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Abstract: Simultaneous localization and mapping, a critical technology for enabling the autonomous
driving of vehicles and mobile robots, increasingly incorporates multi-sensor configurations. Inertial
measurement units (IMUs), known for their ability to measure acceleration and angular velocity, are
widely utilized for motion estimation due to their cost efficiency. However, the inherent noise in IMU
measurements necessitates the integration of additional sensors to facilitate spatial understanding for
mapping. Visual–inertial odometry (VIO) is a prominent approach that combines cameras with IMUs,
offering high spatial resolution while maintaining cost-effectiveness. In this paper, we introduce
our uncertainty-aware depth network (UD-Net), which is designed to estimate both depth and
uncertainty maps. We propose a novel loss function for the training of UD-Net, and unreliable depth
values are filtered out to improve VIO performance based on the uncertainty maps. Experiments
were conducted on the KITTI dataset and our custom dataset acquired from various driving scenarios.
Experimental results demonstrated that the proposed VIO algorithm based on UD-Net outperforms
previous methods with a significant margin.

Keywords: simultaneous localization and mapping; visual-inertial odometry; depth estimation;
uncertainty estimation; parking lot dataset

1. Introduction

Recent advancements in robotics have enabled the utilization of mobile robots across
various industries with ongoing developments aimed at further enhancing these technolo-
gies and expanding their application fields. For instance, mobile robots are increasingly
being applied in extreme environments, such as in rescue missions [1] and space explo-
ration [2]. To execute the challenging tasks required in these fields, such as obstacle
avoidance [3] and path planning [4], fast and accurate environmental perception technolo-
gies are essential. A representative example of such technology is simultaneous localization
and mapping (SLAM), which involves perceiving the surrounding environment to create
a map while simultaneously estimating the current location of the robot within the map.
For localization, visual markers [5] or radio frequency identification [6] are used in indoor
environments, while global positioning system technology [7] is utilized in outdoor settings.
However, in certain environments such as those mentioned [1,2], relying on these external
elements is not feasible and necessitates the use of the onboard sensors of the robot. There-
fore, recent SLAM techniques propose using IMU to measure acceleration and angular
velocity for estimating positional changes. These techniques often incorporate additional
sensors to compensate for the inherent noise characteristics of IMU. Light detection and
ranging (LiDAR) is a remote sensing technology that measures distance with high accuracy
by emitting light toward a target and detecting the reflected light with optical sensors.
While LiDAR-based SLAM techniques demonstrate high accuracy in indoor environments,
they struggle in environments with low reflectivity medium, open roads where point cloud
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features are less distinct, or under adverse weather conditions such as rain or snow. There-
fore, various VIO algorithms, which use cameras and IMUs to estimate the trajectory of
mobile robots, have been proposed recently. However, VIO algorithms have continued to
demonstrate lower odometry estimation performance compared to LiDAR-based methods,
which directly utilize accurate 3D information. As shown in Figure 1, we aim to propose a
VIO algorithm that maximizes the advantages of deep learning-based depth estimation to
achieve performance comparable to LiDAR-based methods.

Three-dimensional information cannot be directly obtained from a camera sensor, so
distance information is often derived from feature matching and triangulation using stereo
images or sequences of images. However, distance information obtained through these
methods suffers from scale ambiguity and has a trade-off between the effective depth range
and estimation accuracy depending on the distance between the two cameras. Micro-electro-
mechanical systems-based small LiDAR, which are packaged with cameras as a module,
offer high resolution but have the drawbacks of a shorter depth range and relatively lower
distance measurement accuracy compared to more expensive mechanical LiDAR systems.
Recently, there has been a trend toward applying monocular depth estimation, which
leverages deep neural networks (DNNs) to estimate pixel-level distance from a single
image, as an alternative to distance measurement sensors in VIO. However, challenges
remain in training networks for depth estimation, such as addressing the inherent scale
ambiguity, improving network capability efficiently, and acquiring high-quality datasets
to enhance generalization performance. In this paper, we propose a network architecture
and loss function designed to improve reliability by identifying regions of high uncertainty,
where estimation errors are more likely to occur.

Ideally, we would hope that all estimations from deep learning models are error-free,
but this is practically impossible. Therefore, estimating uncertainty is necessary to de-
termine the reliability of the estimation results. In deep learning, two primary types of
uncertainty are aleatoric uncertainty from noise in the training data and epistemic uncer-
tainty from ambiguity in selecting the most appropriate model structure and parameters
for a given task. Such types of uncertainty can also be observed in depth estimation tasks.
The ground truth depth maps for training depth networks are generated by projecting
3D point clouds obtained from high-performance LiDAR onto the image plane. For this
method, inaccurately projected points due to the viewpoint difference between the LiDAR
and camera partially occur, leading to uncertainty caused by this noise of ground truth data.
This method provides pixel-level distance with high accuracy in most regions, but it has the
disadvantage of lower spatial resolution compared to RGB images from cameras. From the
perspective of supervised learning-based methods, uncertainty arises in finding the appro-
priate model architecture and parameters for depth estimation, as it is not possible to train
and evaluate the entire element of predicted results. In this paper, we define a ground truth
uncertainty map that enables the direct learning of the uncertainties arising from errors
encountered during the depth estimation process. We also apply a filtering technique based
on the uncertainty map to enhance the reliability of depth estimation and demonstrate
that utilizing the filtered depth map improves the performance of VIO. To evaluate the
proposed method, we utilized the KITTI dataset [8], a public road-driving dataset, along
with a custom dataset collected from an underground parking lot environment. Across
both datasets, our proposed method demonstrated not only improved depth estimation
accuracy compared to existing supervised learning approaches but also showed that un-
certainty estimation can enhance the overall reliability. Furthermore, by incorporating
the reliability-enhanced filtered depth map into the VIO pipeline, we achieved significant
improvements in odometry estimation performance. The key contributions of our work are
outlined as follows:

• We designed a network named UD-Net, which is a straightforward DNN architecture
that uses a shared encoder–decoder structure to estimate both the depth of each pixel
in the RGB image and the uncertainty of depth estimation. In contrast to existing
research on uncertainty estimation, we propose the uncertainty of depth estimation
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that allows the network to directly learn regions where errors are likely to occur during
the depth estimation process. For training UD-Net, we introduce a depth loss based
on the estimated uncertainty and an uncertainty loss based on the estimated depth,
which is specifically designed for training UD-Net.

