
Citation: Imash, A.; Smagulova, G.;

Kaidar, B.; Keneshbekova, A.;

Kazhdanbekov, R.; Velasco, L.F.;

Mansurov, Z. Chemoresistive Gas

Sensors Based on Electrospun 1D

Nanostructures: Synergizing

Morphology and Performance

Optimization. Sensors 2024, 24, 6797.

https://doi.org/10.3390/s24216797

Academic Editor: Pengcheng Xu

Received: 19 September 2024

Revised: 7 October 2024

Accepted: 15 October 2024

Published: 23 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Chemoresistive Gas Sensors Based on Electrospun 1D Nanostructures:
Synergizing Morphology and Performance Optimization
Aigerim Imash 1,2 , Gaukhar Smagulova 1,* , Bayan Kaidar 1 , Aruzhan Keneshbekova 1,3 ,
Ramazan Kazhdanbekov 2 , Leticia Fernandez Velasco 4 and Zulkhair Mansurov 1,2

1 Institute of Combustion Problems, 172 Bogenbay Batyr Str., Almaty 050012, Kazakhstan;
imash.aigerim@icp.kz (A.I.); kaidar.bayan@icp.kz (B.K.); a.keneshbekova@icp.kz (A.K.);
zmansurov@kaznu.kz (Z.M.)

2 Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, 71 al-Farabi Ave.,
Almaty 050040, Kazakhstan; kazhdanbekov_ramazan@live.kaznu.kz

3 International Chinese-Belorussian Scientiffc Laboratory on Vacuum Plasma Technology, Nanjing University of
Science and Technology, 200 Xiaolingwei str., Nanjing 210094, China

4 Department of Chemistry, Royal Military Academy, Avenue de la Renaissance 30, 1000 Brussels, Belgium;
leti_fv@hotmail.com

* Correspondence: smagulova.gaukhar@gmail.com; Tel.: +7-7075666345

Abstract: Gas sensors are essential for safety and quality of life, with broad applications in industry,
healthcare, and environmental monitoring. As urbanization and industrial activities intensify, the
need for advanced air quality monitoring becomes critical, driving the demand for more sensitive,
selective, and reliable sensors. Recent advances in nanotechnology, particularly 1D nanostructures
like nanofibers and nanowires, have garnered significant interest due to their high surface area
and improved charge transfer properties. Electrospinning stands out as a promising technique
for fabricating these nanomaterials, enabling precise control over their morphology and leading to
sensors with exceptional attributes, including high sensitivity, rapid response, and excellent stability
in harsh conditions. This review examines the current research on chemoresistive gas sensors based on
1D nanostructures produced by electrospinning. It focuses on how the morphology and composition
of these nanomaterials influence key sensor characteristics—sensitivity, selectivity, and stability. The
review highlights recent advancements in sensors incorporating metal oxides, carbon nanomaterials,
and conducting polymers, along with their modifications to enhance performance. It also explores
the use of fiber-based composite materials for detecting oxidizing, reducing, and volatile organic
compounds. These composites leverage the properties of various materials to achieve high sensitivity
and selectivity, allowing for the detection of a wide range of gases in diverse conditions. The review
further addresses challenges in scaling up production and suggests future research directions to
overcome technological limitations and improve sensor performance for both industrial and domestic
air quality monitoring applications.

Keywords: chemoresistive gas sensors; electrospinning; 1D nanostructured materials; composites;
electrospun fibers

1. Introduction

Gas sensors are indispensable in modern life, ensuring both safety and a higher quality
of living [1]. As urbanization and industrialization accelerate, monitoring air quality has
become more crucial than ever. In industrial settings, gas sensors help prevent accidents
and detect toxic leaks, while in the automotive sector, they contribute to reducing harmful
emissions [2,3]. In healthcare, these sensors facilitate early disease diagnosis through breath
analysis [4], and in everyday life, they help maintain safer environments by continuously
monitoring air quality. For gas sensors to be effective they must exhibit high sensitivity for
detecting low gas concentrations [5], excellent selectivity to distinguish between various
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gases [6], and fast response and recovery times [7]. They also need to be stable and durable
under different environmental conditions [8,9], consume minimal power, and be easily
integrated into electronic systems [10].

The graph below illustrates the number of publications on gas sensors from 1980 to
2023, based on data from the Scopus database (see Figure 1). A sharp rise in publications
since the early 21st century indicates a significant increase in scientific interest and research
activity in this field. This surge is driven by the growing demand for more efficient
and reliable sensors to meet challenges in industries such as manufacturing, healthcare,
and environmental protection. Technological advancements, particularly the use of 1D
nanostructures, have greatly enhanced the performance of gas sensors, which is reflected
in the rising number of studies and publications in this area.
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Gas sensors vary in their transduction mechanisms and include optical [11], electro-
chemical [12], electrical [13], and piezoelectric sensors [14]. Chemoresistive gas sensors
belong to the electrical type of transduction, detecting and quantifying gaseous analytes
by measuring changes in their electrical resistance. The primary working principle of
chemoresistive sensors is based on the adsorption and desorption of gas molecules on the
surface of the sensing material, which alters the charge carrier density and, consequently,
the material’s electrical resistance [15]. The interaction of gas molecules with active centers
on the surface changes the energy barrier for charge carrier movement, which forms the
basis of the measurable signal.

Chemoresistive gas sensors can be classified according to various criteria, such as
the type of sensing material, detection method, and application area. Based on the mate-
rials used, these sensors are divided into several categories: semiconductor metal oxide
(SMOx)-based sensors [16], carbon-based materials [17], conductive polymers [18], and
composites [19]. SMOx, such as SnO2, ZnO, and TiO2, are the most commonly used ma-
terials due to their high sensitivity and stability [20–22]. Carbon-based materials, like
carbon nanotubes, graphene, and reduced graphene oxide (rGO), have gained attention
for their unique electrical and mechanical properties [23]. Conductive polymers, such as
polyaniline (PANI) and polypyrrole (PPy), are also used because of their flexibility and
modifiability [24]. Composites, which combine different materials, offer enhanced sensor
performance due to synergistic effects [25].

