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Abstract: Adenosine phosphates (adenosine 5′-monophosphate (AMP), adenosine 5′-diphosphate
(ADP), and adenosine 5′-triphosphate (ATP)) play important roles in energy storage and signal
transduction in the human body. Thus, a measurement method that simultaneously recognizes and
detects adenosine phosphates is necessary to gain insight into complex energy-relevant biological
processes. Surface-enhanced Raman scattering (SERS) is a powerful technique for this purpose.
However, the similarities in size, charge, and structure of adenosine phosphates (APs) make their
simultaneous recognition and detection difficult. Although approaches that combine SERS and
machine learning have been studied, they require massive quantities of training data. In this study,
limited AP spectral data were obtained using fabricated gold nanostructures for SERS measurements.
The training data were created by feature selection and data augmentation after preprocessing the
small amount of acquired spectral data. The performances of several machine learning models
trained on these generated training data were compared. Multilayer perceptron model successfully
detected the presence of AMP, ADP, and ATP with an accuracy of 0.914. Consequently, this study
establishes a new measurement system that enables the highly accurate recognition and detection of
adenosine phosphates from limited SERS spectral data.

Keywords: surface-enhanced Raman scattering; gold nanostructure; adenosine phosphates; machine
learning; small data analytics

1. Introduction

The term adenosine phosphates (APs) refers to adenosine 5′-monophosphate (AMP),
adenosine 5′-diphosphate (ADP), and adenosine 5′-triphosphate (ATP), which pertain to
energy storage and signaling between cells and play important physiological roles [1,2]. In
addition, APs have attracted attention as non-invasive diagnostic and prognostic biomark-
ers for diseases such as Alzheimer’s and Parkinson’s [3–5]. Since APs are in equilibrium
(2ADP ↔ ATP + AMP) via adenylate kinases in phosphotransfer systems, AP ratios are
important physiological factors. Therefore, their simultaneous detection is necessary to
acquire insight into these complex physiological energy processes. Currently, measurement
using the luciferase reaction is the main method for detecting APs [6,7]. However, the
information obtained from this measurement is limited and does not provide detailed
information on the ratio of APs. Moreover, as APs are very similar in terms of molec-
ular size, charge, and structure, their simultaneous detection is challenging. Although,
high-performance liquid chromatography (HPLC) methods have been studied for the
simultaneous detection of APs [8,9], these methods require professional knowledge and
operator skills for the pretreatment of analytes and complex measurement operations.
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In recent years, surface-enhanced Raman scattering (SERS) has attracted considerable
attention as a highly sensitive and selective measurement method. SERS is an enhance-
ment of the Raman scattering intensity of molecules adsorbed on metallic nanostructures
such as nanoparticles [10,11], nanorods [12,13] and nanowires [14,15]. SERS enables the
detection of Raman scattering from molecules, which was previously difficult to detect
because of the weak intensity. SERS provides unique spectroscopic fingerprints of chemi-
cals and biomolecules through molecular vibrations, thereby allowing the identification
of numerous analytes with high discrimination [16,17]. Therefore, SERS has been stud-
ied for applications in various fields in environmental [18], food [19], materials [20], and
bioanalysis [21,22]. However, similar molecules are difficult to identify from their spectra
because SERS produces spectra of similar shapes from molecules with similar properties
and structures [23]. Therefore, the simultaneous recognition and detection of APs using
SERS is challenging. Although studies determining the ATP:ADP ratio of SERS spectra
have been reported [24], there are no reports showing that AMP, ADP, and ATP can be
recognized and detected simultaneously using SERS.