• We integrate UD-Net with the feature-based VIO algorithm [9] to propose a novel VIO
algorithm which is robust for the unavoidable errors of the depth network.

• Using the public KITTI dataset, we demonstrated the improved performance of
depth estimation achieved by our proposed pipeline. We acquired and processed an
underground parking lot dataset to demonstrate that our approach not only improves
depth estimation performance but also enhances VIO performance.

Figure 1. Proposed visual–inertial odometry pipeline based on UD-Net. The pipeline is divided into
two main processes: depth estimation for the RGB image by UD-Net, indicated by a red round box,
and VIO based on the estimated depth map, indicated by a blue round box. In the depth map, blue
indicates closer distances, while red represents farther distances.

2. Related Work

Supervised learning-based depth estimation is a method that optimizes the model to
reduce the value of the loss function between the estimated depth map and the ground
truth depth map. It is considered the most effective pipeline for addressing the inherently
ill-posed problem of depth estimation, which involves resolving scale ambiguity from a
single image while maintaining high estimation accuracy. In this field, the scale-invariant
log error (SIlog) proposed by Eigen et al. [10] is commonly used as a fundamental loss
function. Eigen et al. [10] demonstrated that while the global scale of an image is important,
incorporating SIlog as a loss function to reflect the relationships between pixels in the
estimated depth map enhances depth estimation performance. In this work, we designed a
novel loss function for uncertainty-aware depth estimation based on SIlog. Recently, vari-
ous supervised learning-based algorithms have been proposed, including novel network
architectures and approaches such as ordinal regression, which redefine the problem by
focusing on relative order. Lee et al. [11] proposed the local planar guidance (LPG) layer
based on the geometric assumption that adjacent regions in the image are projected from the
same plane. Yuan et al. [12] proposed an algorithm that divides the image into hierarchical
windows and estimates potential based on color and depth information between adjacent
pixels within each window. Bhat et al. [13] addressed depth estimation as an ordinal regres-
sion problem and proposed a method for estimating adaptive bins. We compare the depth
estimation performance of our UD-Net with three recently proposed supervised learning
algorithms [11–13]. Despite continuous improvements in depth estimation performance
through various approaches, there has been insufficient focus on enhancing the reliability
of depth networks. Therefore, this paper proposes a network capable of simultaneously
estimating uncertainty, considering its application in advanced tasks such as SLAM.

Recent advancements in deep learning have prompted the integration of DNN to
improve the performance of visual SLAM. Cong et al. [14] proposes an algorithm that
improves the performance of SLAM in indoor environments by utilizing depth maps from
an RGB-D camera and rejecting edge regions of dynamic objects through segmentation
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results from version 5 of YOLO [15]. However, this approach is better suited for indoor
environments with numerous objects such as offices. In this paper, we argue that employing
a DNN to replace the depth map of an RGB-D camera is effective for implementing visual
SLAM in larger spaces, as demonstrated by the following studies. Jin et al. [16] proposed
an algorithm that combines the depth network based on DenseNet [17] with the ORB-
SLAM [18] pipeline, including ORB feature extraction and bundle adjustment optimization.
Li et al. [19] not only use a ResNet [20]-based depth network but also introduce a similarity-
based filter [21] for surfel denoising, accounting for errors that may arise during depth
estimation and surfel registration. Existing SLAM algorithms that utilize neural networks
often lack a comprehensive consideration of depth estimation techniques and rely on rule-
based filtering methods. In this paper, we propose a method that enables adaptive filtering
based on the uncertainty of depth estimation, demonstrating experimentally that utilizing
the filtered depth map can enhance the performance of VIO.

Kendal et al. [22] addressed foundational concepts for uncertainty research in the
field of deep learning. Methods for estimating uncertainty in depth estimation include
post-processing techniques for analyzing pre-trained networks and predictive estimation
methods that involve designing separate uncertainty estimation networks and incorporat-
ing them into the depth network training process. Hornauer et al. [23] defined an auxiliary
loss as the mean squared error (MSE) between the estimated depth map of the original
input image and the estimated depth map of the side-flipped image after flipping it back.
Based on this, an uncertainty map was generated using the gradient of the intermediate
layer with respect to the loss. Poggi et al. [24] similarly defined the uncertainty as the
absolute error between two outputs generated using the same method and generated an un-
certainty map. Additionally, this study applied previously proposed uncertainty estimation
methods [25–31] to depth estimation and analyzed their effectiveness. Eldesokey et al. [32]
and Su et al. [33] proposed uncertainty estimation networks to enhance, respectively, depth
completion for sparse depth maps and depth estimation from multi-view stereo inputs.
In contrast to existing predictive uncertainty estimation methods, we propose a novel
approach to defining uncertainty and generating ground truth uncertainty to directly affect
the network training process.

3. Methodology

This section presents the details of the proposed VIO method. First, we explain the
architecture of the DNN in UD-Net for depth estimation and introduce the novel loss
function for training the UD-Net. Next, we explain the VIO process that utilizes the
estimation results from UD-Net, which was based on VINS-RGBD [9].