Various methods are employed to fabricate chemoresistive gas sensors, including
chemical deposition [26], spray pyrolysis [27], sol-gel processing [28], and electrospinning
(ES) [29,30]. Each method offers its own advantages and limitations depending on the
desired sensor characteristics. One of the most versatile and cost-effective methods is
electrospinning. This process involves applying a high voltage to a polymer solution or
melt, resulting in the formation of a thin jet that elongates and solidifies into fibers as it
moves toward a grounded collector [31]. The resulting nanofibers can be assembled into
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nonwoven mats or aligned arrays, depending on the collector configuration [32]. One
of the key advantages of electrospinning is the ability to produce fibers with diameters
ranging from tens of nanometers to several micrometers, enabling precise control over the
material’s morphology to suit specific applications [33].

Advantages of 1D nanostructures, such as nanofibers and nanowires, include enhanced
diffusion properties and efficient charge transport, which provide more active centers for
gas adsorption compared to 2D and 3D nanostructures [34]. Their high aspect ratio, surface
energy, and unique morphology contribute to improved sensor performance, including
faster response times and lower detection limits [35].

Traditional gas sensors often face challenges such as low selectivity, slow response
time, and instability in harsh environments [36]. Innovative sensors based on nanomaterials
can address these issues, but they also encounter challenges such as the complexity of
scaling production processes and material structure heterogeneity.

This review aims to provide a comprehensive analysis of current research on chemore-
sistive gas sensors utilizing 1D nanostructured materials fabricated by electrospinning.
It will cover the fundamental principles and mechanisms of chemoresistive gas sensing,
focusing on the influence of material morphology and composition on sensor properties;
detail the electrospinning process and parameters affecting nanofiber structure and proper-
ties; review various materials used in electrospun gas sensors, such as metal oxides, carbon
materials, conducting polymers, and composites, with examples from recent literature;
examine post-annealing methods and modifications aimed at enhancing performance,
emphasizing structural and chemical changes; offer a comparative analysis of different
electrospun nanofiber gas sensors, including case studies from recent research, highlight-
ing key factors influencing efficiency; and identify current challenges and propose future
research directions to overcome existing limitations and improve sensor performance.

2. Basics of Chemoresistive Gas Sensors

Chemoresistive gas sensors can be categorized into n-type and p-type based on the
primary charge carriers, which can be electrons or holes. They operate on the principle of
gas interaction with these charge carriers in semiconductor materials, where the donor or
acceptor properties of the gases alter the charge carrier concentration through adsorption
and desorption processes on the sensor surface, as well as interactions with defects or
active centers. The adsorption of oxidizing gases on n-type semiconductor surfaces reduces
the concentration of charge carriers and increases resistance [37], whereas reducing gases
release trapped electrons, thereby decreasing resistance [38].

2.1. Operating Principles of Gas Sensors

The primary mechanisms of sensor response include ionosorption of oxygen and
redox reactions on the surface of materials such as SMOx [39–41]. During ionosorption,
oxygen molecules adsorb onto the surface of SMOx, forming oxygen ions (O2

−, O−, O2−)
depending on the sensor’s operating temperature. For instance, at temperatures below
200 ◦C, O2

− predominates, whereas at temperatures above 250 ◦C, O− and O2− become
more prevalent due to the dissociation of oxygen molecules and the capture of electrons
from the conduction band [42]. These ionic forms of oxygen alter the electrical properties of
the material, generating the sensor signal. Additionally, electrostatic interactions with ionic
centers on the surface, such as metal cations, enhance oxygen adsorption and influence
sensor sensitivity [43].

In n-type semiconductors, an electron-depleted surface layer (EDL) forms due to
the extraction of electrons from the conduction band, while in p-type semiconductors, a
hole-accumulation layer (HAL) develops due to the increased concentration of holes [44].
The polarity of the sensor response, which depends on the dominant charge carriers,
significantly affects its sensitivity (see Figure 2).
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semiconductor metal oxides.

In the presence of oxidizing gases, the resistance of n-type semiconductors increases
due to the expansion of the EDL. Conversely, in the presence of reducing gases, the
resistance decreases because of the contraction of the EDL and the return of electrons to
the conduction band, which enhances conductivity and alters the bending of the energy
bands at the grain boundaries of the material [45]. Oxygen adsorption and reactions with
gases can also affect the height of the Schottky barrier, thereby altering the conductivity
and, consequently, the resistance of the sensor [46]. It is important to note that oxygen
ionosorption plays a crucial role in the sensor response mechanism, and this process can
be enhanced by increasing the surface area and concentration of charged metal ions on
the surface [47]. The magnitude of the resistive response is determined by the intensity
of surface reactions and the number of active centers, such as oxygen vacancies, which
facilitate gas adsorption and change the electrical properties of the material [48].

The surface of metal oxide materials (SMOx) used in gas sensors contains various
acid-base centers that play a crucial role in the gas-detection process [49]. Lewis acidic
centers, represented by coordinatively unsaturated metal cations, can accept electron pairs
from gas molecules, while Lewis basic centers, consisting of lattice oxygen anions, donate
electron pairs. Brønsted acidic centers, formed by bridging hydroxyl (OH) groups, can
donate protons to gas molecules, whereas Brønsted basic centers accept protons [50]. The
presence of terminal hydroxyl groups, resulting from the dissociative adsorption of water,
also influences the sensitivity of metal oxides. Managing the concentration and nature
of these centers allows for the optimization of sensor sensitivity and selectivity, thereby
significantly enhancing their effectiveness in gas detection [51].

