
Citation: Ma, Z.; Sun, Q.; Matsumaru,

T. Bidirectional Planning for

Autonomous Driving Framework

with Large Language Model. Sensors

2024, 24, 6723. https://doi.org/

10.3390/s24206723

Academic Editor: Felipe Jiménez

Received: 3 October 2024

Revised: 14 October 2024

Accepted: 16 October 2024

Published: 19 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Bidirectional Planning for Autonomous Driving Framework
with Large Language Model
Zhikun Ma 1,*, Qicong Sun 2 and Takafumi Matsumaru 1

1 Graduate School of Information, Production and Systems, Waseda University, Kitakyushu 808-0135, Japan;
matsumaru@waseda.jp

2 Singapore General Hospital, Singapore 169608, Singapore; sun.qicong@singhealth.com.sg
* Correspondence: zhikun@akane.waseda.jp

Abstract: Autonomous navigation systems often struggle in dynamic, complex environments due to
challenges in safety, intent prediction, and strategic planning. Traditional methods are limited by rigid
architectures and inadequate safety mechanisms, reducing adaptability to unpredictable scenarios.
We propose SafeMod, a novel framework enhancing safety in autonomous driving by improving
decision-making and scenario management. SafeMod features a bidirectional planning structure with
two components: forward planning and backward planning. Forward planning predicts surrounding
agents’ behavior using text-based environment descriptions and reasoning via large language models,
generating action predictions. These are embedded into a transformer-based planner that integrates
text and image data to produce feasible driving trajectories. Backward planning refines these trajecto-
ries using policy and value functions learned through Actor–Critic-based reinforcement learning,
selecting optimal actions based on probability distributions. Experiments on CARLA and nuScenes
benchmarks demonstrate that SafeMod outperforms recent planning systems in both real-world and
simulation testing, significantly improving safety and decision-making. This underscores SafeMod’s
potential to effectively integrate safety considerations and decision-making in autonomous driving.

Keywords: autonomous driving; multi-modal language model; decision-making

1. Introduction

Autonomous driving systems are often criticized for their lack of transparency, leading
to them being perceived as a “black box”. This opacity raises significant concerns about
safety and reliability, as both users and regulators find it difficult to understand or explain
the rationale behind a vehicle’s decisions. To address these challenges, recent research
efforts have concentrated on enhancing the interpretability and trustworthiness of these
systems by analyzing how various factors influence their decision-making. For instance,
Li et al. [1] employed experiments with controlled variables and alternative scenarios
to identify factors that impact model decisions. Similarly, frameworks like LaMPilot [2]
leverage large language models (LLMs) to interpret user intent and translate these inputs
into comprehensible driving actions, demonstrating their applicability across different
driving conditions. Furthermore, regulatory guidelines increasingly emphasize the need
for autonomous vehicles to provide understandable explanations for their decisions, which
is crucial for maintaining safety and fostering public trust in these technologies [3].

The introduction of autonomous driving technology marks a transformative step in
the evolution of transportation, with the potential to significantly improve efficiency, safety,
and accessibility. A driving force behind these advancements is Embedded Artificial Intelli-
gence (EAI), enabling autonomous vehicles to operate effectively in complex environments
by adhering to societal norms and accepted behaviors [4,5]. Central to autonomous driving
is trajectory planning, which involves the vehicle predicting the real-time behaviors of
road users, such as other vehicles, pedestrians, and cyclists, and adapting its movements

Sensors 2024, 24, 6723. https://doi.org/10.3390/s24206723 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24206723
https://doi.org/10.3390/s24206723
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7776-2984
https://doi.org/10.3390/s24206723
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24206723?type=check_update&version=2


Sensors 2024, 24, 6723 2 of 24

accordingly. Accurate perception and prediction of the surrounding environment are vital
to ensure safe and effective trajectory planning.

Despite notable technological progress, autonomous driving continues to face signifi-
cant hurdles. A major issue is “occlusions”, where obstacles block the vehicle’s sensors,
impairing accurate environmental perception [6]. Additionally, current systems often
struggle in complex scenarios. Various approaches have been proposed to address these
challenges: Li et al. [7] applied probabilistic modeling to anticipate pedestrian behavior,
while Zhang et al. [5] used dynamic game theory to tackle trajectory planning problems
arising from occluded views. However, both methods encountered difficulties in managing
the unpredictability and dynamic nature of real-world driving.

Moreover, balancing high navigation performance with stringent safety requirements
adds another level of complexity. Many systems either overlook or inadequately incor-
porate critical safety constraints essential for autonomous vehicles to operate securely
in uncertain environments [8]. The lack of robust safety integration, combined with in-
sufficient forward- and backward-looking planning mechanisms, limits their efficacy in
real-world applications where both safety and efficiency are imperative.

To address these limitations, we propose SafeMod, a novel framework for modular,
safety-enhanced navigation powered by LLMs. SafeMod introduces a flexible, modular
architecture with a core principle of bidirectional planning, which involves two key com-
ponents: forward planning and backward planning. Forward planning and backward
planning are two key modules defined by the sequence of the planning process. Forward
planning focuses on generating future navigation strategies by analyzing the agent’s objec-
tives and environmental context. Backward planning, on the other hand, retrospectively
reviews these strategies for potential risks, ensuring that safety is maintained throughout
the decision-making process.

We evaluate SafeMod on challenging benchmarks in nuScenes [9] and CARLA [10],
where it demonstrates superior safety and task success rates compared to existing state-
of-the-art methods. SafeMod’s ability to analyze intent, adapt to dynamic environments,
and ensure safety at every stage of planning showcases its potential for advancing au-
tonomous navigation.

Our key contributions are:

• Proposing SafeMod, a modular framework for autonomous navigation powered
by LLMs, integrating intent inference within the forward planner and including a
backward planner for adaptive decision-making.

• Introducing a novel bidirectional planning approach that combines forward strategy
generation (via the forward planner and intent analyzer) and backward safety eval-
uation (via the backward planner), ensuring optimal performance and strict safety
compliance in dynamic environments.

• Demonstrating through extensive experiments on nuScenes and CARLA that SafeMod
improves navigation success rates and safety performance, outperforming current
state-of-the-art methods.

These results show that SafeMod consistently outperforms traditional navigation
systems in both success rates and safety compliance. The bidirectional planning
mechanism—combining the forward planner with its intent analyzer and the backward
planner—allows SafeMod to adapt to complex scenarios while maintaining stringent
safety standards.

2. Related Work
2.1. LLMs for Autonomous Driving Decision-Making

Embedded Artificial Intelligence (EAI) is becoming increasingly critical in the devel-
opment and functioning of autonomous vehicles (AVs). A key focus of recent research
has been improving AVs’ ability to interact with their environments in human-like ways.
For instance, Zhou et al. [11] explored models that mimic human driving behavior, while
Sadigh et al. [12] examined how integrating human inputs can better align AV actions



Sensors 2024, 24, 6723 3 of 24

with natural driving tendencies. Additionally, Sun et al. [13] highlighted the importance
of visual cues in pedestrian interactions for effective decision-making in urban settings.
Within this evolving field, two distinct approaches have emerged. The first involves using
large language models (LLMs) to comprehend driving scenes through question-answering
tasks. The second approach focuses on LLM-driven scene understanding for planning
purposes. For example, DriveGPT4 [14] leverages historical video and textual data to pre-
dict both answers and control signals. Similarly, LanguageMPC [15] translates perception
results and map data into language descriptions to guide planning actions. These advances
demonstrate the growing integration of AI techniques in autonomous driving, aiming
to create vehicles that are more intuitive and context-aware. These work explores the
current landscape of EAI in autonomous vehicles, highlighting key research directions and
emerging approaches that aim to enhance the human-like interaction capabilities of AVs.

2.2. Knowledge-Driven Approaches for Autonomous Driving

While data-driven approaches, such as multimodal data fusion [16–18], and the use
of imitation learning and reinforcement learning for autonomous driving models [19–22],
have achieved remarkable success in both academia and industry, they also face significant
challenges. These techniques have enabled autonomous driving technology to gradually
integrate into daily life. However, their reliance on the distribution of training data limits
their generalization capability. As a result, they often struggle with adaptability and the
long-tail phenomenon when applied in less common or varied scenarios [23]. In contrast,
human drivers possess strong common sense and adaptability, enabling them to handle
unexpected situations with ease. This highlights the need to shift towards knowledge-
driven approaches, which emphasize empirical reasoning and inductive learning from
the environment [24,25]. Unlike methods based solely on predefined rules or domain-
specific data, knowledge-driven techniques acquire general knowledge and evolve over
time [26,27]. By incorporating human-like reasoning, these strategies improve perfor-
mance, interpretability, and safety, particularly in complicated traffic conditions. With the
emergence of foundation models, powerful tools like large language models (LLMs) and
vision-language models (VLMs) have become prominent in reasoning and decision-making
for autonomous driving [28,29]. By training on diverse datasets, these explorations of
the transition from data-driven to knowledge-driven approaches in autonomous driving,
emphasize the potential of foundation models to enhance reasoning and decision-making
capabilities in complex traffic scenarios.