3.1. Uncertainty-Aware Depth Network

In this paper, among the recently proposed depth network candidates [11–13], we
selected BTS [11] based on the experiments conducted in Section 4.2. As shown in Figure 2,
the DNN for the simultaneous estimation of depth and uncertainty adopts a simple encoder–
decoder structure. The encoder leverages DenseNet [17], which is widely known for its
efficient feature extraction capabilities. The final output of the encoder passes through an
atrous spatial pyramid pooling (ASPP) module [34] to expand the receptive field and is
then fed into the first decoder block D1. ASPP is composed of five convolution blocks,
each containing a 1 × 1 convolution, a 3 × 3 convolution with a distinct dilation rate
r ∈ {3, 6, 12, 18, 24}, and ReLU as the activation function. Each decoder block is dual
branch, incorporating an LPG layer [11], and it receives inputs not only from the output
of the previous decoder block but also from the output of the encoder with the same
spatial resolution via a skip connection. The LPG layer is designed based on the geometric
assumption that adjacent regions in the image exist on the same plane in 3D space, and its
output resolution matches the resolution of the input image. We concatenate the outputs
from the LPG layers of D1 and D2, along with the outputs from the LPG layer of D3 and the
branch composed of convolutions. The final feature map is fed into the respective heads
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for depth and uncertainty estimation. The depth head consists of a convolution layer with
a 3 × 3 kernel and a sigmoid function, multiplying by a predefined maximum depth value
to estimate the depth map. Since the uncertainty of depth is defined in the range of [0, ∞]
in this paper, the uncertainty head employs a convolution layer with a 3 × 3 kernel and
ReLU as the activation function.

Figure 2. Proposed depth estimation pipeline of UD-Net. Conv 1 × 1 and Conv 3 × 3 refer to
convolution blocks that combine 1 × 1 and 3 × 3 convolutional kernel operations, respectively, with
the ELU activation function. Up and Down n represent 2× upsampling and n-times downsampling,
respectively. The dotted rounded box indicates the post-processing step that utilizes the output of
DNN. ⊙ denotes the element-wise product. Since the valid points in the ground truth depth map are
sparse compared to the image resolution, we expanded them using a 5 × 5 kernel for visualization.
In the depth map, blue indicates closer distances, while red represents farther distances.

Depth estimation becomes increasingly challenging as distance increases, making it
prone to errors regardless of the capability of network or the quality of the dataset. The
SIlog loss Lsilog [10] adopted widely in recent supervised learning-based depth estimation
methods addresses this issue by being defined on a log scale of relative errors.

Lsilog =
1
n∑

i
e2

i −
λ

n2 (∑
i

ei)
2, (1)

where ei = log d̂i − log d̂i, d̂i and di represent the i-th pixel values in the estimated depth
map D̂ and the ground truth depth map D, respectively. To ensure that the aleatoric
uncertainty arising from heteroscedastic noise [22], which varies with the input, is included
in the estimated uncertainty, we define the following data-dependent uncertainty-aware
depth loss:

Ldepth =
1
n∑

i
(

ei
1 + ûi

)2 − λ

n2 (∑
i

ei
1 + ûi

)2, (2)

where ûi represents the i-th pixel value in the estimated uncertainty map Û, and the
variance focus weight λ is set to 0.85 in our study.

In this study, for error-based uncertainty estimation, we define the ground truth uncer-
tainty ui as the absolute value of the relative error |ei| of depth estimation. The uncertainty
loss Luncertainty is defined as a combination of two terms: one that directly compares the
ground truth uncertainty with the estimated uncertainty and another that encourages the
estimated uncertainty to converge toward zero, which is calculated as follows:

Luncertainty =

√
1
n∑

i
(ui − ûi)2 + log(1 +

1
n∑

i
ûi). (3)
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By utilizing the loss function based on the ground truth uncertainty derived from the
depth estimation results, we can capture the uncertainty arising from model architecture
and model parameters at the current training step. In a structure where the encoder and
decoder are shared, the second term indirectly guides the network to reduce potential
errors in its estimation results. The total loss function Ltotal is defined as the weighted sum
of these two loss functions, where the loss weight α is determined experimentally and
defined as 100 × (current epoch/maximum epoch), which is calculated as follows:

Ltotal = Ldepth + αLuncertainty (4)

3.2. Visual Inertial Odometry Based on UD-Net

In this study, we argue that if the estimated uncertainty map is well predicted as
intended, the filtered depth will retain only the highly accurate regions, which significantly
enhance the performance of VIO. Therefore, the following post-processing step is included
as the final stage of the UD-Net pipeline.

D̃ = D̂ ⊙ (Û < ϵ) (5)

where ϵ represents a positive constant less than 1, which is set to 10−6 in our experiments,
and ⊙ indicates an element-wise multiplication. The VIO leveraging the uncertainty-aware
depth map D̃ generated by UD-Net is built upon the VINS-RGBD [9] framework. The VIO
system utilizes two types of sensor data: IMU data with an output rate of approximately
200–400 Hz and camera images with a frame rate of about 10–30 Hz. Due to the significant
difference in output rates between the two sensors, pre-integration is applied, where a
sample of IMU data is sampled between each pair of camera frames. Subsequent to pre-
integration, inertial odometry is conducted by estimating translation and rotation via the
integration of the sampled IMU data—specifically, accelerometer and gyroscope data. For
the RGB images, visual odometry is conducted using the perspective-n-points (PnP) algo-
rithm [35–37] based on Shi–Tomasi feature extraction [38] and the Kanade–Lucas–Tomasi
sparse optical flow algorithm [39] for feature tracking. In this process, the existing RGB
image-based VIO method [40] relies solely on tracked 2D features. Consequently, instead of
using PnP, it employs structure from motion (SFM), which means that the scale information
depends on inertial odometry. In this study, the depth map D̃ estimated by UD-Net pro-
vides estimated scale information, enabling a PnP algorithm being more robust for motion
estimation than SFM. The depth values of the matched features across different frames
are fixed or filtered after depth validation [40] confirms their similarity. For feature points
whose depth values are removed during depth validation or uncertainty-based filtering,
depth values are estimated using triangulation [41] and are set as variables that can be opti-
mized. Subsequently, visual–inertial initialization [40] is conducted by complementarily
utilizing both odometries. Once the initialization is successful, a sliding window-based
local VIO process is iteratively carried out. Through the optimization process with loop
closing based on the bag of words approach, accumulated localization and mapping errors
are corrected. The map is then constructed using an octree structure [42] being efficient for
point cloud management. In the case of the existing method [9], the valid range of depth
depends on the RGB-D camera used and is generally constrained to approximately 20 m.
However, in the proposed pipeline, it can be applied to broader spaces depending on the
performance of depth estimation. Experiments demonstrated that there was a significant
performance improvement in broader spaces, such as an indoor parking lot, compared to
smaller indoor environments like offices.