It is worth noting that different gases may interact with the acid-base centers through
various mechanisms, and the nature of these interactions can be predicted using Pearson’s
hard and soft acids and bases (HSAB) theory [52,53]. According to this theory, soft bases,
such as reducing gases (e.g., hydrogen, ammonia), preferentially interact with soft acidic
centers, while hard bases (e.g., oxidizing gases) interact with hard acidic centers [54]. This
can serve as a useful tool in the design and optimization of gas sensor architecture to
improve their performance characteristics.
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2.2. Gas Sensor Performance Characteristics

Key characteristics that determine the effectiveness of gas sensors include sensitivity,
selectivity, response time, and stability (see Table 1). These parameters are crucial for the
development and application of sensors, ensuring their reliability and accuracy [55,56].
Sensitivity (indicated as R) is defined as the ratio of the sensor’s resistance in the presence
of gas (Rgas) to its resistance in clean air (Rair). For a sensor to function effectively, this ratio
should be greater than 1. Selectivity is expressed as the ratio of the sensor’s response to
different gases. Response time is characterized by the period required for the sensor to
reach 90% of the final value between Rair and Rgas, while recovery time determines how
quickly the sensor returns to 90% of this value. It is also important to note that the limit of
detection is a significant parameter for gas sensors, as it defines the minimum detectable
concentration of a gas [57,58]. Optimizing these factors ensures measurement accuracy.

Table 1. Main characteristics of gas sensors.

Characteristics Operating Principle Major Limitations Potential Solutions

Sensitivity

- Change of electrical
conductivity of the
conductor layer during gas
adsorption

- Change in mass of the
sensing element (for
piezoelectric sensors)

- Optical absorption (for
optical sensors)

- Low signal-to-noise ratio
for trace gases

- Interference from other
gases

- Influence of temperature
and humidity

- Nanostructured materials (e.g.,
SnO2 ZnO nanoparticles [59,60])

- Noble metal alloying (e.g., Pd,
Au) [61,62]

- Composite materials (e.g.,
ZnO@CO3O4 [63])

- Optimization of the operating
temperature [64,65]

Selectivity

- Specific chemical reactions
on the sensor surface

- Size matching between
pores and gas molecules

- Differences in
adsorption/desorption
kinetics for different gases

- Cross-sensitivity to similar
gases

- Difficulty in
distinguishing between
homologous gases (e.g.,
CO and H2)

- Functionalisation by specific
catalysts [66]

- Selective filter membranes (e.g.,
ZIF-8 [67])

- Composite materials with
opposite responses (e.g.,
SnO2-NiO for VOCs [68])

Response time

- Adsorption/desorption rate
of gas on the sensor surface

- Gas diffusion rate in porous
material

- Rate of chemical reaction on
the surface

- Slow
adsorption/desorption
kinetics

- Diffusion limitations in
porous materials

- Nanostructured materials with
high specific surface area [69]

- Optimization of operating
temperature [70]

- Thin sensing layers [71]
- Catalytic additives for reaction

acceleration [72]

Stability

- Preservation of
physicochemical properties
of the sensing layer in time

- Reversibility of
adsorption/desorption
processes

- Stability to environmental
changes

- Drift of readings over time
- Poisoning by interfering

gases
- Degradation at high

temperatures

- Protective coatings (e.g., PMMA
membranes) [73]

- Stable nanostructures (e.g., 1D
nanowires [74,75])

- Periodic recalibration [76,77]

Additionally, it is important to note that the performance of gas sensors is directly
influenced by environmental conditions such as temperature and humidity, which can sig-
nificantly affect gas adsorption processes on the sensor’s surface [78,79]. To minimize these
impacts, various methods are employed, including the use of filters or temperature control
systems [73,80]. Durability is also a critical factor, as many sensors are prone to degradation
and aging due to exposure to harsh environments or contamination [81]. Utilizing materials
with high resistance to external conditions, as well as protective coatings, helps extend the
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lifespan of sensors, ensuring their reliability and stable operation throughout their service
life [82].

2.3. Materials Used in the Manufacture of Gas Sensors

The choice of sensing material is essential for optimizing the sensitivity, selectivity,
and stability of gas sensors. Among the most widely utilized materials are ZnO, TiO2, SnO2,
and WO3, each offering distinct advantages for different sensing applications [83,84]. They
exhibit high sensitivity and stability in detecting various gases [85]. However, a limitation
is their requirement to operate at high temperatures (>300 ◦C), which increases energy
consumption [86]. To enhance the performance of oxide sensors, nanostructured materials
such as nanowires [87], nanotubes [88], and nanosheets [89] have been developed, which
increase surface area and improve gas diffusion [90]. For example, modifying ZnO with
platinum or palladium (Pd) significantly enhances sensitivity due to the sensitizing effect
and catalytic activity of the surface. On the other hand, conducting polymers like PPy and
PANI are widely used for creating gas sensors. These materials are attractive due to their
flexibility, low cost, and ability to operate at room temperature [91,92]. Polymers can be
further enhanced by incorporating metals such as gold (Au) or platinum (Pt), which increase
sensitivity through greater active surface area and catalytic activity [93]. Polymers can
also be used in composites with carbon nanomaterials, improving gas-sensing properties.
Transition metal dichalcogenides (TMDs), such as MoS2 and WS2, are of interest due to their
two-dimensional structure and high specific surface area, making them ideal for detecting
various gases [94]. These materials offer high sensitivity and stability, particularly for
detecting toxic gases like NO2 and CO2 [95]. When combined with nanomaterials such as
graphene, TMDs show enhanced performance due to synergistic effects. Recently, MXenes
have garnered significant attention among two-dimensional materials, demonstrating
high sensitivity to various gases and ease of functionalization to improve selectivity and
stability [96,97]. Perovskites, such as LaCoO3 and SrTiO3, alter their electronic structure
upon gas interaction, enhancing their sensitivity. For instance, the perovskite Cs3CuBr5
has shown high sensitivity to gases including hydrogen and ammonia [98]. Metal–organic
frameworks (MOFs), such as ZIF-8 and MIL-101, are notable for their porous structure
and large specific surface area [99–101]. These materials can be functionalized to enhance
selectivity for target gases and exhibit high stability even in high humidity conditions [102].

