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Abstract: This study introduces a Sagnac Interferometer (SI) fiber sensor that integrates Polarization-
Maintaining Fibers (PMFs) with a Tilted Fiber Bragg Grating (TFBG) for the dual-parameter mea-
surement of strain and lateral pressure. By incorporating a 6° TFBG with PMFs into the SI sensor, its
sensitivity is significantly enhanced, enabling advanced multi-parameter sensing capabilities. The
sensor demonstrates a temperature sensitivity of —1.413 nm/°C and a lateral pressure sensitivity
of —4.264 dB/kPa, as validated by repeated experiments. The results exhibit excellent repeatability
and high precision, underscoring the sensor’s potential for robust and accurate multi-parameter
sensing applications.
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1. Introduction

Lateral pressure sensors are integral to evaluating structural integrity across various
engineering applications, particularly in fields such as structural health monitoring [1],
geotechnical engineering [2], and aerospace systems [3]. These sensors play a critical role
in accurately measuring the lateral stresses exerted on structural elements, ensuring their
operational safety and longevity. The design requirements for lateral pressure sensors
include heightened sensitivity, rapid response time, and robustness in harsh environments.
Various design schemes have been proposed, with optical fiber sensors emerging as the
preferred solution due to their immunity to electromagnetic interference, compact form,
and ease of integration.

Due to the relatively complex environment of lateral pressure monitoring, simulta-
neous temperature measurements during lateral pressure testing are highly meaningful.
Optical fiber-based lateral pressure sensors encompass a range of design approaches, each
presenting distinct advantages and limitations. Fiber Bragg gratings (FBGs) [4,5] offer ex-
ceptional sensitivity and precision but may have a limited dynamic range and susceptibility
to cross-sensitivity. Fabry—Perot Interferometer (FPI) [6], Mach—-Zenhder Interferometer
(MZI) [7], and Michelson interferometer (MI) sensors [8] provide heightened sensitiv-
ity and versatility but may require complex fabrication processes and be susceptible to
temperature-induced drift. Microbend sensors [9] offer simplicity and cost-effectiveness
but may suffer from limited sensitivity. A pair of fiber Bragg gratings embedded in a
polyurethane diaphragm [10] was fabricated to reduce the crosstalk effect of temperature.
However, this process resulted in a complex demodulation procedure and could not sup-
port a simultaneous temperature measurement. Optical fiber sensors based on attachment
materials like PDMS [11] and PVA [12] can offer high temperature sensitivity. However,
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the difficulty in their fabrication and their low reproducibility limit their application. In this
study, a sensor capable of simultaneously monitoring temperature and lateral pressure
with high sensitivity using a combination of tilted gratings and a Sagnac Interferometer
is achieved.

The Sagnac Interferometer (SI)’s structure uses a prominent interferometric sensor
design in optical fiber sensing and comprises a coupler and a high-birefringence fiber. This
structure has undergone extensive development by researchers over many years for sensing
temperature [13], strain [14], and curvature [15]. SI sensors based on polarized-mode
coupling have undergone significant development for stress and pressure measurements.
High-birefringence loop mirrors have been interpreted and applied in various sensor
applications [16]. Building upon this, a combination of polarization-maintaining fibers
(PMFs) and commercial FBGs was incorporated into the Sagnac loop for highly sensitive
strain measurements [17].

Tilted Fiber Bragg Grating (TFBG), akin to FBG, features a structure in its optic fiber
core consisting of a series of gratings with uniform refractive index changes over the
same period. Unlike in FBG, in TFBG, the radial direction of the fiber is inclined at a
specific angle [18]. When light propagates in the cylindrical waveguide of the fiber core,
it couples backward into the cladding due to the tilted grating region in the core, thus
forming a series of resonance modes. Among these, the core-mode properties in the fiber
core are similar to those of FBGs, such as excellent sensing properties for temperature [19]
and strain [20]. Due to variations in the grating region, the phase-matching conditions
change, leading to a drift in the resonance wavelength, enabling stable and highly sensitive
sensing. Additionally, when the grating region experiences changes in lateral pressure,
the stress distribution in the fiber core changes [21,22], affecting the coupling coefficient
between the core light and the cladding light, as well as the mode field size. This results
in changes in the transmission intensity of the resonance modes, which allow the sensor
to detect lateral pressure. Moreover, since the intensity changes of these resonance modes
are not sensitive to temperature [23], this provides the sensor with the ability to perform
multi-parameter measurements.