4. Experimental Results
4.1. Experiment Setting and Evaluation Measures

All experiments in this study were conducted using a workstation equipped with an
AMD EPYC 7313P 16-Core processor and two NVIDIA GeForce RTX 4090. We utilized the
model parameters directly trained for comparison with existing depth estimation methods.
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For AdaBins, we used the AdamW optimizer [43] with a weight decay of 10−2 and set the
learning rate to 3.5 × 10−4 [13]. For BTS, NewCRFs, and the DNN of the proposed UD-Net,
the Adam optimizer [44] with a weight decay of 10−2 was employed with a learning rate
of 10−4 [11,12]. Following the baseline network [11], the initial parameters of the encoder
and decoder in the proposed DNN were set to DenseNet [17] pre-trained parameters on
ImageNet 1K [45] and initialized using the method proposed by Glorot et al. [46]. In the
experiments on the underground parking lot dataset, transfer learning was applied to
enhance performance and prevent striped noisy patterns [47], which can arise from the
sparse ground truth. The model was first trained on the NYUv2 depth dataset [48], and the
learned parameters were then used as initial parameters with the learning rate set to 10−6.
To prevent overfitting, random rotations within a range of [−1.0, 1.0] degrees were applied
to the KITTI dataset [8], and those within a range of [−2.5, 2.5] degrees were applied to the
NYUv2 depth [48] and underground parking lot datasets during training. Additionally,
color augmentation, including horizontal flipping and adjustments in contrast, brightness,
and color space within the range of [0.9, 1.1], was applied with a 50% probability.

Following previous work on depth estimation [10], we compared the performance
of our method against existing supervised methods [11–13] using six error metrics and
three accuracy metrics. The error metrics, including SIlog, absolute relative error (AbsRel),
square relative error (SqRel), root mean squared error (RMSE), root mean square of the
inverse depth (RMSEi), and logarithmic error (log10), indicate higher performance with
lower values. The accuracy metrics represent the percentage of pixels where the relative
error δ, computed as max(d̂/d, d/d̂), is below thresholds of [1.25, 1.252, 1.253]. Detailed
formulas and explanations of the metrics used for evaluating the performance of depth
estimation can be found in the work of Eigen et al. [10]. For evaluating the performance of
VIO algorithms, we generated ground truth trajectories using the accurate LiDAR-based
SLAM algorithm Faster-LIO [49]. To evaluate the performance of VIO, we utilized three
error metrics, including the translation and rotation errors of relative pose error (RPE)
and the RMSE of absolute trajectory error (ATE) [50]. In the experimental tables, bold
values indicate the highest performance, while underlined values represent the second
highest performance.

4.2. Experimental Results on the KITTI Dataset

The KITTI dataset [8] is widely used not only for depth estimation but also for de-
veloping and evaluating computer vision technologies for autonomous driving, such as
stereo matching, optical flow, object detection, object tracking, and semantic segmenta-
tion. We employed the standard experimental setup for depth estimation as proposed by
Eigen et al. [10]. The Eigen split consists of 39,810 images for training, 4424 images for
validation, and 697 images for evaluation. To train on images of slightly different sizes, we
applied random cropping to a resolution of 704 × 352. The ground truth depth maps in
the KITTI dataset include both the original KITTI depth maps [8], which are LiDAR-based,
and the improved KITTI depth maps [51], which are generated through DNN-based inter-
polation. In this study, we utilized the improved KITTI depth maps to train both existing
methods and our proposed DNN, and we evaluated the performance using both types of
ground truth.

Table 1 presents the quantitative results of depth estimation on the Eigen split [10].
We adopted BTS [11], which demonstrated the highest performance across all metrics
on both the original and improved KITTI datasets, as the baseline of DNN. Before ap-
plying uncertainty-based filtering in UD-Net, the depth estimation results demonstrated
comparable or superior performance to the baseline across five error metrics and three
accuracy metrics. Since the model demonstrated performance improvements across most
metrics without the addition of elaborately designed modules, it indicates that the use
of the proposed loss function for training was effective and meaningful. Although there
was no improvement in terms of AbsRel, the difference was minimal as 0.001, and our
proposed algorithm offers the additional advantage of uncertainty estimation. Applying
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filtering based on the estimated uncertainty results in a reduction of the regions consid-
ered for evaluation; however, this approach effectively addresses areas with significant
errors. Specifically, the error was reduced 50.4 percent for SqRel, and the accuracy metric
with a threshold of 1.25 showed an increase in the percentage of valid pixels by 4.0 and
2.2 percentage point for the original and improved KITTI, respectively. Figure 3 presents
the qualitative results of depth estimation, including both the depth estimation results
and the uncertainty estimation results. High uncertainty was observed in objects such
as foreground vehicles, dense vegetation, people, and streetlights with colors similar to
the background. These areas are prone to noise in LiDAR-based ground truth data or are
susceptible to errors in depth estimation using DNNs.