2.4. One-Dimensional Nanostructures for Gas Sensors

One-dimensional materials such as nanotubes, nanofibers, and nanowires possess
unique properties that distinguish them from traditional powders and films used in gas
sensors [103–105]. Firstly, due to their linear geometry and high specific surface area, 1D
nanomaterials provide enhanced charge transport, leading to increased sensor sensitiv-
ity [106]. This enables them to interact more effectively with target gases, resulting in a
stronger response compared to 0D and 2D materials. Secondly, 1D structures can create
shorter pathways for electron transport, which minimizes the sensor’s response time and
improves its dynamic characteristics [107].

Recent research in the field of gas sensors has demonstrated the development of new
materials and nanostructures that significantly improve sensor characteristics such as sen-
sitivity, selectivity, and stability. For example, hollow SnO2 nanospheres have shown a
significant increase in response to hydrogen, with response and recovery times of 56 and
216 s, respectively, at 100 ppm [108]. Meanwhile, thin SnO2 films have demonstrated a max-
imum response to ethanol at a concentration of 50 ppm, with response and recovery times
of 259 and 214 s, respectively [109]. SnO2 nanofibers, synthesized through electrospinning,
provided the fastest response and recovery—2 and 64 s to acetone at a concentration of
50 ppm [110]. This can be attributed to the structured pathway and orientation of electron
transport in the fibers, whereas in 0D and 2D materials, this process can be disrupted due
to the presence of multiple directional axes. These results highlight that materials of the
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same nature can yield different outcomes depending on their structure, deepening our
understanding of electron transport processes (Figure 3a–c).
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dimensional nanospheres (a), reprinted with permission from Ref. [108]. One-dimensional nanofibers
(b), reprinted with permission from Ref. [111]. Two-dimensional nanoflowers (c), reprinted with
permission from Ref. [112]. Three-dimensional nanostructures (d), reprinted with permission from
Ref. [109] during interaction with analytes.

A comparison with other ZnO nanostructures, such as star-shaped and spherical
particles, further confirms the advantages of nanofibers. For instance, star-shaped and
spherical particles show response and recovery times of 25 and 150 s, respectively, to CO at
a concentration of 200 ppm [113], while nanofibers demonstrate a rapid response (25–29 s)
and recovery (12–17 s) to CO in the range of 1 to 20 ppm [114]. This indicates that during
the interaction with nanofibers, the conductive channel facilitates rapid electron transport
(Figure 3b). In the case of 3D structures, disordered morphology can obstruct electron
transport due to the high potential at grain boundaries (Figure 3b,d), which can also
occur when interacting with oxidizing gases. The interaction of oxygen, as an oxidizing
gas, reduces the conductive channel, increasing the potential barrier for electrons and,
consequently, raising the resistance. Unlike 0D and 2D structures, linear structures provide
a more uniform distribution of the conductive channel, leading to more predictable changes
in resistance (Figure 3).

Thus, the use of composite and hybrid materials, as well as the development of 1D
nanostructures, opens new horizons for creating highly efficient gas sensors that can meet
the requirements of a wide range of applications. These advancements underscore the
need for further research in the field of nanomaterials to enhance sensor characteristics and
expand their functionality.
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3. Fundamentals of the Electrospinning Technique

ES is a key technology for synthesizing 1D nanomaterials, such as nanofibers, with
diameters ranging from nanometers to micrometers [115,116]. This method allows for the
creation of materials with unique properties by precisely controlling the morphology and
structure of the fibers. By varying the composition of polymeric or composite solutions and
adjusting process parameters (see Figure 4), such as applied voltage, solution feed rate, the
distance between the needle and collector, and the type of collector used (static or rotating),
one can control the size, porosity, alignment, and orientation of the fibers [117–119].
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Furthermore, electrospinning enables the incorporation of various additives, including
nanoparticles, catalytic agents, and other functional components, which opens opportu-
nities for creating multifunctional materials with enhanced mechanical, electrical, and
chemical properties [120].

The principle of the electrospinning process is based on the stretching of a polymer
solution under the influence of an electrostatic field, during which solvent evaporation
occurs, and fibers are deposited onto the collector. The stability of the Taylor cone, which
determines the diameter and morphology of the fibers, is critical for producing high-quality
nanofibers [121]. Instability of the cone can lead to non-uniformity or the formation of
globular structures. Conversely, the cone’s height directly affects fiber diameter, allowing
process optimization, as demonstrated in the work using polyvinylidene fluoride (PVDF)
as the fiber-forming polymer under specific parameters: feed rate of 1 mL/h, voltage of
10.8 kV, and a distance of 10 cm [122,123].