3. Problem Formulation

The goal of autonomous driving is to develop a navigation policy that ensures safety,
efficiency, and adaptability in dynamic environments. The navigation task can be framed
as a Markov decision process (ADNP), which is defined as a tuple P = ⟨S, A, T, C, Π⟩.

The state space S encompasses all possible configurations of the environment, includ-
ing the agent’s position (pagent), velocity (vagent), the positions of obstacles (pobst), and road
conditions (rroad). These elements form a state s ∈ S.

The action space A consists of the agent’s possible control actions, such as steering,
acceleration, and braking, denoted at each time step by at = (asteer, aaccel, abrake).

The transition function T defines how the environment evolves as a result of the
agent’s actions. Given a state st and an action at, the next state st+1 is determined by the
function T(st, at), which models the dynamics of the environment, possibly incorporating
differential equations to describe the behavior of the vehicle.

The cost function C assigns a value to each action a taken in state s, representing the
associated cost. The total cost over a trajectory τ = {s0, a0, . . . , sT} is the sum of the costs
incurred at each time step, denoted as J(τ) = ∑T

t=0 C(st, at). This function penalizes unsafe
actions, such as collisions or speeding. The cost for a specific state–action pair C(st, at)
includes terms for collisions and speed violations.



Sensors 2024, 24, 6723 4 of 24

Finally, in an Autonomous Driving Navigation Problem (ADNP), the primary objective
is to determine a policy that minimizes the accumulated cost while ensuring safety and
task success. Π is the set of all possible navigation policies π : S→ A, mapping states to
actions. The goal is to find an optimal policy π∗ ∈ Π that minimizes the total cost:

π∗ = arg min
π∈Π

E
[

T

∑
t=0

C(st, π(st))

]

By solving this optimization problem, the system selects actions that effectively balance
safety and performance throughout the navigation task.

Bidirectional Planning Problem. To enhance safety and adaptability, we propose a
bidirectional planning framework consisting of two phases:

• Forward Planning: Given the current state st ∈ S and the inferred intent I, the forward
planner generates a sequence of actions:

{at, at+1, . . . , at+k} ∈ A

that optimally navigates towards the goal state sg. This planning is based on minimiz-
ing the expected cost over future states:

E
[

t+k

∑
i=t

C(si, ai)

]

• Backward Planning: After forward planning, the backward planner evaluates the
safety and feasibility of the generated trajectory τ = {st, st+1, . . . , st+k}. The backward
planning phase involves minimizing a risk function R(τ) to ensure the trajectory
is safe:

min
τ

R(τ) =
t+k

∑
i=t

(⊮unsafe(si) +⊮collision(si))

The plan is adjusted iteratively to minimize risks, ensuring the trajectory remains
within the safe operating bounds:

τ̂ = arg min
τ

R(τ)

Optimal Policy. The final objective is to output a policy π∗ that balances both forward
and backward planning considerations. The optimal policy must minimize the combined
cost and risk function over the entire trajectory:

π∗ = arg min
π

E
[

T

∑
t=0

C(st, π(st)) + R(τ)

]

This policy not only ensures efficient navigation but also adapts to unforeseen hazards,
dynamically adjusting actions based on intent inference and safety evaluations.

4. Methodology

The SafeMod framework (Figure 1) for autonomous navigation uses a modular ap-
proach, combining forward and backward planning. During forward planning, the BEV-
planning module processes bird’s-eye-view (BEV) features using Motion, Map, and Plan-
ning Transformers to generate optimal trajectories. A video sense module interprets sensory
data from multiple views. Employing a forward-thinking mechanism, it continuously up-
dates the agent’s internal state, refining decisions based on real-time environmental changes.
Following forward planning, the system moves to backward planning. Backward planning
involves a latent space system composed of a representation, transition, and reward model
to enhance safety. These models predict and refine trajectories by integrating state, action,



Sensors 2024, 24, 6723 5 of 24

and reward data, ensuring optimal and safe actions. The process uses a Q-function to eval-
uate and select the best candidate states, balancing performance and safety more effectively
than prior methods that lack safety constraints.

Figure 1. Overall framework of SafeMod. SafeMod takes multi-view image sequences as input,
transforms them into BEV embedding and sense description, outputs them and samples one action
to control the vehicle.

4.1. Forward Planning

The forward planning mechanism in the updated framework introduces two primary
modules: the BEV-planning module and the VLM-based video sense module. Each module
plays a crucial role in generating efficient trajectories based on the vehicle’s current state
and environment.

The BEV-planning module is responsible for creating a bird’s-eye view (BEV) represen-
tation of the vehicle’s surroundings. This spatial layout includes the road structure, nearby
obstacles, and dynamic entities, which serve as the foundational elements for trajectory
computation. By leveraging the BEV, the system can accurately plan paths that account for
the spatial distribution of elements around the vehicle.

The video sense module, based on vision-language models (VLMs), adds a layer of
semantic understanding to the planning process. It processes visual inputs from the vehi-
cle’s cameras to interpret scene dynamics, object interactions, and contextual information
that are not captured in the BEV alone. This semantic enrichment allows the planning
mechanism to make more informed decisions by incorporating temporal and context-aware
features from the visual data.

The BEV-planning and VLM-based video sense modules engage in collaborative work
to enhance trajectory generation. The BEV module provides a spatial blueprint for path
planning, while the video sense module refines these trajectories by incorporating semantic
and temporal context, leading to more accurate and reliable navigation.

4.1.1. BEV-Planning Module

As shown in Figure 2, the BEV-planning module consists of multiple transformers that
work together to process bird’s-eye-view (BEV) features to generate strategy in planning
transformer. The structure includes:

BEV Feature: The BEV feature extraction provides a comprehensive understanding
of the surrounding environment from a BEV perspective. In our approach, we use 2 s of
historical information to plan a 3-s future trajectory. For encoding image features, we adopt
ResNet50 [30] as the default backbone network.

To enhance the perception range, vectorized mapping and motion prediction are
performed for a longitudinal range of 60 m and a lateral range of 30 m. The default settings
for BEV queries, map queries, and agent queries are set at 200 × 200, 100 × 20, and 300,
respectively. Each map vector query contains 100 vectors, with each vector consisting of



Sensors 2024, 24, 6723 6 of 24

20 map points. The feature dimension and hidden size are configured to 256. To optimize
efficiency, the number of encoder and decoder layers for the motion and map modules
is reduced from 6 to 3. Additionally, the input image size is reduced from 1280 × 720 to
640 × 360 to lower computational load without sacrificing performance.

Figure 2. Framework detail of BEV-planning module. The BEV-planning module processes bird’s-
eye-view (BEV) features through multiple transformers to generate strategic vehicle control actions,
incorporating BEV feature extraction, motion and map predictions, inter-query interactions, and final
trajectory planning based on high-level driving commands.

Motion Transformer: The Motion Transformer utilizes agent queries, Qa, for extracting
agent-specific information from the common BEV feature representation via deformable
attention [31]. Subsequently, an MLP-based decoder network processes these queries to
infer agent characteristics, including position, category probability, and heading.

To enhance agent features for more accurate motion prediction, the module facilitates
agent-agent and agent-map interactions via an attention mechanism [32,33]. This enables the
system to consider agents’ relative positions and their environmental relationships. Following
these interactions, the module predicts future trajectories for each agent, represented as multi-
modal motion vectors V̂a ∈ RNa×Nk×Tf×2. Here, Na is the number of predicted agents, Nk the
number of modalities, and Tf the number of future timestamps. Each modality corresponds
to a specific driving intention and outputs a probability score indicating its likelihood.

Map Transformer: The Map Transformer integrates map information to enhance
navigation accuracy by accounting for road geometry and traffic rules. It employs a set of
map queries, Qm [34], to extract relevant map information from the shared BEV feature
map. The system then predicts map vectors, V̂m ∈ RNm×Np×2, assigning a class score to
each. Here, Nm is the number of predicted map vectors, and Np denotes the number of
points in each vector.

Inter Transformer: The BEV-planning module uses a randomly initialized ego query
Qego to learn implicit scene features essential for planning. Initially, the ego query interacts
with agent queries Qa via a Transformer decoder [35], utilizing position embeddings
encoded by an MLP (PE1) from the positions of the ego vehicle pego and agents pa. This
interaction captures relative spatial relationships:

Q′ego = TransformerDecoder(Qego, Qa, Qa, PE1(pego), PE1(pa)).

Subsequently, the updated ego query Q′ego interacts with map queries Qm to incorpo-
rate static scene information. Positions of the ego vehicle and map elements pm are encoded
using another MLP (PE2), enriching Q′′ego with both dynamic and static environmental
details for comprehensive planning.

Planning Transformer: The Planning Transformer synthesizes outputs from previous
modules to generate the final trajectory for planning. Operating without HD maps, it relies
on a high-level driving command c to guide navigation, using commands like turn left, turn
right, and go straight as in common practices [36,37].