Table 1. Quantitative results of depth estimation on the KITTI dataset. Error metrics highlighted in
red indicate that lower values are better, while accuracy metrics highlighted in blue indicate that
higher values are better. † indicates the results before applying the filtering process.

Method
Error Metric ↓ Accuracy Metric ↑

AbsRel SqRel RMSE RMSEi SIlog log10 δ < 1.25 δ < 1.252 δ < 1.253

Original KITTI [8]

BTS [11] 0.084 0.563 4.096 0.176 16.624 0.040 0.905 0.965 0.983
NewCRFs [12] 0.117 0.786 4.750 0.208 19.596 0.054 0.845 0.946 0.977
AdaBins [13] 0.102 0.636 4.102 0.186 17.718 0.046 0.879 0.958 0.982
UD-Net † 0.085 0.547 4.037 0.173 16.425 0.040 0.905 0.967 0.983
UD-Net (ours) 0.061 0.276 2.674 0.127 11.980 0.028 0.945 0.982 0.991

Improved KITTI [51]

BTS [11] 0.060 0.255 2.821 0.097 8.967 0.027 0.954 0.992 0.998
NewCRFs [12] 0.090 0.462 3.744 0.140 12.782 0.040 0.901 0.979 0.995
AdaBins [13] 0.074 0.336 2.939 0.112 10.337 0.031 0.937 0.988 0.997
UD-Net † 0.061 0.250 2.784 0.097 8.960 0.027 0.954 0.993 0.998
UD-Net (ours) 0.046 0.126 1.816 0.072 6.506 0.020 0.976 0.997 0.999

Figure 3. Qualitative results of depth estimation on the KITTI dataset. Each column sequentially
presents the input image, the depth map estimated by the baseline depth network, and the depth map
and uncertainty map estimated by our method. In the depth and uncertainty maps, blue indicates
lower values, while red indicates higher values. Regions with the highest estimated uncertainty for
each image are highlighted with a red box. In the depth map, blue indicates closer distances, while
red represents farther distances.
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4.3. Experimental Results on the Underground Parking Lot Dataset

A parking lot is an accident-prone environment where both vehicle driving and
pedestrian walking occur simultaneously, requiring careful consideration for autonomous
driving implementations. Indoor parking lots, in particular, are advantageous for VIO due
to their abundance of feature points and finite distances compared to outdoor environments.
To regard the application of the proposed algorithm in autonomous parking, we collected a
dataset in an underground parking lot using the mobile robot depicted in Figure 4. The
mobile robot, based on the Jackal unmanned ground vehicle, was equipped with an Ouster
LiDAR and an Intel RGB-D camera sensor, and it utilized an NVIDIA embedded board
for sensor data processing and mobility control. The dataset for depth estimation and VIO
was acquired under different dates and driving scenarios. To generate the ground truth
depth map, we performed calibration to estimate the extrinsic parameters between the
camera and LiDAR through off-line calibration [52]. We projected the LiDAR points onto
the image plane using the extrinsic parameters. The dataset, consisting of RGB images
with a resolution of 640 × 480 and corresponding ground truth depth maps, was split into
14,424 pairs for training and 5846 pairs for testing.

Figure 4. Sensor configuration of mobile robot and dataset construction process for depth estima-
tion dataset. In the projection of LiDAR points, red indicates closer distances, while blue represents
farther distances.

As shown in Table 2, the ranking of depth estimation performance for existing meth-
ods [11–13] on the underground parking lot dataset differs from that on the KITTI dataset [8].
While BTS [11], which performed best on all metrics in the KITTI dataset, exhibited the
lowest performance in the underground parking lot dataset, AdaBins [13] achieved the
highest performance with a substantial margin. The depth estimation results from UD-Net
prior to uncertainty-based filtering showed improved performance over the baseline [11],
but they were still lower compared to other existing methods such as AdaBins [13] and
NewCRFs [12]. However, after applying filtering, ours demonstrated the highest per-
formance on six metrics and the second highest performance on three metrics. Figure 5
represents that high uncertainty is estimated in areas prone to depth estimation errors, such
as complex structures including pipes and lighting fixtures on the ceiling and pillar. In
feature-based VIO, such object boundaries are often targeted for feature extraction. The
proposed VIO pipeline employs triangulation and depth validation instead of relying on
potentially inaccurate depth estimation results, enhancing robustness.
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Table 2. Quantitative results of depth estimation on the underground parking lot dataset. Error
metrics highlighted in red indicate that lower values are better, while accuracy metrics highlighted in
blue indicate that higher values are better. † indicates the results before applying the filtering process.

Method
Error Metric ↓ Accuracy Metric ↑

AbsRel SqRel RMSE RMSEi SIlog log10 δ < 1.25 δ < 1.252 δ < 1.253

NewCRFs [12] 0.094 0.377 1.797 0.143 13.914 0.035 0.913 0.977 0.993
AdaBins [13] 0.082 0.338 1.827 0.137 13.243 0.032 0.928 0.978 0.992
BTS [11] 0.102 0.444 1.972 0.155 14.497 0.038 0.908 0.973 0.991
UD-Net † 0.101 0.436 1.944 0.153 14.273 0.038 0.910 0.973 0.991
UD-Net (ours) 0.086 0.359 1.765 0.135 12.485 0.032 0.937 0.981 0.992

Figure 5. Qualitative results of depth estimation on the underground parking lot dataset. Each
column sequentially presents the input image, the depth map estimated by the baseline depth
network [11], and the depth map and uncertainty map estimated by our method. In the depth and
uncertainty maps, blue indicates lower values, while red indicates higher values. Regions with the
highest estimated uncertainty for each image are highlighted with a red box. In the depth map, blue
indicates closer distances, while red represents farther distances.