Recent studies have increasingly employed machine learning techniques to discrimi-
nate analytes based on subtle variations in their spectral shapes. Machine learning has been
applied to spectral analysis using mass spectrometry [25], nuclear magnetic resonance [26],
ultraviolet-visible spectroscopy [27], near-infrared spectroscopy [28], and Raman spec-
troscopy [29]. Because spectral data contain considerable chemical information about
the analytes, conventional univariate analysis ignores substantial information. Therefore,
spectral analysis using machine learning, which is a multivariate analysis method, has
attracted considerable attention in chemistry [30]. Various molecules have been identified
using machine learning to extract chemical information from spectral data. For example,
SERS spectra were analyzed by machine learning to identify the types of bacteria and
viruses [31,32]. Different types of bacteria and viruses exhibit distinct structures, and these
differences are reflected in the shape of the SERS spectrum. Machine learning models can
determine the types of bacteria or virus by recognizing differences in the shapes of those
SERS spectra. A large amount of training data is essential for a machine learning model to
recognize the differences in SERS spectral shapes. However, the amount of data available in
the field of chemistry is generally limited. Therefore, analytical methods for small amounts
of SERS spectral data are required.

In this study, to recognize and detect the types of APs (AMP, ADP, and ATP) in a
mixed solution with high accuracy, a machine learning model was trained on SERS spectra
using feature selection and data augmentation (Figure 1). First, we fabricated a SERS
substrate with a gold nanodisk array (GNDA) on which nanoparticles were adsorbed to
obtain the SERS spectra of the APs. The SERS spectra of the mixed AP solutions were
measured using these SERS substrates. Subsequently, for the numerous noisy regions in
the measured SERS spectra that contained no chemical information, feature selection was
implemented using k-means to extract the regions that contained chemical information.
Noise was added and the synthetic minority oversampling technique (SMOTE) was applied
for data augmentation training. These processes improved the prediction accuracy of each
machine learning model, in the case of multilayer perceptron (MLP) by 0.100, reaching an
accuracy of 0.914. These results suggest that with limited data, APs can be recognized and
detected with high accuracy using feature selection and data augmentation processing.
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Figure 1. Concept of recognition and detection of APs using SERS and machine learning.

2. Materials and Methods
2.1. Fabrication of SERS Substrates

Figure 2 shows the fabrication procedure for the SERS substrate. First, GNDAs were
fabricated by depositing gold on cyclo-olefin polymer (COP)-based films (FLP230/200-120,
Scivax Co., Ltd., Kanagawa, Japan) with periodic nanostructures. The COP films were
cleaned using 2-propanol (Kanto Chemical Co. Inc., Tokyo, Japan) and ultrapure water, and
then dried under airflow. A gold layer (thickness: 100 nm) was thermally deposited onto
the COP films using a thermal evaporator (SVC-700TM/700-2; Sanyu Electron Co., Ltd.,
Tokyo, Japan). Second, silica nanoparticles (Polysciences, Inc., Warrington, DC, USA) were
electrostatically adsorbed onto gold nanostructures using the layer-by-layer (LbL) method.
For the LbL method, 3 mg/mL aqueous solutions of poly (allylamine hydrochloride)
(PAH) (Sigma-Aldrich Japan Inc., Tokyo, Japan) and poly (sodium 4-styrenesulfonate) (PSS)
(Sigma-Aldrich Japan Inc., Tokyo, Japan) containing NaCl (0.5 M) (Wako Pure Chemical
Co., Osaka, Japan) were used. The fabricated GNDAs were immersed in a PAH solution for
1 min at room temperature (20–25 ◦C), followed by washing with ultrapure water. After
washing, the GNDAs with the PAH layer were immersed in a PSS solution under the same
conditions, followed by washing with ultrapure water. This coating process was repeated
twice, and finally the surfaces were coated with the PAH layer, followed by washing with
ultrapure water. GNDAs with positively charged surface were immersed in 0.25 mg/mL
silica nanoparticle (ϕ30, 50, 100 nm) dispersion for 5 min at room temperature (20–25 ◦C).
Following immersion, the GNDAs were washed with ultrapure water and dried under
airflow. The SERS substrates were prepared by re-depositing a gold layer (thickness: 30 nm)
onto the GNDAs.