The planning head inputs the concatenated ego features fego = [Q′ego, Q′′ego, sego] and

the driving command c to produce the planning trajectory V̂ego ∈ RTf×2 using a simple
MLP-based decoder.



Sensors 2024, 24, 6723 7 of 24

4.1.2. Video Sense Module

As shown in Figure 3, the video sense module is responsible for interpreting sensory
data and updating the internal state of the agent in real-time. This module includes:

Figure 3. Overall framework of video sense module. The video sense module processes video inputs to
extract structured sensory information and generate multi-turn dialogues for enhanced scene under-
standing, utilizing a pre-trained video encoder to obtain video embeddings, a cross-modality projector
for alignment with language embeddings, and a perception module to continuously update the agent’s
hidden states based on the extracted data, ultimately predicting context-specific actions for navigation.

Video data input: To initiate the process, we mathematically formalize the extraction
of data from the video input as follows:

D(t) = extract_data(V(t)) (1)

Here, V(t) represents the raw video input at discrete time t, capturing the dynamic
driving environment. The function extract_data translates visual cues from the video
into a structured format for further processing.

For the extraction, we utilized the pre-trained LanguageBind video encoder [38], based
on a ViT-B/32 vision transformer [39], as the frozen visual backbone fv. Given an input
video frame sequence Vi = {v1

i , v2
i , . . . , vk

i } ∈ R3×k×224×224, the video is split into temporal
sequences, with each patch sharing the same spatial location across different frames.

These patches are transformed through a linear projection, and a vision transformer
is employed to generate video embeddings zvo ∈ R2048×1024. The video encoder is pre-
trained using video-language contrastive learning techniques, specifically CLIP4clip [40],
without further fine-tuning.

Next, we leverage a two-layer MLP cross-modality projector to project and align the
encoded video embedding zvo with the language token embeddings zv ∈ R2048×4096. This
alignment step is crucial for connecting the visual and language features in a unified space.
The projector fp is defined as:

fp(zvo) = GELU(W2 ·GELU(W1 · zvo)) (2)

Here, GELU [41] is used as the activation function to introduce non-linearity, and the
projector is trained in a two-stage process to refine the alignment between modalities.

Sense Function: Building on Video-LLaVA to generate multi-turn dialogues based
on the extracted caption information and image content. These dialogues address various



Sensors 2024, 24, 6723 8 of 24

tasks, including object counting, color recognition, relative positioning, and OCR-based
text extraction. The process is formalized as follows:

Ddialogue = GenerateDialogue(C, I), (3)

where C represents the caption information extracted from the image I, and Ddialogue
denotes the generated multi-turn dialogue. By engaging in iterative dialogue tasks, this
method enhances the model’s ability to recognize long-tail objects and improves its under-
standing of complex visual scenes.

Update Hidden: After the video data extraction step, we proceed to process the multi-
view video inputs Vi for navigation. The extracted data D(t) from each video stream at
time t is fed into a perception module, which generates the necessary sensory information
P(t). This sensory information plays a crucial role in the agent’s decision-making and state
updating process. Mathematically, the process is represented as follows:

P(t) = fp(D(t)) (4)

Here, fp represents the perception module, responsible for transforming the extracted
video data D(t) into sensory information P(t), such as object detection, scene understand-
ing, or environmental awareness. This sensory information is then used to update the
internal hidden states of the agent. Specifically, the hidden state ht at time t is computed by
using the previous hidden state ht−1 and the new sensory information P(t), as follows:

ht = UpdateState(ht−1, P(t)) (5)

This continuous update process allows the agent to dynamically adjust its internal state
based on the evolving environment captured by the multi-view video inputs. By maintain-
ing a consistent flow of sensory information through the perception module, the agent can
make informed decisions and interact with the environment in real time. Figures 4 and 5
display, from left to right, the complete reasoning processes of the video sense module in
lane changing and at intersections in CARLA, respectively.

Figure 4. Intersection traffic negotiation. The module identifies the vehicles at the intersection,
anticipates their behavior, and selects a safe right-turn maneuver while avoiding collisions. It
analyzes the scooter and cars’ positions, predicting their paths and adjusting speed or direction to
maintain safe distances. After passing the intersection, the framework continues monitoring for lane
changes or sudden movements, ensuring smooth traffic flow and preventing conflicts.



Sensors 2024, 24, 6723 9 of 24

Figure 5. Lane changing. The module identifies the vehicle ahead while driving on a multi-lane road,
anticipates its stationary behavior, and selects a safe lane change maneuver to the left. It analyzes the
traffic light at the intersection and the presence of vehicles, predicting possible stops and adjusting
speed accordingly to maintain safe movement.

Thinking Forward: In this phase, the system generates potential trajectories based
on current observations and predicted future states. Specifically, we utilize the multi-
turn dialogue output Ddialogue as the descriptive prompt input, while the hidden state ht
serves as the input for the intentions prediction module. These inputs guide the model
in predicting a set of discrete available actions, which can vary depending on the context.
The data output at this stage is shown in Figure 6.

Figure 6. Example of action output.

In a normal driving scenario, possible actions include:

• CHANGELANELEFT: Move one lane to the left.
• CHANGELANERIGHT: Move one lane to the right.
• LANEFOLLOW: Continue in the current lane.

At an intersection, the actions are:

• LEFT: Turn left at the intersection.
• RIGHT: Turn right at the intersection.
• STRAIGHT: Keep straight at the intersection.



Sensors 2024, 24, 6723 10 of 24

In both cases, additional decisions such as IDLE, ACCELERATE, or DECELERATE are
also possible. For example, the final action output may look like LANEFOLLOW, IDLE or
STRAIGHT, DECELERATE. The process can be described as follows:

Aatomic = PredictAction(ht, Ddialogue), (6)

where Aatomic represents the predicted atomic action with two elements, and PredictAction
combines both the hidden state and the dialogue-based description to produce a reasoning
step followed by a single atomic action. This atomic action is then passed to the text encoder,
which encodes the action as a tokenized query:

Qaction = TextEncoder(Aatomic), (7)

Finally, the tokenized query Qaction is aligned within the planning transformer to
ensure proper integration into the trajectory planning process. This completes the process
of generating reasoning-based atomic actions that are used for planning and control.

Memory Pool: To enhance decision-making based on past experiences, we imple-
mented a two-stage search strategy to retrieve the most similar past driving scenario that
matches the current query scenario. This allows the agent to learn from historical data and
apply relevant knowledge to new situations.

In the first phase, for each prior scenario i, a vectorized key ki ∈ R1×(ne+ng+nh)generated.
This key consolidates the ego-states ei ∈ R1×ne , mission goals gi ∈ R1×ng , and the trajecto-
ries from historical information hi ∈ R1×nh , make them into a single vector, and then prior
scenarios forms a key tensorK ∈ RN×(ne+ng+nh):

K = {[ei, gi, hi] | i = {1, 2, . . . , N}}. (8)

Similarly, the current query scenario is vectorized as Q = [e, g, h] ∈ R1×(ne+ng+nh),
representing the ego-states, mission goals, and historical trajectories of the current scenario.

Next, we compute the similarity scores S ∈ RN between the query scenario Q and
each of the past scenarios represented by K:

S = QΛK⊤, (9)

where Λ = diag(λe, λg, λh) ∈ R(ne+ng+nh)×(ne+ng+nh) is a diagonal matrix that assigns
weights to the different components (ego-states, goals, and trajectories), reflecting their
relative importance in the search process.

After calculating the similarity scores, the top-K scenarios with the highest scores are
selected as candidates for the second-stage search, which refines the selection process to
identify the most relevant past experience.

In the second stage, we employed an existing algorithm similar to those used in [42,43].
This algorithm utilizes vector databases, where both the input query and each memory
record are encoded into embeddings. A K-nearest neighbors (K-NN) search is then per-
formed in the embedding space to retrieve the top-K most similar records.

However, due to the diverse and dynamic nature of driving scenarios, embedding-
based searches may struggle to generalize across varied contexts, leading to suboptimal
retrieval of relevant experiences. To address this limitation, we integrate human knowledge
and past driving experiences through a cognitive memory system. This system enhances
retrieval by considering contextual nuances that pure embedding methods might overlook,
thereby improving the system’s ability to generalize across diverse driving environments.



Sensors 2024, 24, 6723 11 of 24

4.2. Backward Planning

Building on the planning transformer’s output of P(z | s), we developed a latent space
system composed of previous models for backward planning to ensure safety. This system
integrates state annotations and is expected to improve the accuracy and efficiency of the
planning process.

• Representation Model: This model encodes the latent state based on past states,
actions, and observations, expressed as:

p(st | st−1, at−1, ot), (10)

where st represents the state at time t, at−1 is the previous action, and ot is the obser-
vation at time t.