The dataset for VIO was collected across six scenarios in two categories. Table 3 and
Figure 6 present the quantitative and qualitative results for VIO across cases 1 through case
3, which cover three general driving scenarios. Cases 4 through 6 are three specialized
driving scenarios: continuous rotation, combined individual rotation and translation, and
repeated rotations with acute and obtuse angles. As shown in Table 3, VINS-RGBD [9]
exhibits higher performance in the ATE than VINS-Mono [40] for the underground parking
lot dataset, except in case 2. In case 2, which involves the longest driving distance, sig-
nificant errors resulted in a higher average of error metrics. This highlights the need for
performance improvements, as such errors could lead to accidents in practical autonomous
driving applications. Despite being an RGB-based VIO pipeline, our proposed method
consistently outperforms VINS-RGBD [9] across all metrics in every case. When using
our proposed VIO pipeline, performance improved in terms of ATE compared to baseline
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depth estimation [11]. Ultimately, we argue that combining depth estimation with VIO
is effective in environments that exceed the ideal maximum depth of RGB-D cameras,
and that enhancing depth estimation performance directly contributes to the improved
performance of VIO.

Table 3. Quantitative results of odometry estimation on the underground parking lot dataset.
Baseline mean BTS [11] which is the basis of depth network. † indicates the results before applying
the filtering process.

Driving Scenario Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Average

Driving Distance [m] 225.35 225.35 122.26 44.32 44.27 26.02

Method Depth RMSE of ATE [m]

VINS-Mono [40] None 7.6614 2.0864 2.7397 0.8252 2.9859 4.6489 4.1034
VINS-RGBD [9] Sensor 5.8164 7.8056 0.9733 1.5514 0.7652 0.7833 4.8166

Ours
Baseline 2.0736 0.8750 0.6901 0.2468 0.3556 0.2698 1.1382
UD-Net † 2.0724 0.8809 0.7417 0.2121 0.2948 0.2277 1.1411
UD-Net (ours) 2.1260 0.7693 0.5627 0.2193 0.2507 0.2037 1.0870

Method Depth Translation error of RPE [m]

VINS-Mono [40] None 0.1518 0.0539 0.0563 0.0857 0.3136 0.2527 0.1127
VINS-RGBD [9] Sensor 0.1217 0.5044 0.0753 0.2152 0.0632 0.1252 0.2413

Ours
Baseline 0.0367 0.0328 0.0302 0.0304 0.0368 0.0562 0.0346
UD-Net † 0.0368 0.0331 0.0305 0.0311 0.0365 0.0565 0.0348
UD-Net (ours) 0.0377 0.0330 0.0295 0.0308 0.0338 0.0547 0.0347

Method Depth Rotation error of RPE [deg]

VINS-Mono [40] None 0.1379 0.1442 0.1844 0.4872 0.5463 0.6791 0.2175
VINS-RGBD [9] Sensor 0.3601 0.4537 0.3722 1.3643 1.2669 2.4969 0.5969

Ours
Baseline 0.1396 0.1576 0.1828 0.4958 0.5164 0.7093 0.2220
UD-Net † 0.1405 0.1649 0.1894 0.4926 0.5169 0.7133 0.2258
UD-Net (ours) 0.1394 0.1557 0.1870 0.4863 0.5102 0.7233 0.2216

Figure 6. Qualitative results of odometry estimation on the underground parking lot dataset. In
case 2, VINS-RGBD, and in cases 5 and 6, VINS-Mono are excluded from the qualitative performance
comparison due to significant errors in their estimates.



Sensors 2024, 24, 6665 12 of 14

5. Conclusions

This paper proposes a method to enhance the performance of VIO by integrating
DNN-based depth estimation with data from camera and IMU sensors. The proposed
UD-Net simultaneously estimates depth maps from RGB images and predicts regions
prone to errors in the estimated depth maps. The approach includes a complementary
loss function for depth and uncertainty during training and applies uncertainty-based
filtering. We observed enhanced depth estimation performance on the public KITTI dataset
and evaluated VIO performance using data collected from an underground parking lot
environment. Our findings suggest that in environments where the ideal maximum depth
range provided by RGB-D cameras is exceeded, well-trained DNN-based depth estimation
can significantly enhance VIO performance. Consequently, depth estimation serves as an
effective alternative or complement to distance-constrained RGB-D cameras and expensive
LiDAR systems, depending on the application environment.

Our proposed method significantly improves the accuracy of depth estimation and
odometry estimation. However, the computational resources required, along with the
resolution of the depth neural network and input images, may pose challenges for real-time
application. Therefore, future work should focus on optimizing the deep neural network
to enhance real-time applicability. Furthermore, the generalization performance, which is
often overlooked in the current field of supervised depth estimation, is an essential aspect
that must be considered when applying these methods in practical applications. To address
this issue, we are considering the utilization of foundation models or unsupervised depth
estimation approaches in future work. However, this study demonstrates that expensive
LiDAR sensors can be replaced with depth networks in the implementation of SLAM, and
that enhancing the reliability of the depth network directly contributes to improvements in
odometry estimation.