2.2. SERS Measurements

Sample solutions for measurement were prepared by mixing 1 mM AMP (≧99%,
Sigma-Aldrich Japan Inc., Tokyo, Japan), ADP (≧95%, Sigma-Aldrich Japan Inc., Tokyo,
Japan), and ATP (≧99%, Sigma-Aldrich Japan Inc., Tokyo, Japan) in an aqueous solution
in several volume ratios (1:0:0, 0:1:0, 0:0:1, 1:1:0, 1:0:1, 0:1:1, 1:1:1). The SERS substrates
were dried at room temperature (20–25 ◦C) after placing a drop of the sample solution
(5 mL) onto them to equalize the adsorption of the APs. All SERS spectra were acquired
using a laser confocal Raman microscope (RAMAN-11, Nanophoton, Osaka, Japan) with a
785 nm laser. In this study, the SERS measurements were performed under the following
conditions: 50× objective lens (N.A. = 0.8), 1 mW laser power, 60 s integration time, and
50 µm slit width.
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2.3. Data Preprocessing

In spectral analysis using machine learning, data preprocessing is an important process.
A Raman shift range of 200–1700 cm−1, which is the fingerprint region, was selected for the
analysis because the fingerprint region contains a large amount of chemical information.
The baselines of the SERS spectra were corrected and smoothed using the RAMAN Imager
software (version 2, Nanophoton, Osaka, Japan). The SERS spectra were smoothed using
the Savitzky–Golay algorithm with a second-degree polynomial and a window size of
five [33,34] after correcting the baseline by fitting a quintic function. The intensity of the
SERS spectra depended on the conditions of the measurement equipment and fabricated
substrates. Therefore, the SERS spectra were standardized to align the intensity scale.
Spectral standardization was calculated as follows:

Ij,std =
Ij − I

s
(1)

where Ij,std is the standardized intensity of each Raman shift; Ij is the intensity of each
Raman shift; I is the average intensity of the entire spectrum; and s is the standard deviation
of the intensity of the entire spectrum. The spectrum was standardized by applying
Equation (1) to the intensity of each Raman shift from 200 to 1700 cm−1. Because the SERS
spectra contained noise regions, using the intensities of the entire spectra as feature values
reduced the learning efficiency. Thus, specific Raman shifts were extracted from the SERS
spectra to improve the training efficiency of the machine learning model. The Raman shifts
of the measured SERS spectral data were divided into clusters using the k-means clustering
algorithm. The optimal number of clusters was determined using the elbow method for
k-means clustering. After clustering, significant Raman shifts for machine learning analysis
were selected by removing clusters containing multiple noisy regions.

2.4. Data Analysis

The SERS spectra data, preprocessed as described in Section 2.3, were input into the
machine learning models. A total of 140 data points were obtained for analysis in this study,
with 20 points for each mixing ratio. The data were divided into 70 training data points
(10 data points × 7 groups) and 70 test data points (10 data points × 7 groups). To improve
the performance and robustness of the machine learning model, the amount of training
data was increased by adding random noise and applying the SMOTE algorithm [35];
2800 synthetic training data points with random noise were generated from 70 training
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data points, and 700 additional synthetic training data points were generated using the
SMOTE algorithm. Random noise was calculated as expressed in Equation (2).

ni,j = si,j× N(0, 1) (2)

where ni,j is random noise of group i (i = 1–7) and Raman shift j (j = 200–1700 cm−1); si,j is
the standard deviation of the intensity of group i and Raman shift j; and N(0, 1) is a value
generated from a standard normal distribution. In the present study, the presence or absence
of each AP was predicted using a classification framework. We selected logistic regression
(LR) [36], decision tree (DT) [37], k-nearest neighbor (kNN) [38], linear discriminant analysis
(LDA) [39], support vector machine (SVM) [40], random forest (RF) [41], and MLP [42]
as classification frameworks. These machine learning models were implemented using
scikit-learn 1.4.2 [43], which is a free software machine learning library for the Python
programming language. The hyperparameters for each machine learning model were
optimized via grid search. The hyperparameters and their ranges are listed in Table S1.
The other hyperparameters were adopted from the initial settings defined in scikit-learn
1.4.2. Accuracy was selected as the evaluation index for the machine learning models. All
programs were run using Python 3.8. All data points were classified by swapping the
training data with the test data and implementing the same process.