In addition to cone stability, electrospinning is susceptible to various instabilities,
such as axisymmetric Rayleigh instability, which results in bead-like fibers. In a recent
study [124], the authors demonstrated that increasing voltage or polymer concentration
helps reduce these instabilities (see Figure 5a–c). While slower solvent evaporation fa-
cilitates the formation of thinner fibers, residual charges can limit the mat’s thickness to
0.5–1 mm [125]. Viscosity, polymer molecular weight, and the concentration of the fiber-
forming agent also critically influence nanofiber morphology, determining their diameter
and structure [126,127]. Increasing viscosity and air pressure promotes the formation of
thin, uniform fibers [128]. However, surface tension of the polymer solution plays an
equally important role: high surface tension induces instabilities, whereas reducing it
improves fiber uniformity. The use of solvents with low surface tension and the addition of
surfactants further enhance fiber morphology [129,130]. Additionally, the solution’s pH
significantly affects fiber size and morphology. At pH 2.6, thinner and more uniform fibers
are formed compared to pH 8.5 (see Figure 5d–f) [131].
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One study [133] demonstrated that the geometry of the collector also affects fiber
morphology: a cylindrical collector provides better tension, while a disk-shaped one results
in a higher Young’s modulus. The applied voltage plays a key role in the formation of
the Taylor cone and the ejection of the polymer jet. For example, increasing the voltage
enhances fiber stability and reduces deviations [134,135]. The collector’s rotation speed
also influences fiber diameter. At low speeds (100 rpm), fibers are less stretched and form
irregular structures, whereas increasing the speed to 500 rpm results in more uniform fiber
distribution and reduced diameters (see Figure 5g–i) [132].

Controlling the flow rate of the polymer solution is critical for achieving the desired
fiber morphology. While reducing the flow rate leads to thinner fibers (see Figure 6a–c) [136],
increasing it can cause the formation of beads if the flow rate becomes too high [31,137].
The applied voltage during electrospinning significantly influences the diameter and mor-
phology of the fibers. At low voltages, globular structures tend to form due to insufficient
electric field strength to produce uniform fibers. The low charge at the needle tip and
the collector results in jet instability and fiber structure variations. Doubling the voltage
helps produce smoother and more uniform fibers (see Figure 6d–f) [138]. Additionally,
the relative humidity of the environment has a significant impact on fiber morphology.
Under high humidity (65%), fibers become porous and irregular, and their diameter in-
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creases. In low-humidity conditions (5%), fibers are smoother and defect-free, making their
morphology more suitable for further applications (see Figure 6g–i) [139].
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On the other hand, the distance between the needle and the collector also affects the
diameter and morphology of the fibers. Increasing the distance promotes the formation
of thinner fibers due to enhanced stretching forces. However, if the distance is too short,
thicker fibers with bead-like structures may form. Optimizing this parameter is essential to
obtain high-quality fibers [140].

The addition of nanomaterials such as fullerenes, carbon nanotubes, and graphene
can significantly alter the morphology of the fibers, increasing their porosity and diameter,
though this may reduce the specific surface area. However, post-annealing methods like
sintering can improve the mechanical properties of the fibers without altering the base
polymer [141].

For gas sensors to function effectively, the length and morphology of the nanofibers are
crucial, as they influence the formation of conductive channels and the resistance response
during gas interaction. Unlike 2D and 3D structures, 1D nanomaterials provide optimal
charge transfer, minimizing losses. Fiber diameter, grain size, and crystallinity also play
a key role: reducing the diameter increases the surface area, and decreasing grain size to
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the Debye radius maximizes the resistance change during gas interaction. The balance
between graininess and crystallinity is critical for achieving optimal sensor sensitivity and
stability [142].

4. Performance of Chemoresistive Gas Sensors Obtained by the ES Method

High sensitivity and short response time are key characteristics of gas sensors. Elec-
trospun nanofibers, due to their high porosity and networked structure, enable efficient
transport of analytes to the surface of the sensing material, significantly accelerating the
sensor’s response time [143,144]. The advantage of the electrospinning method lies in its
relative simplicity and cost-effectiveness, making the production of such nanofibers feasible
for large-scale applications. Additionally, the recyclability of nanofibers contributes to
sustainable resource use and reduces environmental impact [145]. To achieve optimal gas
sensor performance, careful control over both the fiber morphology and the fabrication
conditions is essential [111,146].

The process of making chemoresistive sensors based on electrospun nanofibers in-
volves several key steps. The first step is to prepare the electrospinning solution, where
the choice of components such as polymers, solvents, and sensing materials determine the
final properties of the fibers, followed by the electrospinning process (see Figure 7).
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A critical stage in the process is the thermal treatment (calcination), which removes
the polymer matrix and converts the precursors into metal oxides. The calcination parame-
ters, such as temperature, heating rate, and duration, directly affect the crystallinity and
grain size, which in turn determine the gas-sensing properties of the resulting fibers [111].
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There are several methods for forming electrodes based on electrospun nanofibers. One
approach involves depositing the fibers onto integrated electrodes followed by calcina-
tion, which ensures strong adhesion between the components and enhances the sensor’s
performance [147–154].

Another method involves the pre-coating of fibers onto ceramic tubular electrodes,
which enhances adhesion and increases the number of active centers for interaction with
the gas environment (see Figure 8). This approach improves the sensor’s sensitivity and
simplifies the sensor assembly process [155–158].
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In some studies, electrodes are formed directly during the electrospinning process.
This method allows for optimized adhesion, precise control over the coating thickness, and
improved electrode performance (see Figure 9) [159–161].

Therefore, the successful development of chemoresistive sensors based on electrospun
nanofibers requires a comprehensive approach that includes material selection, optimiza-
tion of electrospinning and thermal treatment parameters, and the development of effective
methods for integrating fibers with electrodes. Careful management of these parameters is
essential to achieve high sensitivity, stability, and selectivity in the sensors.

