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Abstract: Spatial resolution enhancement in remote sensing data aims to augment the level of
detail and accuracy in images captured by satellite sensors. We proposed a novel spatial resolution
enhancement framework using the convolutional attention-based token mixer method. This approach
leveraged spatial context and semantic information to improve the spatial resolution of images. This
method used the multi-head convolutional attention block and sub-pixel convolution to extract spatial
and spectral information and fused them using the same technique. The multi-head convolutional
attention block can effectively utilize the local information of spatial and spectral dimensions. The
method was tested on two kinds of data types, which were the visual-thermal dataset and the visual-
hyperspectral dataset. Our method was also compared with the state-of-the-art methods, including
traditional methods and deep learning methods. The experiment results showed that the method
was effective and outperformed state-of-the-art methods in overall, spatial, and spectral accuracies.

Keywords: data fusion; spatial resolution enhancement; convolutional attention; token mixer

1. Introduction

Spatial resolution enhancement in remote sensing data is a crucial research area that
aims to augment the level of detail and accuracy in images captured by sensors in airborne
or satellite platforms. With advancements in remote sensing technology, there has been a
growing demand for high-resolution image data, as they enable more effective analysis
and interpretation for a wide range of applications, including land cover classification,
environmental monitoring, and urban planning.

Despite the significant progress made in remote sensing data acquisition, the inher-
ent limitations of sensor capabilities, such as spatial constraints and data transmission
bandwidth, often result in images not being able to possess high spatial and high spectral
resolutions at the same time. For example, hyperspectral data tend to possess high spectral
resolutions, often reaching 10 nm and possessing hundreds of bands, but low spatial resolu-
tion often reaches 10 m or more. This imposes challenges on researchers and practitioners,
as they seek to obtain comprehensive and informative image data for their analysis.

The spatial resolution enhancement of remote sensing data has been a significant
research area, with various methods proposed to address this challenge. One commonly
adopted approach is data fusion, which aims to utilize the different resolution characteristics
from two images and fuse them into one image so that the composition can include the
highest resolutions of both. One way to enhance the spatial resolution is the spatial–spectral
fusion, which fuses the high-spatial–low-spectral-resolution image and low-spatial–high-
spectral-resolution image to obtain a high-spatial–high-spectral-resolution image. Data
fusion has shown promising results in improving the visual quality and fine details in
remote sensing images. To address this issue, numerous spatial resolution enhancement
methods for hyperspectral data have been proposed in literature, leveraging various
techniques such as interpolation, super-resolution, and deep learning approaches.
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Wei et al. developed a Bayesian algorithm for fusing hyperspectral and multispectral
images, demonstrating efficiency compared to state-of-the-art fusion techniques [1]. Gao
et al. proposed a transformer-based baseline, CSMFormer [2], for HS/MS fusion and
classification, improving data quality and classification precision. Wang et al. introduced
SSCFNet [3], a spatial–spectral cross-fusion network for remote sensing change detection,
outperforming other state-of-the-art methods. Chen et al. proposed EFCOMFF-Net [4] for
remote sensing image scene classification, enhancing feature correlation for improved rep-
resentation ability, showcasing advancements in fusion, classification, and change detection
for improved data quality and representation. Peng et al proposed a method using convo-
lutional neural networks (CNN) to enhance the spectral resolution of multispectral data,
aiming to improve the ability to distinguish different materials within an image by refining
its spectral information [5]. Xie et al. introduced a 1D-convolutional neural network for
hyperspectral and multispectral data fusion, emphasizing the extraction of spectral features
for improved performance [6]. Wu et al. highlighted the success of transformer-based
models, showing comparable or superior performance, compared to other neural network
types [7]. Bu et al. proposed a hybrid convolution and spectral symmetry preservation
network for hyperspectral super-resolution to improve the spatial resolution of hyper-
spectral data [8]. Luan et al. used a cascade of multiple-scale spatial contextual modules
and spatial–spectral fusion transformer modules to reconstruct spectral information from
RGB images to obtain high-resolution hyperspectral data [9].These studies collectively
illustrate the diverse approaches and techniques used in the spatial resolution enhancement
of remote sensing data, encompassing super-resolution reconstruction, weakly supervised
learning, and attention mechanisms. By leveraging deep learning and attention-based
methods, researchers have made significant progress in enhancing the spatial resolution
and extracting valuable information from remote sensing imagery.

Various studies highlight the effectiveness of attention mechanisms in improving tasks,
such as image classification, scene classification, object detection, and landside extraction in
remote sensing applications. These mechanisms enhance model performance and accuracy
in analyzing remote sensing data. Feng et al. introduced a high-precision remote sensing
image classification method using machine learning methods for automatic classification
and recognition of ground objects [10]. Li et al. proposed a few-shots remote scene classifi-
cation method based on attention mechanisms for the semantic understanding of remote
sensing images [11]. However, most of these methods using transformer suffer from a
high-latency dilemma. For example, the multi-head self-attention (MHSA) mechanism
often comes with quadratic complexity, with respect to token length [12]. This greatly
impedes the real applications of these methods.