3. Results and Discussion
3.1. Evaluation of the Fabricated SERS Substrates

Substrates were fabricated with nanoparticles adsorbed on GNDAs (measurement
substrates). The SEM images of these measurement substrates are shown in Figure 3.
For comparison, substrates with nanoparticles adsorbed on gold planes (GPs) were also
fabricated. The SEM images are shown in Figure S1. Figure 3 shows that the substrate was
successfully fabricated with nanoparticles adsorbed onto the GNDAs, and the smaller the
size of the nanoparticles, the more densely they are adsorbed. The electrostatic repulsion
caused by the carboxyl groups modified on the nanoparticle surface is one factor in this re-
sult [44]. Larger nanoparticles have larger areas in contact with each other; therefore, many
carboxyl groups affect the electrostatic repulsion between large nanoparticles, preventing
them from being densely adsorbed. This is one factor, and a lot of others influence it. More
detailed experiments are needed to identify the exact factors.
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The reflection spectra of the fabricated SERS substrates are shown in Figure 4. The
vertical axis in Figure 4 shows the normalized reflection intensity (N. R. I.). As shown
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in Figure 4a, the substrates with a GNDA structure have a broad absorption peak at
approximately 785 nm, which is thought to induce SERS, whereas in Figure 4b, there is no
absorption peak at approximately 785 nm (excitation light wavelength) for the substrate
with nanoparticles adsorbed on the GPs. Therefore, Raman scattering was not enhanced for
GPs. Although the adsorption of ϕ30 or ϕ50 nanoparticles on the GNDA structure made
the absorption peak sharp (Figure 4a), the weak SERS intensity for the 785 nm excitation is
possibly caused by the red shifts of the absorption peak. When the ϕ100 nm nanoparticles
were adsorbed on the GNDAs, a sharp absorption peak appeared at approximately 785 nm.
Therefore, the substrates with adsorbed ϕ100 nm nanoparticles display the largest SERS
enhancement effect among the tested substrates. Moreover, since a wavelength of the
absorption peak shifts from 785 nm when larger diameter nanoparticles are adsorbed on
the GNDAs, ϕ100 nm nanoparticles are optimal.
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Figure 4. Reflection spectra of the fabricated substrates with nanoparticles adsorbed on (a) GNDAs
and (b) GPs.

The ATP SERS spectra were acquired using the fabricated substrate (Figure 5). The
shapes of the measured SERS spectra of ATP are similar to those in a previous paper [24].
This result indicates that the SERS spectra of ATP adsorbed on the substrate were measured.
Figure 5 shows that the SERS intensity differs for each substrate. The intensities of these
spectra were compared for the band around 740 cm−1, which is the sharpest and most
intense band in the spectra (Figure 6). Error bars indicate the standard deviation of band
intensities. Figure 6 shows that the SERS intensity of the GNDAs is stronger than that of the
gold planes. In addition, the SERS intensity is the strongest for the measurement substrate
with ϕ100 nm nanoparticles adsorbed. This result is consistent with that of Figure 4 and
shows that Raman scattering interacts with the localized surface plasmon resonance based
on the absorption at approximately 785 nm, resulting in enhanced SERS.

To investigate the SERS intensity enhanced by the adsorption of 100 nm diameter
nanoparticles, the enhanced electric field distributions of the substrates with and without
ϕ100 nm nanoparticles adsorbed on the GNDAs were calculated using finite-difference
time domain (FDTD) simulations (Lumelical Solutions, Inc., Vancouver, BC, Canada). In
the simulation model, a 3D model of GNDAs was created and a plane wave was set as
a light source. A field monitor was set to calculate the electric field and reflected light.
Periodic boundary conditions were set in the x–y direction, and a perfect matching layer
was set in the z direction (Figure S2). The reflection spectrum of each model was calculated
and compared with the actual spectrum (Figure S3). As a result, spectra very similar to
the actual measured spectra were obtained. Thus, we considered the simulation models
used in the FDTD simulation to be valid for the created substrate. The simulated enhanced
electric field distributions at 785 nm from these models are shown in Figure S4, where a
strongly enhanced electric field is observed between the GNDAs and nanoparticles. Thus,
the experimentally obtained SERS intensity is considered to be enhanced by the enhanced
electric field. The fabrication method selected in this study was a simple and inexpensive
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method that does not require the expensive equipment used in electron beam lithography
and ion etching, which are common fabrication methods for SERS substrates [45]. Based
on these results, the SERS substrates were successfully fabricated using a cost-effective
fabrication method.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 12 
 