Moreover, achieving these characteristics necessitates consideration of the analyte’s
nature and its interaction with the gas-sensitive material’s surface. The sensor’s effective-
ness is influenced not only by the fiber morphology but also by the reducing and oxidizing
properties of the analytes, which can affect the interaction mechanisms with the sensitive
material. These factors directly impact the accuracy and reliability of measurements, un-
derscoring the importance of a holistic approach in the development and optimization of
gas-sensitive sensors.
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4.1. Gas-Sensitive Characteristics to Reducing Gases

Detecting reducing gases such as acetone, hydrogen, and ammonia is critically im-
portant for safety, environmental protection, and health [162–164]. These gases are widely
used in industry and agriculture, but their leaks can lead to toxic effects, explosions, and
deteriorated air quality [165]. For example, hydrogen, while a promising fuel, is highly
flammable if leaked, and ammonia is toxic at high concentrations [166,167]. Early detec-
tion of such gases in environmental monitoring and industrial safety allows for timely
responses to potential threats, helps prevent accidents, and minimizes harmful impacts on
the environment and human health [168].

One promising research direction is the use of composite nanofibers based on metal
oxides. The shape and structure of these fibers significantly influence their gas-sensing
properties, as demonstrated by numerous studies on the detection of reducing gases.

An effective approach to enhance sensor performance is the use of nanofibers doped
with nanostructures. For example, research [169] has shown the effectiveness of Fe2O3
nanotubes doped with terbium (Tb) for acetone detection. These nanofibers, produced
via electrospinning and calcined at 550 ◦C, exhibited a response of 53.2 at a concentration
of 50 ppm acetone and 170 ◦C, which is 13 times greater than the sensitivity of pure
Fe2O3 nanotubes. The doping with terbium further increases the concentration of oxygen
vacancies, improving interaction with gas molecules. The unique morphology of the
hollow-structured nanotubes explains the high sensor response (53.2 at 50 ppm acetone)
and low detection limit (200 ppb).

The morphology of nanofibers is also critically important for the stability and sensitiv-
ity of composite-based sensors. For example, composite fibers of CuO/ZnO synthesized via
electrospinning (see Figure 10a–c) exhibit a porous and scaly structure, which contributes
to high sensitivity and stability towards hydrogen sulfide (H2S) [170].

Modifying the morphology of fibers with noble metals such as gold and palladium
also significantly enhances their sensitivity. For example, In2O3 nanofibers doped with
2 at.% Au and 2 at.% Pd exhibit a marked improvement in response to CO due to the
increased conductivity provided by the noble metals (see Figure 10d–f) [171]. This also
highlights the importance of fiber morphology in ensuring sensor sensitivity, as it affects
the interaction process between the gas and active surfaces.

Despite identical synthesis conditions, such as applied voltage and the distance be-
tween the needle and the collector during electrospinning, the fiber morphology can vary
significantly. For instance, composite fibers of PANI/hollow Carbon#In2O3 exhibit a pro-



Sensors 2024, 24, 6797 14 of 31

nounced surface roughness and a hollow structure (see Figure 10g–i), which enhance the
binding of ammonia molecules [172]. These fibers demonstrate stability at low gas concen-
trations (1 ppm), highlighting the crucial role of morphology control in ensuring both the
stability and sensitivity of sensors.

Sensors 2024, 24, x FOR PEER REVIEW 14 of 34 
 

 

Early detection of such gases in environmental monitoring and industrial safety allows 
for timely responses to potential threats, helps prevent accidents, and minimizes harmful 
impacts on the environment and human health [168]. 

One promising research direction is the use of composite nanofibers based on metal 
oxides. The shape and structure of these fibers significantly influence their gas-sensing 
properties, as demonstrated by numerous studies on the detection of reducing gases. 

An effective approach to enhance sensor performance is the use of nanofibers doped 
with nanostructures. For example, research [169] has shown the effectiveness of Fe2O3 
nanotubes doped with terbium (Tb) for acetone detection. These nanofibers, produced via 
electrospinning and calcined at 550 °C, exhibited a response of 53.2 at a concentration of 
50 ppm acetone and 170 °C, which is 13 times greater than the sensitivity of pure Fe2O3 
nanotubes. The doping with terbium further increases the concentration of oxygen 
vacancies, improving interaction with gas molecules. The unique morphology of the 
hollow-structured nanotubes explains the high sensor response (53.2 at 50 ppm acetone) 
and low detection limit (200 ppb). 

The morphology of nanofibers is also critically important for the stability and sensi-
tivity of composite-based sensors. For example, composite fibers of CuO/ZnO synthesized 
via electrospinning (see Figure 10a–c) exhibit a porous and scaly structure, which contrib-
utes to high sensitivity and stability towards hydrogen sulfide (H2S) [170]. 

 
Figure 10. Morphology and structure of composite fibers as an example of reductive gas detection. 
Detection to H2S (a–c), reprinted with permission from Ref. [170]. CO (d–f), reprinted with permis-
sion from Ref. [171]. NH3 (g–i), reprinted with permission from Ref. [172]. 

Figure 10. Morphology and structure of composite fibers as an example of reductive gas detection.
Detection to H2S (a–c), reprinted with permission from Ref. [170]. CO (d–f), reprinted with permission
from Ref. [171]. NH3 (g–i), reprinted with permission from Ref. [172].

Another important area is the development of nanocomposites based on rGO, which
enhances the sensitivity and selectivity of sensors. In a study [173], NiO nanofibers wrapped
with rGO were synthesized for ammonia detection. This nanocomposite is characterized
by high conductivity and increased specific surface area, which improves sensor sensitivity
and accelerates response time. NiO creates active centers for NH3 adsorption, increasing
material conductivity through interaction with nickel vacancies. The rGO-NiO sensor
demonstrated high sensitivity to NH3 at a concentration of 50 ppm, with a response time
of 32 s and a recovery time of 38 s. The high repeatability of the response confirms the
sensor’s stable performance over extended periods.