Author Contributions: Conceptualization, J.S. and S.J.L.; methodology, J.S.; software, J.S.; validation,
J.S.; data curation, J.S.; writing—original draft preparation, J.S.; writing—review and editing, J.S. and
S.J.L.; visualization, J.S.; supervision, S.J.L.; project administration, H.J. and S.J.L.; funding acquisition,
Y.J., H.J. and S.J.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partly supported by the Institute of Information & Communications
Technology Planning & Evaluation(IITP)–Innovative Human Resource Development for Local Intel-
lectualization program grant funded by the Korea government (MSIT) (IITP-2024-RS-2024-00439292)
and a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT)
(RS-2024-00346415).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The KITTI dataset is publicly available online. The public dataset can
be found at https://www.cvlibs.net/datasets/kitti, accessed on 29 August 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Deng, W.; Huang, K.; Chen, X.; Zhou, Z.; Shi, C.; Guo, R.; Zhang, H. Semantic RGB-D SLAM for rescue robot navigation. IEEE

Access 2020, 8, 221320–221329. [CrossRef]
2. Hong, S.; Bangunharcana, A.; Park, J.M.; Choi, M.; Shin, H.S. Visual SLAM-based robotic mapping method for planetary

construction. Sensors 2021, 21, 7715. [CrossRef] [PubMed]
3. Guo, B.; Guo, N.; Cen, Z. Obstacle avoidance with dynamic avoidance risk region for mobile robots in dynamic environments.

IEEE Robot. Autom. Lett. 2022, 7, 5850–5857. [CrossRef]
4. Ab Wahab, M.N.; Nefti-Meziani, S.; Atyabi, A. A comparative review on mobile robot path planning: Classical or meta-heuristic

methods? Annu. Rev. Control 2020, 50, 233–252. [CrossRef]
5. Munoz-Salinas, R.; Medina-Carnicer, R. UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared

planar markers. Pattern Recognit. 2020, 101, 107193. [CrossRef]
6. Motroni, A.; Buffi, A.; Nepa, P. A survey on indoor vehicle localization through RFID technology. IEEE Access 2021, 9, 17921–17942.

[CrossRef]

https://www.cvlibs.net/datasets/kitti
http://doi.org/10.1109/ACCESS.2020.3031867
http://dx.doi.org/10.3390/s21227715
http://www.ncbi.nlm.nih.gov/pubmed/34833786
http://dx.doi.org/10.1109/LRA.2022.3161710
http://dx.doi.org/10.1016/j.arcontrol.2020.10.001
http://dx.doi.org/10.1016/j.patcog.2019.107193
http://dx.doi.org/10.1109/ACCESS.2021.3052316


Sensors 2024, 24, 6665 13 of 14

7. Kiss-Illés, D.; Barrado, C.; Salamí, E. GPS-SLAM: An augmentation of the ORB-SLAM algorithm. Sensors 2019, 19, 4973.
[CrossRef]

8. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? the kitti vision benchmark suite. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012;
pp. 3354–3361.

9. Tyagi, A.; Liang, Y.; Wang, S.; Bai, D. DVIO: Depth-aided visual inertial odometry for rgbd sensors. In Proceedings of the IEEE
International Symposium on Mixed and Augmented Reality (ISMAR), Bari, Italy, 4–8 October 2021; pp. 193–201.

10. Eigen, D.; Puhrsch, C.; Fergus, R. Depth map prediction from a single image using a multi-scale deep network. Adv. Neural Inf.
Process. Syst. 2014, 27. [CrossRef]

11. Lee, J.H.; Han, M.K.; Ko, D.W.; Suh, I.H. From big to small: Multi-scale local planar guidance for monocular depth estimation.
arXiv 2019, arXiv:1907.10326.

12. Yuan, W.; Gu, X.; Dai, Z.; Zhu, S.; Tan, P. NeWCRFs: Neural Window Fully-connected CRFs for Monocular Depth Estimation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022.

13. Bhat, S.F.; Alhashim, I.; Wonka, P. Adabins: Depth estimation using adaptive bins. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 4009–4018.

14. Cong, P.; Li, J.; Liu, J.; Xiao, Y.; Zhang, X. SEG-SLAM: Dynamic Indoor RGB-D Visual SLAM Integrating Geometric and
YOLOv5-Based Semantic Information. Sensors 2024, 24, 2102. [CrossRef]

15. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

16. Jin, Y.; Yu, L.; Chen, Z.; Fei, S. A mono slam method based on depth estimation by densenet-cnn. IEEE Sens. J. 2021, 22, 2447–2455.
[CrossRef]

17. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

18. Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Trans. Robot.
2015, 31, 1147–1163. [CrossRef]

19. Li, Z.; Yu, L.; Pan, Z. A monocular SLAM system based on ResNet depth estimation. IEEE Sens. J. 2023, 23, 15106–15114.
[CrossRef]

20. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

21. Panetta, K.; Bao, L.; Agaian, S. Sequence-to-sequence similarity-based filter for image denoising. IEEE Sens. J. 2016, 16, 4380–4388.
[CrossRef]

22. Kendall, A.; Gal, Y. What uncertainties do we need in bayesian deep learning for computer vision? Adv. Neural Inf. Process. Syst.
2017, 30.

23. Hornauer, J.; Belagiannis, V. Gradient-based uncertainty for monocular depth estimation. In Proceedings of the European
Conference on Computer Vision (ECCV), Tel Aviv, Israel, 23–27 October 2022; pp. 613–630.

24. Poggi, M.; Aleotti, F.; Tosi, F.; Mattoccia, S. On the uncertainty of self-supervised monocular depth estimation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020;
pp. 3227–3237.

25. MacKay, D.J. A practical Bayesian framework for backpropagation networks. Neural Comput. 1992, 4, 448–472. [CrossRef]
26. Lakshminarayanan, B.; Pritzel, A.; Blundell, C. Simple and scalable predictive uncertainty estimation using deep ensembles. Adv.

Neural Inf. Process. Syst. 2017, 30.
27. Huang, G.; Li, Y.; Pleiss, G.; Liu, Z.; Hopcroft, J.E.; Weinberger, K.Q. Snapshot ensembles: Train 1, get m for free. arXiv 2017,

arXiv:1704.00109.
28. Chen, L.; Tang, W.; Wan, T.R.; John, N.W. Self-supervised monocular image depth learning and confidence estimation. Neurocom-

puting 2020, 381, 272–281. [CrossRef]
29. Nix, D.A.; Weigend, A.S. Estimating the mean and variance of the target probability distribution. In Proceedings of the IEEE

International Conference on Neural Networks (ICNN), Orlando, FL, USA, 28 June–2 July 1994; Volume 1, pp. 55–60.
30. Pilzer, A.; Lathuiliere, S.; Sebe, N.; Ricci, E. Refine and distill: Exploiting cycle-inconsistency and knowledge distillation for

unsupervised monocular depth estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 9768–9777.