2. Fabrication and Methodology
2.1. Sensor Fabrication

The SI [13] operates based on the principle of interference, where a beam of light is
split into two paths that travel in opposite directions around a loop. When the loop rotates,
a phase shift occurs between the two beams due to the difference in their travel times, which
can be detected to measure rotational motion or other parameters. This sensor is based
on a 1:1 coupler and high-birefringence optical fiber to realize a Sagnac ring for a highly
sensitive vibration sensor. When light from a broadband source passes through the coupler,
it is split 1:1 and then travels through both the clockwise and counterclockwise paths before
being collected by the coupler again. The collected beams interfere with each other, and the
transmitted spectrum is obtained through the output fiber as an interference pattern. In this
study, commercial panda polarization-maintaining fibers are used for the sensor design.
Additionally, a 6° tilted grating is cascade-spliced with a polarization-maintaining fiber
core and connected to the Sagnac sensor.

A 6° tilted grating is an appropriate choice for the tilt angle because such a tilted
grating exhibits a high core-mode resonance intensity and a clear cladding mode region,
making it suitable for multi-parameter sensing. A 213 nm solid-state laser was utilized
for the fabrication process. The laser passed through a 535.9 nm phase mask and was
directed onto a hydrogen-doped fiber. The first-order interference fringes generated by
the phase mask acting on the optical fiber enable the writing of a grating region with a
regularly changing refractive index. It is crucial to maintain proper alignment between the
phase mask and the optical fiber throughout this process. In this study, a 12 mm region
was inscribed on an single-mode fiber using a 53 mW laser output and a writing speed of
0.01 mm/s. It has been verified that, based on the fabrication parameters, the core-mode



Sensors 2024, 24, 6779

30f9

resonance amplitude of this tilted grating sensor exceeds 20 dB while also possessing
excellent cladding resonance mode characteristics typical of a 6° tilted grating, with clear
ghost modes and cladding mode regions.

PMF and single-mode fibers containing tilted gratings are core-to-core connected. A 1:1
2 x 2 coupler was used to fabricate the sensor. A 20 cm section of polarization-maintaining
fiber was used in the fabrication of the sensor, based on the light source bandwidth and the
interferometer’s FSR. One end of the coupler was used as an input connected to a broadband
light source, while the other end was connected to an optical spectrum analyzer (OSA,
Yokogawa AQ6370D) (“Yokogawa”, Aira District, Tokyo, Kagoshima Prefecture, Japan)
for the output. The two output ports of the coupler were core-to-core connected to the
ends of the PMF and tilted grating fibers, thus forming a SI sensor. The high-birefringence
characteristics of the PMF and the birefringence properties of the tilted grating under
compression provide higher temperature sensitivity. See Figure 1.

Coupler

ny, TFBG

(a) (b)
Figure 1. (a) Structure of the core-to-core linking of TFBG and PMF. (b) Structure of the designed sensor.
2.2. Methodology
The wavelength of the coupled mode of TFBG A can be calculated by
AT = 2n0re A (1)

A= (Meore + nélud)A/COSG. ()

where A is the grating period. In this study, a 535.9 nm phase mask was used to write the
grating. n is the order of the mode in the transmission spectrum. With the phase-match
condition theory, the interference transmission spectrum can be interpreted as follows [18]:

_1-cos(p)
T--—2, (3)

where ¢ can be calculated as

271 (B(A)Lp — i)

where B is the birefringence of a PMF fiber with a length of L. § is the angle of the grating.
By combining this with the phase-match condition,
27‘[(B ()\)Lp COS(5) — ZNeffLT)
A cos(6)

=2mn m=0,+1,£2,..., (5)

Subsequently, by taking the derivative of sensitivity S with respect to temperature ¢,
we obtain the following formula. Therefore, the sensitivity parameter S can be written as
follows [13]:

dL
CdA A(%—?Lp—i—Bd—fcos(&))

S T P _
(B()\, t)Lp(t) )Lat Lp) COS((s) 2NeffLT

(6)
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When the parameter S is compared with the sensitivity without TFBG Sy, it can be
written as
dA  AM%LLp+Bip)
1 = —— =
dt  B(A,t)Lp(t) —A%8Lp

)

From the above derivation, it can be seen that when the TFBG is introduced into the
SI, the sensitivity of the sensor changes. The sensitivities before and after adding the TFBG
are represented by S; and S, respectively. Comparing the two sensitivities, it is clear that
S1 < S. Therefore, an enhancement in the sensitivity can be found by adding the TFBG.