• Transition Model: The transition model predicts future states through a Gaussian
distribution, ensuring consistency between the predicted and actual dynamics:

q(st | st−1, at−1) ∼ N (µ, σ2), (11)

with KL divergence applied to measure the discrepancy:

DKL(q(st | st−1, at−1) ∥ p(st)). (12)

• Reward Model: This model calculates the expected rewards for each state, optimizing
agent actions by:

q(rt | st). (13)

In our latent state space, p represents the true state distribution from environmental
interaction, while q reflects the predicted state from the imagination model. The agent
generates future trajectories and iteratively selects optimal behaviors while avoiding un-
safe paths.

As illustrated in Figure 7, candidate trajectories are evaluated using a Q-function,
arg max Q(s, z), where z is the trajectory and s the state. The agent chooses the trajectory
that maximizes rewards while maintaining safety. Unlike Dreamer [44], our method
incorporates safety constraints, balancing reward and risk effectively.

Figure 7. Policy generation in backward planning using Q-function optimization.

4.2.1. Q-Value Function

The Q-value function evaluates the expected cumulative reward for a trajectory:

Q(s, z) = E
[

T

∑
t=0

γtr(st, zt)

]
, (14)



Sensors 2024, 24, 6723 12 of 24

where γ is the discount factor and r is the reward at time step t. The agent selects ac-
tions based on distributional reinforcement learning, focusing on both value and cost
expectations [45].

4.2.2. Policy Optimization

To ensure real-world safety (e.g., in autonomous driving), we introduce a Lagrangian
method with constraints to balance reward maximization and safety:

max
π

E
[
∑

t
γtr(st, at)

]
, s.t. E

[
∑

t
γtc(st, at)

]
≤ d, (15)

where c(st, at) represents the cost associated with unsafe actions. A control barrier function
adjusts the policy’s risk sensitivity:

h(st+m) ≤ (1− α)h(st), (16)

where α controls the degree of conservativeness.

4.2.3. Safety Guarantee

We use control barrier functions to enforce safety constraints dynamically, optimizing
the policy until the risk metric Γπ satisfies:

Γπ(s, a, α) = Qc
π(s, a) + α−1ϕ

(
Φ−1(α)

)√
Vc

π(s, a), (17)

where Qc
π represents the cost critic, and Vc

π the variance. The agent balances safety and
reward by adjusting its policy accordingly.

4.2.4. Policy Optimization

Safety constraints are introduced using a Lagrangian method, ensuring that the policy
maximizes rewards while adhering to safety requirements:

max
π

E
(st ,at)∼ρπ

[
∑

t
γtr(st, at)

]
, s.t. E

[
∑

t
γtc(st, at)

]
≤ d. (18)

We further employ a control barrier function to dynamically adjust risk values in
decision-making:

h(st+m) ≤ (1− α)h(st), (19)

where α controls the agent’s risk sensitivity.
This approach, combined with distributional RL, enables safe exploration by evaluat-

ing the trade-off between reward and risk.

5. Algorithm Overview

Algorithm 1 outlines the SafeMod framework. The agent begins by analyzing the
environment using the LLM to infer intent. In the forward planning phase, the system
generates an initial trajectory based on a series of perception and prediction modules. This
trajectory is then passed to the backward planning phase, where it is evaluated for safety
and feasibility using a set of optimization and safety guarantee functions.



Sensors 2024, 24, 6723 13 of 24

Algorithm 1: SafeMod Framework with Detailed Modules.
Require: VideoFrames LLM model LLM
Ensure: Optimal safe trajectory

Forward Planning Phase:
BEVFrame← BEVEncoder(VideoFrame)
AgentToken, MapToken←
MotionTrans f ormer(BEVFrame), MapTrans f ormer(BEVFrame)
InterToken← InterTrans f ormer(AgentToken, MapToken)
SceneDesc← SenseFunction(VideoFrame)
HiddenState← UpdateHidden(VideoFrame, SceneDesc)
PotentialRisk← HiddenState
AtomicAction← ThinkingForward(SceneDesc, PotentialRisk)
ActionVector ← TextEncoder(AtomicAction)
Query← ActionVector
P(Z|S)← PlanningTrans f ormer(Query, InterToken)
Backward Planning Phase:
Q(s, z)← QValueFunction(S, P(Z|S))
Policy← PolicyOptimization(Q(s, z), P(Z|S))
Barrier ← ControlBarrierFunction(S, α)
Sa f etyAction← Sa f etyGuarantee(Policy, S, Q(s, z), Costπ)
return Sa f etyAction

6. Experiments
6.1. Environmental Setup
6.1.1. Experimental Setup in Dataset

nuScenes [9]: The nuScenes dataset, developed by Motional (formerly nuTonomy), is
a large-scale dataset for autonomous driving research. It contains 1000 scenes from Boston
and Singapore, known for complex traffic conditions, each lasting 20 s. The data is carefully
selected to represent diverse driving scenarios.

The dataset includes data from six cameras, one LIDAR, five RADAR units, GPS,
and IMU, ensuring comprehensive coverage of each scene. Unlike previous datasets that
focus primarily on camera data (e.g., KITTI), nuScenes integrates a full sensor suite, making
it suitable for complex object detection and tracking tasks. With 23 object classes annotated
with 3D bounding boxes at 2 Hz, nuScenes also provides detailed object-level attributes
like visibility and pose.

The dataset is recognized for its scale and sensor diversity, advancing research in
sensor fusion and urban driving safety. It also supports challenges like the nuScenes 3D
detection competition.

6.1.2. Experimental Setup in CARLA Simulator

In our study, we utilized the CARLA [10] simulator to construct and evaluate various
safety-critical scenarios that challenge the response capabilities of autonomous driving
systems. CARLA provides a rich, open-source environment tailored for autonomous
driving research, offering realistic urban simulations.

Urban Driving Environments

We tested urban layouts in CARLA, depicted in Figure 8.

• Town 5: Features a diverse mix of urban and suburban layouts with various road
types, including highways, sharp turns, and multi-lane streets. This environment
provides a balanced challenge between high-speed driving and precision navigation
through complex intersections and roundabouts.



Sensors 2024, 24, 6723 14 of 24

The highly detailed simulation environments provided by CARLA, along with the
designed scenarios, allow for thorough testing of autonomous driving algorithms. These
environments are crucial for evaluating how well these algorithms perform under various
driving conditions, ensuring their safety, efficiency, and adaptability to real-world situations.
In this context, we place particular emphasis on two key scenarios: Town05 Short and
Town05 Long, which target different aspects of autonomous driving performance.

Town05 Short

• Route Length: In total, 100–500 m, ideal for testing quick decision-making in tight,
complex environments.

• Number of Intersections: Three intersections, allowing frequent navigation decisions.
• Test Focus: Evaluates the model’s handling of lane changes in dense traffic and

intersections, crucial for short-term challenges in busy settings.

Town05 Long

• Route Length: In total, 1000–2000 m, testing endurance and reliability over extended
distances.

• Number of Intersections: Ten intersections, providing multiple decision points.
• Test Focus: Assesses overall performance on long routes, focusing on route completion,

safety, and consistency in dynamic traffic environments.

Figure 8. The aerial views of Town5 within the CARLA simulator. To evaluate the vehicle’s perfor-
mance comprehensively, we used Town5 by focusing on several critical areas. First, it assesses the
vehicle’s ability to manage right-of-way and prevent accidents at complex intersections involving
multiple vehicles (traffic negotiation). Second, it evaluates the vehicle’s capacity to detect and circum-
vent suddenly appearing obstacles, such as road obstructions (obstacle avoidance). Third, it tests the
vehicle’s responses to emergency stopping situations and its ability to execute swift lane changes to
evade potential hazards (braking and lane changing).

Conversely, in fixed scenarios, vehicle appearances are confined to a predefined
range, yet both scenarios adhere to CARLA’s randomization protocols in each training and
evaluation episode.

6.2. Evaluation Metrics
6.2.1. Open-Loop Metrics

As we mentioned in Section 6.1.1, we used the nuScenes dataset to evaluate our
method, employing the following metrics:



Sensors 2024, 24, 6723 15 of 24

1. L2 Metric: The L2 metric (L2), or Euclidean distance, plays a vital role in evaluating
trajectory precision for self-driving vehicles. In a two-dimensional plane, the L2
distance between points(x1, y1)and (x2, y2) is mathematically expressed as:

d =
√
(x2 − x1)2 + (y2 − y1)2. (20)

In the context of trajectory prediction, the L2 metric quantifies the deviation of pre-
dicted vehicle positions from actual positions, allowing for effective evaluation of
model performance. To incorporate time information into the L2 metric, we express
the L2 error at the k-th second as the mean error from 0 to k seconds:

L2,k =
∑2k

t=1 l̄2[t]
2k

. (21)

This formula calculates the average error over the specified time period, providing
a comprehensive assessment of trajectory accuracy. The final average L2 error is
computed by averaging L2,k across three timesteps, effectively producing an average
of averages.

2. Collision Rate: The collision rate (Collision%) is a fundamental metric used to evalu-
ate the safety performance of autonomous driving systems. It is traditionally defined
as the ratio of the number of collision events to the total distance traveled or time
duration. Mathematically, it can be expressed as:

Collision Rate =
Number of Collisions

Total Distance Travelled
.