In order to enhance the deployment without dragging down the accuracies, we pro-
pose a novel spatial resolution enhancement framework for remote sensing data utilizing
a convolutional attention-based token mixer (SRE-CATM). By incorporating attention
mechanisms and token-mixing operations into the resolution enhancement process, our
framework aims to enable selective feature attention and enhanced information fusion
at the token level. This approach effectively leverages spatial context and semantic in-
formation, facilitating improved visual quality and enhanced accuracy in the resulting
images. This can solve the problem of insufficiency of spatial resolution of hyperspectral
or infrared thermal images, which can improve the accuracies of real-world applications
involving fine texture extraction. Our method could fall into the category of spatial–spectral
fusion, yet it can also apply to non-hyperspectral data, so we present a framework of spatial
resolution enhancement.

The subsequent sections of this paper are structured as follows: Section 2 presents the
methodology, outlining the proposed framework’s architecture and operation in detail. In
Section 3, we present extensive experimental results and comparisons with other state-of-
the-art methods to validate the effectiveness of our approach. Finally, Section 4 concludes
the paper with a discussion of the findings and future research directions for spatial
resolution enhancement in remote sensing data.
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2. Methods

The overall framework of the algorithm is shown in Figure 1 below. The overall frame-
work consisted of two branches of sub-networks, the inputs of which were low-resolution
data and high-resolution data. Additionally, the overall framework was divided into
two parts, the feature extraction part and the feature fusion part. The feature extraction part
was divided into the ConvBNReLU block, the convolutional-attention-based token mixer
block, and a pixel-shuffle layer for low-resolution data feature extraction sub-branches. The
structures of different blocks are shown in Figure 2. The feature fusion part consisted of the
concatenate layer and the CATM block to better fuse the extracted information from each
data. The number of each block was set to be N0 and N1.
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2.1. ConvBNReLU Block

The ConvBNReLu block was placed on the top of the network to extract shallow
spatial–spectral information. It consisted of a 1 × 1 convolution layer, a BatchNormalization
layer, and a ReLu activation layer.
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2.2. Convolutional-Attention-Based Token Mixer Block

The BottleNeck block introduced by ResNet [1] has been a prominent feature in vi-
sual neural networks due to its inherent inductive biases and compatibility with various
hardware platforms. However, it falls short in terms of effectiveness when compared to
the transformer block. The transformer block has demonstrated outstanding performance
across a range of visual tasks, with its exceptional capabilities attributed to the combination
of the MetaFormer paradigm [2] and the attention-based token mixer module [3]. Never-
theless, the transformer block lags behind the BottleNeck block in terms of inference speed,
primarily due to its intricate attention mechanisms, posing challenges in many real-world
industrial applications.

For remote sensing images, it is important to focus on the local information and
context information of an area. Thus, we referred to the idea of the next convolution block
in Li et al.’s work [4] to better capture the short-term dependencies. The CATM block
followed the structure of MetaFormer, which consisted of the token mixer module as an
efficient token mixer with a deployment-friendly convolution operation and the Multi-layer
Perceptron (MLP) module within the framework of MetaFormer.

xl = MHCA
(

xl−1
)
+ xl−1 (1)

xl = MLP
(

xl−1
)
+ xl−1 (2)

2.3. Multi-Head Convolutional Attention Block (MHCA)

In order to obtain local representation learning, we used the structure of the multi-
head convolutional attention block. Following the structure of multi-head self-attention,
the multi-head convolutional attention block also used the multi-head paradigm to build
convolutional attention. The local information can be learned from different representation
subspaces at different positions. The structure of MHCA is shown in Figure 2. It can be
represented as:

xl = Concat
(

GC
(

x1
)

, GC
(

x2
)

, . . . , GC(xn)
)

WP (3)

The x = [x1, x2, . . . , xn] indicates dividing the input feature x into the n-parallelled
multi-head form in the channel dimension. To promote the information interaction across
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the multiple heads, we also equipped MHCA with a projection layer (WP). GC was single-
head convolutional attention, which can be defined as:

GC(x) = O(W, (Tm, Tn)) (4)

in which O represents the inner product operation with trainable parameters W, and
(Tm, Tn) represents adjacent tokens in input feature x. GC is capable of learning the
affinities between different tokens in the local receptive field through iteratively optimizing
trainable parameter W. Additionally, we used BatchNormalization (BN) and ReLU to
achieve normalization.