 

of these spectra were compared for the band around 740 cm−1, which is the sharpest and 
most intense band in the spectra (Figure 6). Error bars indicate the standard deviation of 
band intensities. Figure 6 shows that the SERS intensity of the GNDAs is stronger than 

that of the gold planes. In addition, the SERS intensity is the strongest for the 
measurement substrate with ϕ100 nm nanoparticles adsorbed. This result is consistent 

with that of Figure 4 and shows that Raman scattering interacts with the localized surface 
plasmon resonance based on the absorption at approximately 785 nm, resulting in 
enhanced SERS. 

 

Figure 5. SERS spectrum of ATP measured with each substrate. 

 

Figure 6. Comparison of SERS intensity on each substrate; x labels show the substrate on which the 

nanoparticles are adsorbed (GP or GNDA) and the size of the nanoparticles (0–100 nm). 

To investigate the SERS intensity enhanced by the adsorption of 100 nm diameter 
nanoparticles, the enhanced electric field distributions of the substrates with and without 
ϕ100 nm nanoparticles adsorbed on the GNDAs were calculated using finite-difference 

time domain (FDTD) simulations (Lumelical Solutions, Inc., Vancouver, BC, Canada). In 
the simulation model, a 3D model of GNDAs was created and a plane wave was set as a 

light source. A field monitor was set to calculate the electric field and reflected light. 
Periodic boundary conditions were set in the x–y direction, and a perfect matching layer 
was set in the z direction (Figure S2). The reflection spectrum of each model was calculated 

and compared with the actual spectrum (Figure S3). As a result, spectra very similar to 
the actual measured spectra were obtained. Thus, we considered the simulation models 

used in the FDTD simulation to be valid for the created substrate. The simulated enhanced 

Figure 5. SERS spectrum of ATP measured with each substrate.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 12 
 

 

of these spectra were compared for the band around 740 cm−1, which is the sharpest and 
most intense band in the spectra (Figure 6). Error bars indicate the standard deviation of 
band intensities. Figure 6 shows that the SERS intensity of the GNDAs is stronger than 

that of the gold planes. In addition, the SERS intensity is the strongest for the 
measurement substrate with ϕ100 nm nanoparticles adsorbed. This result is consistent 

with that of Figure 4 and shows that Raman scattering interacts with the localized surface 
plasmon resonance based on the absorption at approximately 785 nm, resulting in 
enhanced SERS. 

 

Figure 5. SERS spectrum of ATP measured with each substrate. 

 

Figure 6. Comparison of SERS intensity on each substrate; x labels show the substrate on which the 

nanoparticles are adsorbed (GP or GNDA) and the size of the nanoparticles (0–100 nm). 

To investigate the SERS intensity enhanced by the adsorption of 100 nm diameter 
nanoparticles, the enhanced electric field distributions of the substrates with and without 
ϕ100 nm nanoparticles adsorbed on the GNDAs were calculated using finite-difference 

time domain (FDTD) simulations (Lumelical Solutions, Inc., Vancouver, BC, Canada). In 
the simulation model, a 3D model of GNDAs was created and a plane wave was set as a 

light source. A field monitor was set to calculate the electric field and reflected light. 
Periodic boundary conditions were set in the x–y direction, and a perfect matching layer 
was set in the z direction (Figure S2). The reflection spectrum of each model was calculated 

and compared with the actual spectrum (Figure S3). As a result, spectra very similar to 
the actual measured spectra were obtained. Thus, we considered the simulation models 

used in the FDTD simulation to be valid for the created substrate. The simulated enhanced 

Figure 6. Comparison of SERS intensity on each substrate; x labels show the substrate on which the
nanoparticles are adsorbed (GP or GNDA) and the size of the nanoparticles (0–100 nm).

