evaluate the confidence and uncertainty of the samples
separately. A large number of pseudo-label samples were filtered out to expand the training
set. This may be considered a promising direction for solving small-sample classification
problems. Comparative experiments on three datasets demonstrated that the MSTNC
method outperforms several state-of-the-art methods in terms of accuracy.

Although we have obtained encouraging experimental results, we will continue our
research, specifically focusing on the following aspects:
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(1) The number of samples selected in each iteration is equal to the number of samples
in the training set prior to that iteration in the feature-mixture-based active learning method
employed in this study. The threshold ε, which controls the feature mixing ratio, and the
model’s loss in predicting the mixed feature class are two important factors in determining
the quality of the selected samples. We can consider using these two values to calculate the
number of selected samples in each iteration scientifically and improve the active learning
method. (2) The two thresholds of the filter in pseudo-active learning were selected based
on extensive experimental evaluations, and future research should aim to identify more
scientific and efficient methods. (3) Our proposed dual-strategy pseudo-active method
selects samples based on the classification results of the model, allowing for flexibility in
the model’s structure and making it applicable to classification tasks in other fields.
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Nomenclatures and Notations

MSTNC Multi-strategy triplet network classifier
HSI Hyperspectral Imaging
CNN Convolutional neural networks
conv3D 3-dimensional convolutional neural networks
conv2D 2-dimensional convolutional neural networks
PCA Principal component analysis
TN Triplet network
TNC Triplet networfk classifier
AL Active learning
M The total number of samples that can be chosen
FMAL Feature mixture-based active learning
DSPAL Dual- strategy pseudo-active learning
FC Fully connected
GAP Global average pooling layer
BvSB Best vs. Second Best
Cls The classes of land cover
fe Encoder
fp Projection head
fc Classifier
xl Labeled sample
yi Label of the i-th sample
xu Unlabeled sample
Dtest Test set
Dtrain Train set
xl+ The same class as xl (positive pair)
xl− The different class as xl (negative pair)

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://rsidea.whu.edu.cn/resource_WHUHi_sharing.htm
http://rsidea.whu.edu.cn/resource_WHUHi_sharing.htm
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z The output vector corresponding to xl

z+ The output vector corresponding to xl+

z− The output vector corresponding to xl−

yi The value of the i-th class
ŷi Projected value
θp Projection head parameters
θc Classifier parameters
z Anchor value
zu Encoding-layer feature
zi The anchor value of the i-th class of samples
∼
z i Mixed feature value
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