The tilted grating structure breaks the cylindrical symmetry of the optical fiber, induc-
ing a birefringence that is absent in conventional fiber gratings. Consequently, tilted grating
was selected for this study to leverage these unique properties. When lateral pressure acts
on the tilted grating region, the grating region will generate symmetric compressive stress
in different directions, resulting in changes in the fiber’s photoelastic coefficient. According
to the coupling coefficient [24,25],

+o0 . .
K core = C / /_ (ELES™ + EyE"™ ) Andxdy. (®)

When fluctuations occur in optical coupling coefficients under applied pressure, they
lead to significant changes in the resonance peak intensity. As the optical fiber undergoes
deformation due to compression, the intensity of the transmission spectrum’s resonance
peak can be utilized for lateral pressure sensing. Due to the complexity of the optical
coupling intensity model, demonstrating the usability of this sensor requires repeated
experiments and trials with various samples. In this study, multiple sets of samples were
prepared to validate the repeatability and consistency of the sensor.

3. Experiment and Discussion
3.1. Temperature Measurement

The spectrum of the fabricated sensor is shown in Figure 2.

—30

Transmission (dBm)

|
—
]

|

T g T d | :
1500 1530 1560 1590

Wavelength (nm)
Figure 2. Transmission spectrum of SI combined with TFBG.

From the transmission spectrum, one can observe an upward peak labeled “a” and a
downward dip labeled “b” around 1550 nm. From a wavelength perspective, they would
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be closer to the core-mode and cladding-mode regions. These regions are sensitive to lateral
pressure on the optical fiber. Additionally, one can observe a series of resonance peaks
coupled onto the large envelope formed by the Sagnac ring. Clearly, these resonance peaks
originate from the cladding modes of the tilted grating.

This research experiment utilized a C + L band Amplified Spontaneous Emission
(ASE) light source emitting light in the range of 1480 nm to 1620 nm. The experimental
setup is illustrated in Figure 3.

Semi-conductor Heating Plate

ASE Light Source

Figure 3. Temperature measurement experiment.

The transmitted spectrum was captured using an OSA with a minimum resolution
of 0.02 nm. To ensure the secure attachment of the birefringence fiber and TFBG to the
heating plate, both edges of the PMF-TFBG combination were taped onto the surface of
the plate. Given the heating range of the semi-conductor heating plate is stable from
30 °C to 70 °C, a sensing temperature range of 30 °C to 70 °C was selected. Based on
the polarization characteristics of the tilted grating, the incident light in this study was
controlled to be S-polarized. As a solid metal heating plate may not always provide stable
and linear heating, additional time was needed for temperature stabilization during the
heating process to ensure data accuracy. By heating the heating plate in 5 °C increments,
the sensor’s temperature measurement values could be obtained.The results are depicted
in Figure 4.

Figure 4a depicts the variation in the transmission spectrum of the sensor with temper-
ature changes. We extracted the spectrum within the range of 1480-1550 nm and selected
the interference dip at 1538.49 nm at 30 °C as the sensing feature for investigation, as illus-
trated in Figure 4b. It is observable that, with increasing temperature, the wavelength of
the dip in this envelope undergoes a blue shift, indicating a shorter wavelength. Through
the extraction of wavelength data for this dip and a subsequent regression analysis, as de-
picted in Figure 4d, we obtained a function describing the dip wavelength’s dependency
on temperature: Y = 1580.693 — 1.413 x x. This implies a sensitivity of 1.413 nm/°C for
temperature, with a high regression confidence coefficient of R = 0.999.

Conversely, we examined the peak at 1550.66 nm to assess its response to temperature
changes. We found that the wavelength variation of this peak exhibited a low sensitivity to
temperature, manifesting as a subtle red shift. Simultaneously, we emphasized the investi-
gation of the peak’s transmission intensity, as illustrated in Figure 4e. It is evident that the
transmission intensity of this peak remains relatively constant across temperature changes.
This property is advantageous, indicating that when lateral pressure is applied to the sensor,
selecting this peak as the sensing feature is appropriate as it is not susceptible to temperature
interference, thereby achieving interference-free multi-parameter measurements.
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Figure 4. (a) Obtained transmission spectrum, (b) spectrum at 47 °C, (c) detailed graph of peak 1, and
(d) linear fit of temperature sensing. (e) Intensity change of Peak A with temperature variation).

3.2. Lateral Pressure Measurement

As depicted in Figure 5, the experimental system still employed a C + L band ASE light
source emitting light in the range of 1480 nm to 1620 nm. The flat plate area for securing
the fiber was 12 cm X 12 cm, which is capable of exerting pressure on the lateral direction
of the fiber. A glass plate was pressed onto the flat plate, sandwiching the sensor between
them. With the pressure from the glass plate and the counterweight, taping the sensor to
the flat platform was no longer necessary. In this study, ten 100 g balance weights were
utilized, with a chosen sensing range of 1000 g and a sensing resolution of 100 g.