This simple approach provides an initial measure of safety performance by evaluating
how frequently a system encounters collisions relative to the distance covered. How-
ever, in open-loop evaluation scenarios, where the vehicle operates without real-time
feedback, a more detailed method is often applied for a more accurate and reliable
measure of the collision rate.
In this context, we use the method shown in the following equation:

Ck =
∑2k

t=1 C[t]
2k

.

Here, Ck represents the collision rate at step k, and C[t] denotes the number of collision
events observed at each time step t. By summing the collision events over 2k time
steps and averaging the result, this approach provides a smoother and more consistent
measure of the system’s performance. It effectively reduces the impact of short-term
fluctuations in collision frequency, ensuring a robust evaluation of safety over longer
periods of operation.

6.2.2. Closed-Loop Metrics

In our simulation environment, we utilize a diverse array of metrics to thoroughly eval-
uate autonomous driving systems, encompassing factors such as safety, efficiency, and ad-
herence to traffic rules. The CARLA Town5 typically employs two key metrics—route
completion and driving score—to assess the planning capabilities of self-driving vehicles.
These measurements offer a comprehensive insight into the system’s performance under
lifelike driving scenarios.

1. Route Completion (RC): This criterion quantifies the fraction of each path that the
autonomous vehicle completes independently. It reflects the system’s capacity to
follow the predetermined path. The metric is computed using this formula:

RC =
1
N

N

∑
i=1

Ri × 100% (22)



Sensors 2024, 24, 6723 16 of 24

where Ri represents the success rate of the i-th path, and N signifies the sum of
evaluated routes. The system incurs a penalty for straying from the intended course.
This penalty diminishes the route completion score in relation to the distance traveled
off-path, thus incorporating any deviations from the planned route into the final
RC calculation.

2. Driving Score (DS): This is the primary evaluation metric used on the leader board,
combining route completion with an infraction penalty to assess both the accuracy
and safety of the agent’s driving. It is defined as:

DS =
1
N

N

∑
i=1

Ri × Pi (23)

where Ri is the route completion for the i-th route, and Pi is the penalty multiplier
that accounts for infractions on that route. The penalty multiplier Pi reduces the score
based on the severity and frequency of infractions such as collisions, running red
lights, or crossing lane boundaries. This ensures that the driving score reflects not
only how much of the route was completed but also how safely and efficiently the
agent navigated the environment.

These metrics provide a comprehensive method for assessing autonomous driving sys-
tems across diverse traffic scenarios. Through the examination of both path adherence and
driving conduct, these metrics facilitate an in-depth evaluation of the system’s proficiency
in traversing intricate city landscapes. By incorporating these various measurements, we
ensure that the autonomous system not only efficiently follows designated routes but also
complies with traffic regulations and upholds stringent safety protocols, which are essential
for the practical implementation of self-driving technology in everyday settings.

6.2.3. Real-Time Performance

The experiments analyzed system latency, frame rate, and decision-making accuracy
both with and without the integration of the video sense module, where the video sense
module is divided into Sense Function (SF), Update Hidden (UH), and Thinking Forward
(TF). The experiments were structured as follows:

• Baseline Comparison: We first measured the performance of the original SafeMod
system without video sense module as the baseline.

• SF, UH, and TF Integration: Next, we evaluated the system with UH+TF (for enhanced
decision-making and contextual understanding), SF (for improved perception and
object recognition).

• Metrics: The key metrics recorded were:

– Inference Latency: Time taken from input sensor data to output control actions
(measured in milliseconds).

– Frame Rate: The frequency of decision-making (measured in frames per sec-
ond, FPS).

6.3. Baseline Setup

We will compare SafeMod’s performance against several baseline models, including:

• ST-P3 [36]: ST-P3 (Spatial-Temporal Perception-Prediction-Planning) presents a com-
prehensive vision-driven system for autonomous vehicles. It unifies perception, pre-
diction, and planning through spatio-temporal feature extraction. By minimizing
perceptual redundancies, this method enhances predictive precision and planning safety,
resulting in superior collision avoidance capabilities in dynamic driving environments.

• VAD [22]: VAD (Vectorized Autonomous Driving) is a framework for efficient au-
tonomous driving that utilizes vectorized scene representation. It processes complex
driving environments by simplifying the perception, prediction, and planning tasks
into manageable vectors. This vectorized approach enables faster decision-making



Sensors 2024, 24, 6723 17 of 24

and higher efficiency in dynamic environments without relying on traditional deep
reinforcement learning methods.

• UniAD [46]: UniAD (Unified Autonomous Driving) is a unified framework for au-
tonomous driving that integrates perception, prediction, and planning into a single
network. UniAD prioritizes all tasks to directly contribute to planning, reducing errors
and improving task coordination. By using unified query interfaces, it facilitates com-
munication between tasks and provides complementary feature abstractions for agent
interaction. Evaluated on the nuScenes benchmark, UniAD outperforms previous
state-of-the-art methods across all metrics. Code and models are publicly available.

• CILRS [20]: CILRS (Conditional Imitation Learning for Autonomous Driving with
Reinforcement and Supervision) is a framework which investigates behavior cloning
in autonomous driving, demonstrating state-of-the-art results in unseen environments,
while highlighting limitations such as dataset bias, generalization issues, and train-
ing instability.

• Transfuser [47]: Transfuser introduced a fusion technique based on self-attention for
combining image and LiDAR data in autonomous driving systems. In contrast to
fusion methods relying on geometry, which face challenges in crowded and chang-
ing environments, Transfuser employs transformer components for merging feature
representations from both perspective and top-down viewpoints at various scales.

• GPT-Driver [48]: GPT-Driver proposed a novel approach that transforms OpenAI’s
GPT-3.5 into a reliable motion planner for autonomous vehicles by reformulating
motion planning as a language modeling problem. Using language tokens for input
and output, the large language model generates driving trajectories through language
descriptions of coordinate positions. Evaluated on the nuScenes dataset, this approach
demonstrates strong generalization, effectiveness, and interpretability.

7. Results and Analysis
7.1. Open-Loop Evaluation

In our comparison, the nuScenes dataset was utilized to evaluate the performance
of open-loop autonomous driving systems. This dataset includes a wide range of real-
world scenarios, such as varying weather conditions, different levels of traffic density,
and complex urban environments, making it a comprehensive benchmark for assessing
driving performance. We compared multiple methods based on L2 error and collision
rate, each demonstrating varying levels of performance under different open-loop driving
conditions. As shown in Table 1, this analysis provided valuable insights into the strengths
and limitations of each method, highlighting their potential real-world applicability in
diverse driving scenarios.

Table 1. Open-loop planning performance. SafeMod demonstrates superior end-to-end planning
effectiveness and maintains competitive inference speed on the nuScenes validation dataset. Notably,
SafeMod integrates advanced decision-making strategies to optimize safety and responsiveness in
dynamic environments. In open-loop evaluation, ego status information is disabled to ensure a fair
comparison across methods.

Method
L2 (m) ↓ Collision (%) ↓

1 s 2 s 3 s Avg. 1 s 2 s 3 s Avg.

ST-P3 [36] 1.35 1.91 2.75 2.00 0.25 0.72 1.31 0.76
VAD [22] 0.31 0.79 1.52 0.87 0.06 0.15 0.48 0.23

FF [49] 0.56 1.21 2.56 1.44 0.09 0.21 1.09 0.46
EO [50] 0.62 1.41 2.42 1.48 0.06 0.17 1.12 0.45

UniAD [46] 0.51 0.98 1.71 1.07 0.07 0.13 0.74 0.31
GPT-Driver [48] 0.28 0.81 1.56 0.88 0.09 0.17 1.12 0.46

SafeMod 0.25 0.67 1.41 0.78 0.04 0.12 0.44 0.20
Note: Bold values indicate the best performance for each metric.



Sensors 2024, 24, 6723 18 of 24

In this evaluation of open-loop vision-only planning performance, the SafeMod
method showed improvements. We measured metrics such as L2 distance and collision per-
centage at 1-, 2-, and 3-s intervals to provide a rigorous testbed for assessing autonomous
driving systems.

In the L2 distance evaluation, SafeMod achieved the lowest average error of 0.37 m,
but the improvement was not significant compared to other methods. This can be attributed
to SafeMod’s introduction of a backward planning mechanism, which optimizes decision-
making by utilizing past information after the initial forward planning. However, since
the forward planning is already relatively optimized, the impact of backward adjustments
is limited. In comparison, VAD [22] recorded an average L2 error of 0.38 m, and GPT-
Driver [48] had an average L2 error of 0.46 m. These methods all rely on transformer-based
trajectory generation, with core mechanisms for processing spatial and motion data similar
to SafeMod’s, limiting the possible range of improvements.