The use of carbon nanomaterials, produced via electrospinning, not only provides
a high specific surface area but also imparts mechanical flexibility to the sensors, which
is relevant for flexible electronics. In a study by Xing Fan and colleagues [174], a flexible
sensor based on electrospun carbon nanofibers (CNF) decorated with ZnO nanoparticles
(ZnO@CNF) was developed for ammonia detection. The electrospun carbon nanofibers,
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obtained through electrospinning, carbonization, and pre-oxidation, serve as a flexible
substrate for the even distribution of ZnO nanoparticles, ensuring stable sensor perfor-
mance under mechanical deformation. The formation of a p-n heterojunction between ZnO
and CNF provides enhanced properties compared to the individual components. At room
temperature, ammonia reacts with oxygen ions on the ZnO surface, leading to the release
of electrons and a decrease in sensor resistance. The sensor operates effectively at 23 ◦C,
unlike higher temperatures required for sensors based on pure ZnO. Under high humidity
conditions, the sensor also responds to the presence of water, leading to the formation of
hydronium ions (H3O+) and an increased response. The sensor exhibits short response
and recovery times—5 and 18 s, respectively—and maintains its properties after multiple
mechanical bends, making it reliable for use in flexible devices.

The use of nanowires and nanorods also enhances the gas-sensing properties of sensors
by increasing the surface-to-volume ratio. In a study by Cai Z. and Park S. [175], SnO2
nanofibers doped with palladium and In2O3 were synthesized for hydrogen detection.
Palladium nanoparticles facilitate the formation of Schottky barriers and catalytic activation,
significantly improving hydrogen sensitivity. Doping with In2O3 resulted in a 24-fold
increase in sensor sensitivity compared to materials containing only palladium.

Thus, employing nanoscale structures, such as nanotubes, nanofibers, nanorods, and
nanocomposites, significantly expands the capabilities of gas sensors for detecting reducing
gases. The application of these nanomaterials notably enhances key sensor parameters,
including sensitivity, selectivity, and operating temperature. Furthermore, these sensors
demonstrate high stability and durability, maintaining their performance under repeated
mechanical deformations and prolonged use. This makes them particularly promising for
applications in flexible electronics and environmental monitoring systems.

The table below provides a comparative analysis of sensors for detecting various
reducing gases, detailing materials, electrospinning parameters, target gases, response and
recovery times, operating temperatures, and detection limits, highlighting the diversity of
approaches and their adaptation to various practical requirements. See Table 2.

Table 2. Comparison of electrospun-fiber-based sensors for detecting reducing gases.

Materials

ES Parameters
Target

Gas
Response

Time
Recovery

Time
Operating

T◦C
Selectivity

Detection
Range,
ppm

Sensitive
Concentra-
tion, ppm

Ref.Flow
Rate,
mL/h

Voltage,
kv

Needle-to-
Collector

Distance, cm

SnO2-loaded
ZnO 0.01 15 20 H2 – – 300 H2, CO, NO2 0.05–5 5 [150]

ZnO – 22 22 H2 – – 210–330 H2 20–100 100 [160]

PANI/PEO/ZnO 1.3 25 20 NH3 245 153 RT H2, H2S 250 250 [176]

p-NiO-loaded
n-ZnO 0.02 15 20 H2 – – 200 H2, H2S, CO,

C6H6
0.1–10 10 [177]

PVA/PEDOT:PSS 10 m s−1 20 15 NH3 10 – RT NH3 50 50 [178]

ZnO 0.56 12 15 H2S 14 49 180 H2S, VOCs,
NH3

50 50 [179]

PPy-PAN 0.8 10 20 NH3 1 60 RT VOCs 250–2000 2000 [180]

NiO/SnO2 1 12 15 H2 12 5 195 H2 25–100 25 [181]

CuO-SnO2 0.4 8 12 H2S 284 539 150 NO, CO, CH4,
SO2, C2H5OH 1–10 10 [182]

CFs@NiNPs–
PtNPs 1 25 21 H2 24 89 RT H2, NH3

10,000–
40,000 1000 [183]

SnO2 – 17 – H2S 15 230 350 H2S, CO, H2,
SO2, NH3

0.1–1 1 [184]

Cu/CuO@ZnO 1.2 20 15 CO – – 400 – – 100 [185]

Co3O4 0.707 20 10 CO 14 36 100 CO, NO2, H2,
CH4, NH3

5–40 5 [186]

Thus, electrospun nanofibers are promising materials for the detection of reducing
gases due to their high sensitivity and stability.
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4.2. Gas-Sensitive Characteristics to Oxidizing Gases

Detecting oxidizing gases such as nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide
(SO2) is crucial for mitigating environmental and industrial risks [187]. These gases can have
serious health impacts, contribute to environmental pollution, and cause damage to industrial
equipment. For instance, NO2 and SO2 are major pollutants that contribute to acid rain
formation and deteriorate air quality in urban areas [188,189]. Ozone, on the other hand,
poses health risks when present in high concentrations in the lower atmosphere. Reliable and
sensitive sensors capable of detecting even trace concentrations of these gases are essential for
environmental protection, emission monitoring, and preventing industrial accidents [190].

A promising research direction involves the use of composite nanofibers based on
metal oxides [39]. The morphology of these fibers plays a crucial role in their gas-sensing
characteristics, as demonstrated by numerous studies.

For example, in study [143], nanofibers made from a mixture of CuO and Fe2O3,
produced via electrospinning, showed an enhanced response to NO2. Nanofibers with
a 0.5CuO-0.5Fe2O3 ratio were particularly effective, forming a binary oxide CuFe2O4
that creates heterojunctions between oxides, thereby enhancing sensor sensitivity. The
morphology of these fibers, developed during the electrospinning process, improves the
contact between active surfaces and gas molecules, significantly affecting their gas-sensing
properties. The spinning time also plays a crucial role in shaping the fiber structure, which
directly impacts response characteristics.