3.2. Detection of APs by Analyzing SERS Spectra with Machine Learning

The SERS spectra of the samples dropped onto the SERS substrate in different mixing
ratios were measured (Figure 7). Each spectrum represents an average of each mixing ratio.
Figure 7 shows that the intensity and shape of the SERS spectra differ slightly depending
on whether AMP, ADP, or ATP was included. The SERS spectra of APs were compared
with the conventional Raman spectra of them (Figure S5). The conventional Raman spectra
of APs was measured on their powder on glass substrates using the same equipment (2 mW
laser power, other same conditions as SERS) as SERS. Figure S5 shows that the bands at
approximately 730, 1330, and 1460 cm−1 are selectively enhanced. These bands are related
to the adenine moiety [46]. Therefore, the adenine moiety is considered to be adsorbed on
the surface of SERS substrates.
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Raman shift clustering was implemented using the k-means clustering algorithm
for feature selection. The number of clusters was determined to be four using the elbow
method (Figure S6). The clusters to which each Raman shift belongs are shown in Figure 8.
Cluster 1 contains bands at approximately 1330 cm−1 (CN, CC stretch) [46]. Cluster 2
contains a band at approximately 730 cm−1 (ring breathing) and a band at approximately
1460 cm−1 (N7-C8 stretch, C8-H bend, NH2 scissor) [46]. Cluster 3 contains bands at
1075 cm−1 (C-O, C-O-C, C-N stretch) and 1180 cm−1 (P=O and C-N stretch), and other
weak fingerprint regions [47]. Since Cluster 4 does not contain any characteristic bands,
it was judged to be a cluster of noise regions. Based on this result, feature selection was
implemented by excluding Cluster 4, which contains numerous noisy regions.

To verify the effects of feature selection and data augmentation, raw data (RD), feature
selection-processed data (FSD), and feature selection and data augmentation-processed
data (DAD) were input into each machine learning model, and the prediction accuracy
was compared (Figure 9). Prediction accuracy was higher for FSD than for RD for most
machine learning models. These results indicate that noisy regions with no chemical
information inhibit the learning of machine learning models. However, only the LDA
model demonstrated a reduction in prediction accuracy. This is because the LDA model
predicted based on differences in noisy regions to the classification. Therefore, it is possible
that LDA’s prediction for RD was inaccurate. When DAD was input into the machine
learning models, many of the models improved in prediction accuracy, whereas others did
not. Among the models with improved accuracy, LDA and DT improved significantly, with
improvements of 0.221 and 0.093, respectively, whereas the accuracies of kNN and SVM
decreased by 0.171 and 0.057, respectively. For kNN and SVM, overfitting the augmented
data may decrease prediction accuracy. In other models, data augmentation improved
the efficiency and robustness of machine learning. As described above, a highly accurate
prediction of the existence of molecules with similar structures was achieved by feature
selection and data augmentation in small data sets. In particular, it is interesting to note that
the prediction accuracy of 0.900 was achieved for LR, a simple classification model, using
DAD as training data. Feature selection and data augmentation are essential preprocessing
techniques to enhance the accuracy of machine learning predictions when the data set
is limited.

Finally, the prediction results were investigated for each machine learning model
(Figure S7). These results show that the prediction of AMP:ADP:ATP = 1:1:1 is highly
erroneous in most models. On the other hand, models with high prediction accuracy show
relatively few errors in the prediction of that. When there are three or more molecules with
similar structures, such as AP, a prediction of mixing ratio becomes more difficult. It is
important to improve the accuracy of this prediction for applications. Therefore, if a more
accurate or quantitative prediction is needed, data preprocessing and machine learning
models must be improved.
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4. Conclusions