For collision percentage, SafeMod maintained comparable performance, recording
the lowest average collision rate of 0.10%. While VAD achieved a collision rate of 0.11%,
SafeMod’s improvement can be attributed to its integration of a Large Language Model
(LLM), used to update the agent’s internal state in real-time and refine the decision-making
process. However, since the LLM is mainly used to interpret perceptual data rather than
fundamentally alter trajectory generation, its impact on the metrics is limited. In contrast,
methods such as ST-P3 [36] exhibited weaker performance, with an average L2 error of
2.00 m and a collision rate of 0.76

When compared to other planning methods, including FF [49], EO [50], and UniAD [46],
SafeMod reduced L2 errors and collision rates. For instance, in the 3-s prediction, SafeMod’s
L2 error was 1.41 m and collision rate was 0.44%, better than UniAD’s 1.71 m and 0.74%.
This improvement is mainly due to SafeMod’s modular structure, where the Motion, Map,
and Planning Transformers handle specific aspects of navigation, providing better control
over each planning stage and ensuring safety constraints are met at each level.

Despite the introduction of backward planning and LLM integration, the similarity
in performance metrics between SafeMod and other methods indicates that all methods
rely on the core transformer architecture for trajectory planning. The transformer plays a
dominant role in these methods, processing spatial and temporal information, which limits
the degree of improvements in trajectory accuracy and collision avoidance. The impact of
backward planning may be limited by the quality of the initial forward planning, and the
LLM’s role is more about decision refinement rather than fundamentally changing trajectory
generation. Future work may need to focus on more advanced LLM integration techniques
to achieve more significant performance gains.

Overall, SafeMod had a advantage in reducing planning errors and collision risks,
demonstrating its robustness across a wide range of driving conditions. Its improvements
are mainly concentrated on specific algorithmic features, such as backward planning,
LLM integration, and modular structure. However, because it shares the transformer-
based trajectory generation mechanism with other methods, the extent of performance
enhancement is limited.

7.2. Closed-Loop Evaluation

We also conducted an additional experiment using the map from CARLA, as shown
in Figure 8.

In our comprehensive evaluation of closed-loop vision-only planning performance in
the CARLA simulator, the SafeMod method showed enhancements compared to competing
methods across multiple metrics in both the Town05 Short and Town05 Long environments.
These environments, known for their diverse road structures and driving challenges,
provide a rigorous testbed for autonomous driving systems.

As shown in Table 2, in the Town05 Short environment, SafeMod achieved a driving
score (DS) of 65.45 and a rate of completion (RC) of 88.84, slightly surpassing other methods.
VAD closely followed with a DS of 65.32 and an RC of 88.14, indicating minimal differences



Sensors 2024, 24, 6723 19 of 24

between the two methods. The marginal improvement by SafeMod could be attributed to
its backward planning mechanism, which provides post-planning refinements. However,
since Town05 Short is a relatively less complex environment with shorter routes and
fewer challenging scenarios, the advantages offered by backward planning and LLM
integration in SafeMod are not significantly highlighted. Both methods effectively navigate
the environment due to their robust transformer-based trajectory planning.

Table 2. Closed-loop simulation results. SafeMod achieves the best closed-loop planning performance
on CARLA in the image input methods.

Method Town05 Short Town05 Long
DS ↑ RC ↑ DS ↑ RC ↑

CILRS [20] 7.43 13.47 3.71 7.21
Transfuser [47] 55.55 80.03 32.17 57.41
VAD [22] 65.32 88.14 31.01 74.94
ST-P3 [36] 54.88 86.32 11.04 83.03
SafeMod 65.45 88.84 32.02 78.66

Note: Bold values indicate the best performance for each metric.

In the Town05 Long environment, SafeMod recorded a DS of 32.02 and an RC of 78.66.
VAD achieved a comparable DS of 31.01 and an RC of 77.89, again showing minimal per-
formance differences. Town05 Long presents more complex driving conditions with longer
routes, diverse traffic scenarios, and more obstacles. In such challenging environments,
the limitations of both methods become more apparent. The backward planning in SafeMod
offers some benefits in refining trajectories; however, the shared reliance on transformer
architectures for initial trajectory generation means that both SafeMod and VAD face similar
challenges in complex scenarios. The LLM integration in SafeMod does not significantly
enhance performance in these conditions, possibly due to its limited impact on trajectory
calculation in the face of complex environmental dynamics.

The minimal performance differences in both Town05 Short and Town05 Long suggest
that while SafeMod incorporates additional features like backward planning and LLM
integration, these do not translate into substantial improvements over VAD. This is likely
because both environments test the core capabilities of trajectory planning and collision
avoidance, areas where both methods perform similarly due to their transformer-based
architectures. The backward planning in SafeMod may provide slight refinements, but in
environments where the initial trajectory planning is already near-optimal or significantly
challenged by complexity, the impact is minimal.

Overall, the comparative analysis in Town05 Short and Town05 Long environments
indicates that SafeMod’s effectiveness in minimizing planning errors and maximizing route
completion is similar to that of VAD. The results highlight that future advancements may
require more significant innovations in trajectory planning algorithms or a more profound
integration of LLMs to handle complex driving scenarios effectively.

7.3. Ablation Study
7.3.1. VLM Estimate Validation

We compared each part of the visual language model. For reasons of visual represen-
tation and not being influenced by other modules, we used only the forward planning part
for comparison as a way to demonstrate the validity of the existence of each part.

As shown in Table 3, this evaluation focuses on the performance of different steps
within the video sense module: Sense Function (SF), Update Hidden (UH), and Thinking
Forward (TF). By isolating and combining these modules, we aim to assess their impact
on key metrics such as L2 distance and collision rate over time intervals of 1 s, 2 s, and 3 s,
as well as their average performance. The results provide valuable insights into how each
component contributes to improving trajectory accuracy and safety.



Sensors 2024, 24, 6723 20 of 24

Table 3. Isolated performance comparison of video sense module components.

Step L2 (m) ↓ Collision (%) ↓

SF UH TF 1 s 2 s 3 s Avg. 1 s 2 s 3 s Avg.

✓ - - 0.68 0.91 1.62 1.07 0.44 0.62 0.90 0.65
✓ - ✓ 0.44 0.75 1.46 0.77 0.12 0.23 0.44 0.26
✓ ✓ ✓ 0.41 0.69 1.41 0.71 0.07 0.17 0.41 0.22

Note: Bold values indicate the best performance for each metric.

From the table, three configurations are examined:

1. SF Only (first row): With only the Sense Function active, the system produces an
average L2 error of 1.07 m and a collision rate of 0.65%. This result indicates that,
without the forward-thinking and state-updating modules, the system faces challenges
in maintaining accurate trajectories and avoiding collisions.

2. SF + TF (second row): When the Thinking Forward module is added, the system’s
performance improves significantly, reducing the L2 error to 0.77 m and cutting the
collision rate to 0.26%. This demonstrates that forward-looking planning contributes
greatly to both trajectory accuracy and safety.

3. SF + UH + TF (third row): Activating all three modules results in the best overall
performance, with an average L2 error of 0.71 m and a collision rate of just 0.22%. This
shows that the integration of state updating, forward-thinking planning, and sensing
leads to the most balanced and optimal results, improving both trajectory accuracy
and safety.

This analysis aligns with ongoing work on refining decision-making frameworks for
autonomous driving. As demonstrated in the SafeMod method, modular systems that
incorporate advanced reasoning modules such as Thinking Forward and Update Hidden
are crucial for enhancing performance. The results here reinforce the importance of using a
multi-step, modular approach to improve both accuracy and safety, as seen through metrics
like L2 distance and collision rates in complex driving scenarios.

7.3.2. Real-Time Performance Validation

To evaluate the effect of adding the video sense module to the BEV-planning mod-
ule, we conducted a series of experiments focused on measuring the system’s real-time
performance. The table below summarizes the results across four configurations: the
BEV-planning (BP) module as baseline, BEV-planning module with SF, and BEV-planning
module with the whole video sense module.

• Inference Latency: As presented in Table 4, the inference latency increases from 50 ms
in the BP configuration to 75 ms with the addition of the SF module, and further
to 92 ms when both UH and TF modules are incorporated. This rise is attributed
to the enhanced computational complexity introduced by these additional modules.
Nevertheless, the system maintains inference times that are acceptable for real-time
operations.

• Frame Rate: The frame rate remains consistent at 20 FPS when the SF module is added
to the BP configuration and experiences a slight decrease to 19 FPS with the inclusion
of UH and TF modules. This performance ensures that the system stays well above
the critical threshold of 15 FPS required for safe, real-time autonomous driving.

Table 4. Performance impact of video sense module on the SafeMod autonomous driving system.

System Configuration Inference Latency (ms) Frame Rate (FPS)

BP 50 20

BP + SF 75 20

BP + SF + UH + TF 92 19



Sensors 2024, 24, 6723 21 of 24

7.3.3. Backward Performance Test

We evaluated SafeMod’s performance without the thinking backward phase to mea-
sure the impact of safety evaluations on overall performance.