2.4. Subpixel Convolutional Layer

As the resolutions between different data inputs were disparate, we needed to up-
sample the coarse data information so as to fuse both pieces of data on the same scale.
Thus, we used the pixel shuffle layer originating from the sub-pixel convolution proposed
in [5] to upscale the coarse information. The process is illustrated in Figure 3. This was to
convert the channel into r2 times the number of original bands, in which r represents the
upscaling factor. Then, the channel dimension was adjusted to r by a process that can be
represented as:

Xup = PS
(

WL ∗ fL−1(Xlow) + bL

)
(5)

PS(Xx,y,c) = X[ x
r ],[

y
r ],c·r·mod(y,r)+c·mod(x,r) (6)

in which Xlow represents the input data, WL represents the convolutional operation, and bL
represents bias. PS represents PixelShuffle. Xx,y,c x, y, c represents the coordinates on x, y,
and the channels, and r represents the multiples.
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3. Experiments and Results
3.1. Datasets

For hyperspectral data resolution enhancement, we used a combination of ZY1-02D
hyperspectral data with a spatial resolution of 30 m and multispectral data with a spatial
resolution of 10 m. Table 1 shows the information on ZY1-02D satellite. The images were
obtained at 33◦44′9.45′′–34◦6′22.12′′ N and 118◦18′11.98′′–118◦46′6.91′′ E. The two images
were co-registered by ENVI. For the infrared data resolution enhancement, we used a
combination of ZY1-02D multispectral data with a spatial resolution of 10 m and thermal
infrared data with a spatial resolution of 16 m. The two datasets mainly contained fields
and buildings.

Table 1. Information on ZY1-02D satellite.

Sensor Parameter

Hyperspectral
Camera

Spectral Range 0.4~2.5 µm

Number of Bands 166

Ground Pixel Resolution 30 m

Swath 60 km

Spectral Resolution
Visible Near-infrared 10 nm, 76 bands

ShortWave infrared 20 nm, 90 bands

Visible/near
infrared camera

Spectral Range

Panchromatic B01: 0.452~0.902 µm

Multispectral

B02: 0.452~0.521 µm
B03: 0.522~0.607 µm
B04: 0.635~0.694 µm
B05: 0.776~0.895 µm
B06: 0.416~0.452 µm
B07: 0.591~0.633 µm
B08: 0.708~0.752 µm
B09: 0.871~1.047 µm

Ground Pixel Resolution Panchromatic: 2.5 m
Multispectral: 10 m

Swath 115 km

Thermal infrared
camera

Spectral range 8~10 µm

Ground pixel resolution ≤16 m

Swath Width ≥115 km

Nedt (K) ≤0.2 (@300 K Black body)

Dynamic Range (K) 240~340 (Black body)

3.2. Experimental Settings

We set number N0 as 1 and number N1 as 3, as they are shown to be relatively balanced
for running speed and accuracy. The model training followed the Wald protocol [6], down-
sampling multispectral and hyperspectral images three times to the resolutions of 30 and
90 m to obtain the input of the training samples and outputting the original hyperspectral
images as training samples. We trained the model by segmenting multispectral images
into 96 × 96 patches and hyperspectral images into 32 × 32 patches. During prediction,
the original multispectral image and hyperspectral image, both maintained at resolutions
of 10 and 30 m, were segmented by the aforementioned size and input into the model
for prediction. Finally, the fused hyperspectral image with the improved resolution was
restored. We used ENVI to process the georeferencing. By obtaining the map and coordinate
information of the whole image, each pixel was given the geoinformation.
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The fusion of thermal infrared and multispectral images also adopted the above
model, and the model training followed the Wald protocol. The multispectral and thermal
infrared images were down-sampled 1.5 times to the resolutions of 15 and 20 m to obtain
the input of the training samples, and the original thermal infrared images were used as
the output of the training samples. We trained the model by segmenting multispectral
images into 96 × 96 blocks and thermal infrared images into 32 × 32 blocks. When making
predictions, the original multispectral images and thermal infrared images, both maintained
at resolutions of 10 and 15 m, were divided into the aforementioned sizes and input into
the model for prediction.

For the infrared data resolution enhancement experiment, we compared our method
with the state-of-the-art (SOTA) method, including traditional fusion methods of MT-
FGLP [7] and SFIM [10], as well as deep learning methods of MSDCNN [11], ConSS-
FCNN [13], and SSRNet [13]. For the hyperspectral resolution enhancement experiment,
we compared our method with SOTA methods, including traditional methods of MAP [14],
MTFGLP, and SFIM, as well as deep learning methods of MSDCNN, ConSSFCNN, SSRNet,
and TFNet [15]. The reason for the difference in contrasting methods between infrared data
and hyperspectral resolution enhancement experiments is that some of the methods are
not applicable to infrared, data due to the inherent characteristics of the algorithm. For
the quantitative experiment, we chose fusion indices of CC (correlation coefficient) [16],
RMSE (root mean square error) [17], ERGAS (Erreur Relative Globale Adimensionnelle de
Synthese) [18], PSNR (peak signal noise ratio) [19], and SSMI (structure similarity index
measure) [20]. We compared the results in both the visual and quantitative aspects. The
experiments were conducted on the CPU of Intel Xeon Bronze 3106 and GPU of NVIDIA
Tesla T4.