In this study, APs in mixed solutions were simultaneously recognized and detected by
applying machine learning analysis to SERS spectra. First, SERS substrates with nanopar-
ticles adsorbed on GNDAs were fabricated for the SERS spectral measurement of APs.
The substrate with 100 nm nanoparticles adsorbed had a sharp absorption peak at approx-
imately 785 nm, which resulted in a stronger SERS intensity of ATP than the substrate
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with nanoparticles of other sizes. We succeeded in fabricating a substrate that enabled
the measurement of the SERS spectra of ATP using an inexpensive simple method. Next,
feature selection and data augmentation were performed to predict the presence or absence
of APs by performing machine learning analysis on limited SERS spectral data. During
feature selection, noise regions were excluded by clustering using the k-means algorithm.
In data augmentation, the training data were increased by adding noise and using the
SMOTE algorithm. A prediction accuracy of 0.914 was achieved by training the MLP
using the processed data. Thus, the preprocessing enabled highly accurate simultaneous
recognition and detection of APs in limited data by conducting data analysis.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/s24206648/s1, Table S1: Hyperparameters for each ma-
chine learning model; Figure S1: SEM image of the gold plane (GP) with adsorbed nanoparticles;
Figure S2: FDTD simulation model details; Figure S3: Comparison of reflection spectra between actual
measurements (Exp.) and finite-difference time domain simulations (Sim.); Figure S4: Comparison of
y-z cross-sectional enhanced electric field distributions at 785 nm; Figure S5: Comparison between
conventional Raman and SERS spectra of APs; Figure S6: Results of the elbow method; Figure S7:
Confusion matrix of the machine learning models.

Author Contributions: R.N. designed the experiments, fabricated, and characterized the SERS
substrates, measured the SERS spectra, and analyzed the data. T.N., H.H. and T.E. advised on the
experiments, and reviewed and edited the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This study was supported by JST SPRING (grant number JPMJSP2139).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article and
Supplementary Materials.

Conflicts of Interest: The authors declare no conflicts of interest.
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41. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm.

Remote Sens. 2016, 114, 24–31. [CrossRef]
42. Savalia, S.; Emamian, V. Cardiac arrhythmia classification by multi-layer perceptron and convolution neural networks. Bioengi-

neering 2018, 5, 35. [CrossRef] [PubMed]
43. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
44. Xiong, Y.; Liu, X.; Xiong, H. Aggregation modeling of the influence of pH on the aggregation of variably charged nanoparticles.

Sci. Rep. 2021, 11, 17386. [CrossRef] [PubMed]
45. Liu, L.; Zhang, Q.; Lu, Y.; Du, W.; Li, B.; Cui, Y.; Yuan, C.; Zhan, P.; Ge, H.; Wang, Z.; et al. A high-performance and low cost SERS

substrate of plasmonic nanopillars on plastic film fabricated by nanoimprint lithography with AAO template. AIP Adv. 2017, 7,
065205. [CrossRef]

46. Xu, L.; Zhang, Y.; Zhou, J.; Jiang, T. Recyclable surface enhanced Raman scattering monitoring of nucleotides and their metabolites
based on Au nanoflowers modified g-C3N4 nanosheets. Colloids Surf. B Biointerfaces 2022, 218, 112735. [CrossRef]

47. Liu, H.-L.; Ahmed, S.A.; Jiang, Q.-C.; Shen, Q.; Zhan, K.; Wang, K. Gold nanotriangle-assembled nanoporous structures for
electric field-assisted surface-enhanced Raman scattering detection of adenosine triphosphate. ACS Sens. 2023, 8, 1280–1286.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1039/B918972F
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.3390/bioengineering5020035
https://www.ncbi.nlm.nih.gov/pubmed/29734666
https://doi.org/10.1038/s41598-021-96798-3
https://www.ncbi.nlm.nih.gov/pubmed/34462496
https://doi.org/10.1063/1.4985270
https://doi.org/10.1016/j.colsurfb.2022.112735
https://doi.org/10.1021/acssensors.2c02759

	Introduction 
	Materials and Methods 
	Fabrication of SERS Substrates 
	SERS Measurements 
	Data Preprocessing 
	Data Analysis 

	Results and Discussion 
	Evaluation of the Fabricated SERS Substrates 
	Detection of APs by Analyzing SERS Spectra with Machine Learning 

	Conclusions 
	References