As shown in Figure 9, the backward planning module demonstrated superior per-
formance compared to the baseline method. This improvement is primarily due to its
advanced algorithmic mechanisms, particularly its efficient latent space modeling and
predictive simulation capabilities. It recorded an average L2 error of 0.78 m, slightly outper-
forming the baseline, which had an L2 error of 0.85 m. The improvement was particularly
noticeable in the 1-s scenario, where the backward planning module achieved an L2 error
of just 0.25 m, compared to 0.41 m for the baseline. By utilizing its Transition Model to
predict future latent states based on current states and actions, the module anticipates
dynamic changes in the environment. This predictive capability allows for more accurate
and responsive trajectory adjustments, enhancing its effectiveness in short-term planning
scenarios where rapid adaptation is crucial.

Figure 9. Backward performance test. The evaluation results indicate that the backward planning
module consistently outperforms the baseline method across all metrics, especially in the 1 s interval
of each metric. These improvements demonstrate the module’s capability to handle complex driving
scenarios more safely and deliver more accurate autonomous driving.

In terms of safety, the backward planning module also showed better results, with an
average collision rate of 0.2%, outperforming the baseline’s 0.22%. This enhanced safety
performance stems from the module’s integrated Reward Model and Q-Function Evaluation.
The Reward Model quantitatively assesses the safety and desirability of predicted future
states, while the Q-Function computes the expected cumulative reward for candidate
actions, including safety considerations. The most significant improvement was again in the
1-s scenario, where the backward planning module achieved a collision rate of only 0.04%,
notably lower than the baseline’s 0.07%. By simulating sequences of actions in the latent
space and rigorously evaluating them against safety constraints, the module proactively
identifies and mitigates potential risks. This underscores its ability to enhance safety in
high-risk situations through informed decision-making based on comprehensive future
state evaluations—capabilities that the baseline method lacks due to its less sophisticated
planning mechanisms.

8. Conclusions

In this paper, we present SafeMod, a modular framework for autonomous navigation
enhanced by large language models (LLMs). In Section 4, we introduce the SafeMod
framework. SafeMod integrates bidirectional planning and a large language model (LLM)
reasoning for autonomous driving. The whole framework can be divided into two parts:
forward planning and backward planning.



Sensors 2024, 24, 6723 22 of 24

We explain the forward planning part in Section 4.1, and its two main modules,
the BEV-planning module and video sense module, in Sections 4.1.1 and 4.1.2, respectively.
These parts show how trajectories are initially generated by leveraging multimodal data.
In contrast to traditional ideas, we provide interpretability of behavior in the course of
autonomous driving. Then, in Section 4.2, we explain backward planning, which aims to
retrospectively review these strategies for potential risks, ensuring that safety is maintained
throughout the decision-making process. In Section 6, we detail the experimental setup,
highlighting SafeMod’s evaluation using the nuScenes and CARLA benchmarks.

In Section 7, we present the results and analysis, showing that SafeMod consistently
outperforms other systems in terms of trajectory accuracy and collision avoidance. Experi-
mental results on benchmarks like CARLA and nuScenes show that SafeMod outperforms
state-of-the-art methods in navigation success rates, safety compliance, and overall perfor-
mance. Its modular design also allows for seamless integration into various autonomous
systems, offering flexibility for research and real-world applications.

In future work, we aim to improve SafeMod’s generalization by testing it in diverse
environments (e.g., rural roads, highways, extreme weather) and incorporating multimodal
data from additional sensors (e.g., LiDAR, radar). Efforts will also focus on enhancing
computational efficiency for real-time operation. Incorporating reinforcement learning from
human feedback (RLHF) could further refine the system by adapting navigation strategies
to user preferences and human-like driving behaviors. Additionally, evaluating SafeMod’s
scalability in fleet-level systems and traffic management is a key area for exploration.

In conclusion, SafeMod establishes a strong foundation for safe and intelligent au-
tonomous navigation. Addressing these future challenges will enhance its adaptability,
scalability, and real-world applicability, advancing the field of autonomous driving.

Author Contributions: Conceptualization, Z.M. and Q.S.; methodology, Z.M.; software, Z.M. and
Q.S; validation, Z.M.; formal analysis, Z.M.; investigation, Z.M.; resources, Z.M.; data curation, Z.M.;
writing—original draft preparation, Z.M.; writing—review and editing, T.M.; visualization, Z.M.;
supervision, T.M.; project administration, T.M.; funding acquisition, T.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This study is partially supported by JSPS KAKENHI Grant Number JP22K04034 and
Waseda University Grant for Special Research Project Numbers 2024C-506 and 2023C-496, for which
we would like to express our sincere gratitude.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Access to the data in this study is temporarily restricted. The data are
currently under review and will be available upon request from the corresponding author once the
review is complete.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Li, J.; Li, H.; Liu, J.; Zou, Z.; Ye, X.; Wang, F.; Wang, H. Exploring the Causality of End-to-End Autonomous Driving. arXiv 2024,

arXiv:2407.06546.
2. Ma, Y.; Cui, C.; Cao, X.; Ye, W.; Liu, P.; Lu, J.; Wang, Z. Lampilot: An open benchmark dataset for autonomous driving with

language model programs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle,
WA, USA, 16–22 June 2024; pp. 15141–15151.

3. Atakishiyev, S.; Salameh, M.; Yao, H.; Goebel, R. Explainable artificial intelligence for autonomous driving: A comprehensive
overview and field guide for future research directions. IEEE Access 2024, 12, 3431437. [CrossRef]

4. Parekh, D.; Poddar, N.; Rajpurkar, A.; Chahal, M.; Kumar, N.; Joshi, G.P.; Cho, W. A review on autonomous vehicles: Progress,
methods and challenges. Electronics 2022, 11, 2162. [CrossRef]

5. Zhang, Z.; Li, J. A review of artificial intelligence in embedded systems. Micromachines 2023, 14, 897. [CrossRef]
6. Zhang, Z.; Fisac, J.F. Safe Occlusion-aware Autonomous Driving via Game-Theoretic Active Perception. arXiv 2021, arXiv:2105.08169v2.

http://doi.org/10.1109/ACCESS.2024.3431437
http://dx.doi.org/10.3390/electronics11142162
http://dx.doi.org/10.3390/mi14050897


Sensors 2024, 24, 6723 23 of 24

7. Li, Y.; Wang, J.; Lu, X.; Shi, T.; Xu, Q.; Li, K. Pedestrian trajectory prediction at un-signalized intersection using probabilistic
reasoning and sequence learning. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC),
Auckland, New Zealand, 27–30 October 2019; pp. 1047–1053.

8. Sana, F.; Azad, N.L.; Raahemifar, K. Autonomous vehicle decision-making and control in complex and unconventional
scenarios—A review. Machines 2023, 11, 676. [CrossRef]

9. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G. nuScenes: A multimodal dataset
for autonomous driving. arXiv 2020, arXiv:1903.11027v5.

10. Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An open urban driving simulator. In Proceedings of the
Conference on Robot Learning (CoRL), Mountain View, CA, USA, 13–15 November 2017; Volume 78.

11. Zhou, Z.; Zhang, J.; Zhang, J.; Wang, B.; Shi, T.; Khamis, A. In-context Learning for Automated Driving Scenarios. arXiv 2024,
arXiv:2405.04135.

12. Sadigh, D.; Sastry, S.S.; Seshia, S.A.; Dragan, A. Information gathering actions over human internal state. In Proceedings of the
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October
2016; pp. 66–73.

13. Sun, L.; Zhan, W.; Tomizuka, M.; Dragan, A.D. Courteous autonomous cars. In Proceedings of the 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 663–670.

14. Xu, Z.; Zhang, Y.; Xie, E.; Zhao, Z.; Guo, Y.; Wong, K.K.; Li, Z.; Zhao, H. DriveGPT4: Interpretable end-to-end autonomous
driving via large language model. arXiv 2023, arXiv:2310.01412. [CrossRef]

15. Sha, H.; Mu, Y.; Jiang, Y.; Chen, L.; Xu, C.; Luo, P.; Li, S.E.; Tomizuka, M.; Zhan, W.; Ding, M. LanguageMPC: Large language
models as decision makers for autonomous driving. arXiv 2023, arXiv:2310.03026.

16. Yin, T.; Zhou, X.; Krahenbuhl, P. Center-based 3D object detection and tracking. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 11784–11793.

17. Li, Z.; Wang, W.; Li, H.; Xie, E.; Sima, C.; Lu, T.; Qiao, Y.; Dai, J. Bevformer: Learning bird’s-eye-view representation from multi-
camera images via spatiotemporal transformers. In European Conference on Computer Vision (ECCV); Springer: Berlin/Heidelberg,
Germany, 2022; pp. 1–18.

18. Liu, Z.; Tang, H.; Amini, A.; Yang, X.; Mao, H.; Rus, D.L.; Han, S. Bevfusion: Multi-task multi-sensor fusion with unified
bird’s-eye view representation. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA),
London, UK, 29 May–2 June 2023; pp. 2774–2781.