ASE Light Source

Figure 5. Lateral pressure measurement experiment.

According to the pressure formula

Pzg,

©)

where F is the stress by weight and S is the pressure area, and based on a square area with
a lateral pressure application surface of 12 cm x 12 cm, the area of this region is 0.014 m?.
When the mass of the weights is 0, 200 g, 400 g, 600 g, and 800 g, the corresponding
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pressures are 0, 0.14 kPa, 0.28 kPa, 0.42 kPa, and 0.56 kPa, respectively. The results of the
lateral pressure measurements are illustrated in Figure 6.

Y=-4. 364%x-11. 071
R*=0. 97

on (dB)

Transmission (dBm)
Transmission (dBm)

1500 1530 1560 1590 1544 1546 1548 1550 1552 0.0 0.2 0.1 0.6
Wavelength (nm) Wavelength (nm) Pressure (kPa)

(a) (b) (0

Figure 6. (a) Obtained transmission spectrum, (b) detailed graph of peak at 47 °C, and (c) linear fit of
temperature sensing.

From the graph of the results, it can be observed that the variation of the peak in
the transmission spectrum at the wavelength of 1550.9 nm reveals the following: when
lateral pressure is applied to the grating region, there is no change in the position of the
peak wavelength. However, as the lateral pressure increases, the transmission intensity
of the peak decreases. After extracting and linearly fitting the transmission intensity of
this peak, as depicted in Figure 6¢, we obtained a function representing the relationship
between the lateral pressure and the transmission intensity of this peak at 1550.9 nm:
Y = —4.264 x x — 11.071. The confidence factor is R = 0.97. Consequently, the sensitivity of
lateral pressure sensing based on transmission intensity at this wavelength for this sensor
is —4.264 dB/kPa.

3.3. The Simultaneous Measurement of Lateral Pressure and Temperature

As shown the results and discussion above, the demonstrated sensor device enables
the simultaneous measurement of lateral pressure and temperature. It allows for the
establishing of a matrix-based relationship between lateral pressure and temperature,
which expresses the interdependence of these two parameters as follows [10]:

AP . K PP K PT Ap
(AT> - (KTP Krr )\ At 10)
where AP and AT represent the variation in lateral pressure and temperature. Ap represents
the variation of the intensity with a lateral pressure change. At denotes the wavelength
shift of the chosen interference spectrum dip. The matrix coefficients Kpp, Kpr, Krp, and

KrT correspond to the crossover factors, respectively. Based on our experimental findings,
Kpr = krp = 0, the matrix in Equation (10) can be derived as

AP\ _ [—1413 0 \/Ap
<AT>_£( 0 —4.264> (At) (1)

By utilizing this matrix equation, the resolution for temperature was —1.413 nm/°C.
We also achieved a lateral pressure sensitivity of —4.264 dB/kPa.

3.4. Repeated Experiments

Given that the sensor utilizes measurements of transmission spectrum intensity,
and considering the complexity of the transmission intensity model, repeated experiments
are crucial. They serve as the cornerstone for the reproducibility of the sensor’s results.
In this study, the experiments on lateral pressure were repeated three times. The sensi-
tivities obtained were —4.261 dB/kPa, —4.267 dB/kPa, and —4.262 dB/kPa, respectively.
The sensor exhibited excellent repeatability.
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4. Conclusions

This study developed a sensor capable of simultaneously measuring temperature
and lateral pressure with high sensitivity. The sensor combines a 6° tilted grating with
a segment of commercially available panda polarization-maintaining fiber, connected
in series and linked to two ports of a 2 x 2 coupler at one end. This setup enables the
concurrent measurement of lateral pressure and temperature. By incorporating a broadband
light source, the sensor generates an interference spectrum coupled with a tilted grating
spectrum. When the temperature of the environment changes, the interference envelope of
the sensor’s transmission spectrum undergoes a blue shift towards shorter wavelengths
at a sensitivity of —1.413 nm/°C. During this process, the transmission peak at 1550.6 nm
undergoes a slight red shift with no change in transmission intensity. When lateral pressure
is applied to the grating region, the intensity of this transmission peak varies at a sensitivity
of —4.264 dB/°C. Due to the absence of crosstalk between these two features, simultaneous
measurements can be achieved.
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