3.3. Results

For the infrared data resolution enhancement, we compared our method with five dif-
ferent state-of-the-art methods, which included MTFGLP, SFIM, MSDCNN, ConSSFCNN,
and SSRNet. Figures 4 and 5 show the visual comparison in whole and in detail, with ours
showing clear texture and resemblance. Table 2 shows the quality indices results of the
visual-thermal data fusion. The results showed that our method outperformed other SOTA
methods in both spatial and overall domains.
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Table 2. Quantitative results of enhancing thermal data.

SRE-CATM MTFGLP SFIM MSDCNN ConSSFCNN SSRNet

CC 0.9991 0.9605 0.9400 0.9754 0.8312 0.5650
RMSE 4.1877 8.1071 10.0496 8.5416 18.5567 23.9213

ERGAS 0.0700 0.2706 0.3354 0.6433 0.6186 1.7928
PSNR 56.2174 50.1392 48.3192 49.3037 43.0788 38.7311
SSMI 0.9954 0.7308 0.6518 0.8641 0.5457 0.4589

The bold represents highest results.

For the hyperspectral data resolution enhancement, we compared our method with
seven different state-of-the-art methods, which included MAP, MTFGLP, SFIM, MSDCNN,
ConSSFCNN, SSRNet, and TFNet. Figures 6 and 7 show the visual comparison, with ours
showing clear texture and tone. Table 3 shows the quality indices results of hyperspectral
data fusion. The results showed that our method outperformed most other SOTA methods
in both spatial and spectral domains, although it was slightly inferior to TFNet in the spatial
texture similarity.

Additionally, we chose four typical landcovers to extract their spectra on different
fusion results, as shown in Figure 8. We can see that all methods can restore the basic form
of the original hyperspectral data.

Table 3. Quantitative results of enhancing hyperspectral data.

SRE-CATM MAP MTFGLP SFIM MSDCNN ConSSFCNN SSRNet TFNet

CC 0.9893 0.9468 0.9492 0.9319 0.9779 0.9779 0.9244 0.9727
SAM 0.6970 1.2541 1.0403 1.0823 0.8917 0.8917 1.3064 0.9446

RMSE 13.6138 20.8091 15.3219 242.9297 14.4426 14.4426 18.0121 15.1021
ERGAS 1.2387 3.6650 3.7916 17.6060 1.5351 1.5351 5.5100 1.6189
PSNR 45.9485 43.5238 44.7663 45.9772 44.4024 44.4024 43.4039 44.1445
SSMI 0.9693 0.8375 0.8857 0.8753 0.9698 0.9698 0.9406 0.9732

The bold represents highest results.
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(c) water, and (d) fields.

SRE-CATM outperformed traditional methods, due to the advantages of deep learning—
it was more robust and had more capacity to learn the association between spatial and
spectral features. The reason for SRE-CATM outperforming other deep learning methods
may due to its effective design of being an attentional token mixer and the subpixel layer,
which does not involve upscaling or downscaling operations, which, for some SOTAs, it is
needed to conduct outside the algorithm and may cause deviation.

3.4. Discussion

In this study, we proposed the SRE-CATM method, which utilized the convolutional
attention token mechanism to better improve the spatial resolution of remote sensing images
of hyperspectral and infrared data. Consistent with previous studies of enhancing low-
resolution data’s spatial resolution by undermining the spatial and spectral relationships
between high-spatial resolution data and low-spatial resolution data, our method did not
use transformer directly but following the MetaFormer paradigm, replacing the token
mixer as the multi-head convolutional attention. This greatly improved the efficiency and
operability and was more suitable for industrial deployment. SRE-CATM may greatly
improve the accuracies in object detection, land classification, etc., that require a higher
spatial resolution that current single data cannot obtain yet.

4. Conclusions

In this article, we proposed a spatial resolution enhancement framework using the
convolutional visual transformer. The method used the transformer block and sub-pixel
convolution to extract spatial and spectral information and fused them using the same
technique. The convolutional transformer block can effectively utilize the local information
of spatial and spectral dimensions. The method was tested on two kinds of data types,
which included the visual-thermal dataset and visual-hyperspectral dataset. Our method
was also compared with the state-of-the-art methods, including traditional methods and
deep learning methods. The experiment results showed that the method was effective and
outperformed state-of-the-art methods in overall, spatial, and spectral accuracies. This
method can effectively improve the spatial resolution of hyperspectral or infrared thermal
images, which can improve the accuracies of real-world applications by providing fine
texture extraction.
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