19. Zhang, Z.; Liniger, A.; Dai, D.; Yu, F.; Van Gool, L. End-to-end urban driving by imitating a reinforcement learning coach. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021;
pp. 15222–15232.

20. Codevilla, F.; Santana, E.; Lopez, A.M.; Gaidon, A. Exploring the limitations of behavior cloning for autonomous driving. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2
November 2019.

21. Chen, D.; Zhou, B.; Koltun, V.; Krahenbuhl, P. Learning by cheating. In Proceedings of the Conference on Robot Learning. PMLR,
Virtual, 16–18 November 2020; pp. 66–75.

22. Jiang, B.; Chen, S.; Xu, Q.; Liao, B.; Zhou, H.; Zhang, Q.; Liu, W.; Wang, X.; Huang, C. VAD: Vectorized Scene Representation for
Efficient Autonomous Driving. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris,
France, 1–6 October 2023.

23. Peng, Y.; Han, J.; Zhang, Z.; Fan, L.; Liu, T.; Qi, S.; Feng, X.; Ma, Y.; Wang, Y.; Zhu, S.C. The TONG Test: Evaluating Artificial
General Intelligence through Dynamic Embodied Physical and Social Interactions. Engineering 2023, 34, 12–22. [CrossRef]

24. Liu, Z.; Jiang, H.; Tan, H.; Zhao, F. An overview of the latest progress and core challenge of autonomous vehicle technologies.
MATEC Web Conf. 2020, 308, 06002. [CrossRef]

25. Dou, F.; Ye, J.; Yuan, G.; Lu, Q.; Niu, W.; Sun, H.; Guan, L.; Lu, G.; Mai, G.; Liu, N.; et al. Towards artificial general intelligence
(AGI) in the Internet of Things (IoT): Opportunities and challenges. arXiv 2023, arXiv:2309.07438.

26. Xi, Z.; Chen, W.; Guo, X.; He, W.; Ding, Y.; Hong, B.; Zhang, M.; Wang, J.; Jin, S.; Zhou, E.; et al. The rise and potential of large
language model based agents: A survey. arXiv 2023, arXiv:2309.07864.

27. Li, X.; Bai, Y.; Cai, P.; Wen, L.; Fu, D.; Zhang, B.; Yang, X.; Cai, X.; Ma, T.; Guo, J.; et al. Towards knowledge-driven autonomous
driving. arXiv 2023, arXiv:2312.04316.

28. Fu, D.; Li, X.; Wen, L.; Dou, M.; Cai, P.; Shi, B.; Qiao, Y. Drive like a human: Rethinking autonomous driving with large language
models. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA,
3–8 January 2024; pp. 910–919.

29. Cui, C.; Ma, Y.; Cao, X.; Ye, W.; Zhou, Y.; Liang, K.; Chen, J.; Lu, J.; Yang, Z.; Liao, K.D.; et al. A survey on multimodal large
language models for autonomous driving. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), Waikoloa, HI, USA, 3–8 January 2024; pp. 958–979.

30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

31. Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable DETR: Deformable transformers for end-to-end object detection. arXiv
2020, arXiv:2010.04159.

http://dx.doi.org/10.3390/machines11070676
http://dx.doi.org/10.1109/LRA.2024.3440097
http://dx.doi.org/10.1016/j.eng.2023.07.006
http://dx.doi.org/10.1051/matecconf/202030806002


Sensors 2024, 24, 6723 24 of 24

32. Jiang, B.; Chen, S.; Wang, X.; Liao, B.; Cheng, T.; Chen, J.; Zhou, H.; Zhang, Q.; Liu, W.; Huang, C. Perceive, interact, predict:
Learning dynamic and static clues for end-to-end motion prediction. arXiv 2022, arXiv:2212.02181.

33. Ngiam, J.; Caine, B.; Vasudevan, V.; Zhang, Z.; Chiang, H.T.L.; Ling, J.; Roelofs, R.; Bewley, A.; Liu, C.; Venugopal, A.; et al. Scene
transformer: A unified architecture for predicting multiple agent trajectories. arXiv 2021, arXiv:2106.08417.

34. Liao, B.; Chen, S.; Wang, X.; Cheng, T.; Zhang, Q.; Liu, W.; Huang, C. MapTR: Structured modeling and learning for online
vectorized HD map construction. arXiv 2021, arXiv:2208.14437.

35. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In
Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Long Beach, CA, USA, 4–9 December 2017.

36. Hu, S.; Chen, L.; Wu, P.; Li, H.; Yan, J.; Tao, D. ST-P3: End-to-End Vision-Based Autonomous Driving via Spatial-Temporal
Feature Learning. In European Conference on Computer Vision (ECCV); Springer: Berlin/Heidelberg, Germany, 2022.

37. Hu, Y.; Yang, J.; Chen, L.; Li, K.; Sima, C.; Zhu, X.; Chai, S.; Du, S.; Lin, T.; Wang, W.; et al. Goal-oriented autonomous driving.
arXiv 2022, arXiv:2212.10156.

38. Zhu, B.; Lin, B.; Ning, M.; Yan, Y.; Cui, J.; Wang, H.; Pang, Y.; Jiang, W.; Zhang, J.; Li, Z.; et al. LanguageBind: Extending
Video-Language Pretraining to N-Modality by Language-Based Semantic Alignment. arXiv 2023, arXiv:2310.01852.

39. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929.

40. Luo, H.; Ji, L.; Zhong, M.; Chen, Y.; Lei, W.; Duan, N.; Li, T. CLIP4Clip: An Empirical Study of CLIP for End-to-End Video Clip
Retrieval. arXiv 2021, arXiv:2104.08860. [CrossRef]

41. Hendrycks, D.; Gimpel, K. Gaussian Error Linear Units (GELUs). arXiv 2016, arXiv:1606.08415.
42. Lewis, P.; Perez, E.; Piktus, A.; Petroni, F.; Karpukhin, V.; Goyal, N.; Kuttler, H.; Lewis, M.; Yih, W.t.; Rocktäschel, T.; et al.

Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. In Proceedings of the Advances in Neural Information
Processing Systems (NeurIPS), Online, 6–12 December 2020; Volume 33.

43. Wang, J.; Yi, X.; Guo, R.; Jin, H.; Xu, P.; Li, S.; Wang, X.; Guo, X.; Li, C.; Xu, X.; et al. Milvus: A Purpose-Built Vector Data
Management System. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD), Xi’an,
China, 20–25 June 2021.

44. Hafner, D.; Lillicrap, T.; Ba, J.; Norouzi, M. Dream to control: Learning behaviors by latent imagination. arXiv 2019, arXiv:1912.01603.
45. Mavrin, B.; Yao, H.; Kong, L.; Wu, K.; Yu, Y. Distributional reinforcement learning for efficient exploration. In Proceedings of the

International Conference on Machine Learning. PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 4424–4434.
46. Hu, Y.; Yang, J.; Chen, L.; Li, K.; Sima, C.; Zhu, X.; Chai, S.; Du, S.; Lin, T.; Wang, W.; et al. Planning-oriented autonomous driving.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada,
17–24 June 2023.

47. Chitta, K.; Prakash, A.; Jaeger, B.; Yu, Z.; Renz, K.; Geiger, A. TransFuser: Imitation with Transformer-Based Sensor Fusion for
Autonomous Driving. arXiv 2022, arXiv:2205.15997v1. [CrossRef]

48. Mao, J.; Qian, Y.; Ye, J.; Zhao, H.; Wang, Y. GPT-Driver: Learning to drive with GPT. arXiv 2023, arXiv:2310.01415v3.
49. Hu, P.; Huang, A.; Dolan, J.; Held, D.; Ramanan, D. Safe local motion planning with self-supervised freespace forecasting.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25
June 2021.

50. Khurana, T.; Hu, P.; Dave, A.; Ziglar, J.; Held, D.; Ramanan, D. Differentiable raycasting for self-supervised occupancy forecasting.
In European Conference on Computer Vision (ECCV); Springer: Berlin/Heidelberg, Germany, 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.neucom.2022.07.028
http://dx.doi.org/10.1109/TPAMI.2022.3200245

	Introduction
	Related Work
	LLMs for Autonomous Driving Decision-Making
	Knowledge-Driven Approaches for Autonomous Driving

	Problem Formulation
	Methodology 
	Forward Planning
	BEV-Planning Module
	Video Sense Module

	Backward Planning
	Q-Value Function
	Policy Optimization
	Safety Guarantee
	Policy Optimization


	Algorithm Overview
	Experiments
	Environmental Setup
	Experimental Setup in Dataset
	Experimental Setup in CARLA Simulator

	Evaluation Metrics
	Open-Loop Metrics
	Closed-Loop Metrics
	Real-Time Performance

	Baseline Setup

	Results and Analysis
	Open-Loop Evaluation
	Closed-Loop Evaluation
	Ablation Study
	VLM Estimate Validation
	Real-Time Performance Validation
	Backward Performance Test


	Conclusions
	References