31. Neal, R.M. Bayesian Learning for Neural Networks; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012;
Volume 118.

32. Eldesokey, A.; Felsberg, M.; Holmquist, K.; Persson, M. Uncertainty-aware cnns for depth completion: Uncertainty from
beginning to end. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle,
WA, USA, 13–19 June 2020; pp. 12014–12023.

33. Su, W.; Xu, Q.; Tao, W. Uncertainty guided multi-view stereo network for depth estimation. IEEE Trans. Circuits Syst. Video
Technol. 2022, 32, 7796–7808. [CrossRef]

34. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017,
arXiv:1706.05587.

http://dx.doi.org/10.3390/s19224973
http://dx.doi.org/10.48550/arXiv.1406.2283
http://dx.doi.org/10.3390/s24072102
http://dx.doi.org/10.1109/JSEN.2021.3134014
http://dx.doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1109/JSEN.2023.3275324
http://dx.doi.org/10.1109/JSEN.2016.2548782
http://dx.doi.org/10.1162/neco.1992.4.3.448
http://dx.doi.org/10.1016/j.neucom.2019.11.038
http://dx.doi.org/10.1109/TCSVT.2022.3183836


Sensors 2024, 24, 6665 14 of 14

35. Gao, X.S.; Hou, X.R.; Tang, J.; Cheng, H.F. Complete solution classification for the perspective-three-point problem. IEEE Trans.
Pattern Anal. Mach. Intell. 2003, 25, 930–943.

36. Lepetit, V.; Moreno-Noguer, F.; Fua, P. EP n P: An accurate O (n) solution to the P n P problem. Int. J. Comput. Vis. 2009, 81,
155–166. [CrossRef]

37. Penate-Sanchez, A.; Andrade-Cetto, J.; Moreno-Noguer, F. Exhaustive linearization for robust camera pose and focal length
estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2387–2400. [CrossRef]

38. Shi, J.; Tomasi. Good features to track. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Seattle, WA, USA, 21–23 June 1994; pp. 593–600.

39. Lucas, B.D.; Kanade, T. An iterative image registration technique with an application to stereo vision. In Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI), Vancouver, BC, Canada, 24–28 August 1981; Volume 2,
pp. 674–679.

40. Qin, T.; Li, P.; Shen, S. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 2018, 34,
1004–1020. [CrossRef]

41. Civera, J.; Davison, A.J.; Montiel, J.M. Inverse depth parametrization for monocular SLAM. IEEE Trans. Robot. 2008, 24, 932–945.
[CrossRef]

42. Meagher, D. Geometric modeling using octree encoding. Comput. Graph. Image Process. 1982, 19,129–147. [CrossRef]
43. Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. In Proceedings of the International Conference on Learning

Representations (ICLR), Toulon, France, 24–26 April 2017.
44. Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning

Representations (ICLR), San Diega, CA, USA, 7–9 May 2015.
45. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June 2009; pp. 248–255.
46. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the

International Conference on Artificial Intelligence and Statistics (AISTATS). JMLR Workshop and Conference Proceedings,
Sardinia, Italy, 13–15 May 2010; pp. 249–256.

47. Son, E.; Choi, J.; Song, J.; Jin, Y.; Lee, S.J. Monocular Depth Estimation from a Fisheye Camera Based on Knowledge Distillation.
Sensors 2023, 23, 9866. [CrossRef]

48. Silberman, N.; Hoiem, D.; Kohli, P.; Fergus, R. Indoor segmentation and support inference from rgbd images. In Proceedings of
the European Conference on Computer Vision (ECCV), Florence, Italy, 7–13 October 2012; pp. 746–760.

49. Bai, C.; Xiao, T.; Chen, Y.; Wang, H.; Zhang, F.; Gao, X. Faster-LIO: Lightweight tightly coupled LiDAR-inertial odometry using
parallel sparse incremental voxels. IEEE Robot. Autom. Lett. 2022, 7, 4861–4868. [CrossRef]

50. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation of RGB-D SLAM systems. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura-Algarve, Portugal,
7–12 October 2012; pp. 573–580.

51. Uhrig, J.; Schneider, N.; Schneider, L.; Franke, U.; Brox, T.; Geiger, A. Sparsity invariant cnns. In Proceedings of the International
Conference on 3D Vision (3DV), Qingdao, China, 10–12 October 2017; pp. 11–20.

52. Tsai, D.; Worrall, S.; Shan, M.; Lohr, A.; Nebot, E. Optimising the selection of samples for robust lidar camera calibration.
In Proceedings of the IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22
September 2021; pp. 2631–2638.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11263-008-0152-6
http://dx.doi.org/10.1109/TPAMI.2013.36
http://dx.doi.org/10.1109/TRO.2018.2853729
http://dx.doi.org/10.1109/TRO.2008.2003276
http://dx.doi.org/10.1016/0146-664X(82)90104-6
http://dx.doi.org/10.3390/s23249866
http://dx.doi.org/10.1109/LRA.2022.3152830

	Introduction
	Related Work
	Methodology 
	Uncertainty-Aware Depth Network
	Visual Inertial Odometry Based on UD-Net

	Experimental Results
	Experiment Setting and Evaluation Measures
	Experimental Results on the KITTI Dataset
	Experimental Results on the Underground Parking Lot Dataset

	Conclusions
	References