Another example is study [191], which investigates porous NiFe2O4 nanofibers with
nanocrystallites, showing high sensitivity to H2S and NO2. The porous structure of these
fibers increases surface area and enhances interaction with gases, improving sensor re-
sponse. In this case, electrospinning conditions such as voltage directly influence morphol-
ogy and, consequently, sensor sensitivity to different gases.

Particular attention is given to sensors based on materials that utilize optical excitation
through localized surface plasmon resonance. For instance, Au/SnO2 nanofibers synthesized
via electrospinning exhibit enhanced gas sensitivity under UV irradiation due to the gold’s
surface plasmon effect (see Figure 11a–c) [192]. The fine morphology of the fibers improves
photon transfer and increases the number of active centers for gas molecule interaction.
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It is also important to note that incorporating reduced graphene oxides into composite
fibers improves the sensor recovery time, which is related to increased overall porosity
and conductivity of the fibers. Specifically, rGO-PVDF/WO3 nanofibers demonstrate
high sensitivity to SO2 due to their porous structure and enhanced surface area (see
Figure 11d–f) [193]. See Table 3.

Table 3. Comparison of electrospun-fiber-based sensors for detecting oxidizing gases.

Materials

ES Parameters
Target

Gas
Response

Time
Recovery

Time
Operating

T◦C
Selectivity

Detection
Range,
ppm

Sensitive
Concentra-
tion, ppm

Ref.Flow
Rate,
mL/h

Voltage,
kv

Needle-to-
Collector

Distance, cm

ZnO/Bi2O3
ZnO/In2O3

0.8–1 20 18 NO2 5–7 – 200 NO2 0.5–3 0.5 [194]

SFRGO 0.5 20 15 NO2 – – RT NO2, VOCs 0.01–20 20 [195]

Au-
PANI/ZnO 0.5 16 14 NO2 – – 300 H2, NO2, CO,

NH3
10–50 50 [196]

WO3 0.5 14.5 15 NO2 11 26 200 NO2, VOCs 0.2–50 1 [197]

PdOx@SnOx 0.3 1.2 – NO2 – – 325 NO2, CO, NH3
0.0625–

0.25 0.25 [198]

SnO2/ZnO – 20 20 NO2 126 – RT NO2, SO2, CO,
NH3, VOCs 0.1–2 0.5 [199]

PANI/g-
C3H8/PVDF 0.5 15 17 NO2 – – RT NO2, NH3,

VOCs 8–108 108 [200]

WO3 0.06 20 15 NO2 15 min 0.8 min 150 NO2, H2, CO 2–25 25 [201]

rGO-
PVDF/WO3

0.001 23 10 SO2 25 30 200 SO2, NH3,
CO2, VOCs 5–80 80 [193]

MoS2/SnO2 – 17 13 SO2 – – 150 SO2, CO, H2,
NH3

1–10 10 [202]

Zr-MOF – – – SO2 185 – RT SO2 1–150 50 [203]

Thus, the morphology of nanofibers plays a crucial role in achieving high gas-sensing
performance in sensors. The electrospinning method offers unique opportunities to tailor
this morphology, allowing for customization of sensors for specific gas-detection tasks.
Comparative analysis of various studies demonstrates that the fiber structure and electro-
spinning conditions significantly influence sensor response, sensitivity, and selectivity. This
makes fiber morphology a critical factor in the development of advanced gas analyzers.

4.3. Gas-Sensitive Characteristics to Volatile Organic Compounds (VOCs)

The detection of volatile organic compounds plays a crucial role in air quality control
and assessing their impact on human health and the environment [204]. VOCs, such as
benzene, toluene, and xylene, are widely used in industry and consumer products, but
their emissions into the atmosphere can lead to smog formation, greenhouse gas effects,
and adverse health impacts, including respiratory diseases and cancer [205]. VOCs readily
evaporate at room temperature, making them challenging to detect without highly sensitive
sensors. Monitoring VOCs is increasingly relevant in the context of growing urbanization
and rising industrial emissions. Modern gas sensors with high selectivity and low detection
limits can detect even trace concentrations of VOCs, which is essential for risk assessment
and compliance with environmental and health regulations [206,207].

Electrospinning is a method for producing ultrathin fibers with a high specific surface
area and controlled structure, which is critical for achieving high sensitivity and selectivity
in gas sensors.

Furthermore, increasing the number of oxygen vacancies can be achieved by using
MOFs to create porous structures that retain the morphological properties of precursors
after thermal treatment. This contributes to an increase in active oxygen content and
improved gas-sensing properties. Recent studies have proposed using polycrystalline
ZIF-8 to enhance adsorption characteristics, which allows for the creation of more oxygen
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vacancies and improved sensitivity to ammonia and formaldehyde. Nanofibers of Pt/ZnO-
In2O3 derived from Pt/ZIF-8 provide a 2.7-fold greater response to formaldehyde compared
to pure In2O3, with fast response and recovery times (see Figure 12a–c) [208].
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The interaction of two-dimensional MXene materials with one-dimensional metal
oxide semiconductors also contributes to improved sensor characteristics. Nanofibers of
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MoO3 and layered Ti3C2Tx MXene, produced using electrospinning and chemical etching,
demonstrate outstanding results in detecting trimethylamine. The Ti3C2Tx MXene–MoO3
composite material shows high response and rapid response-recovery times due to its signif-
icant specific surface area, active centers, and p-n heterojunctions (see Figure 12d–f) [209].

Nanofibers of tin dioxide (SnO2) and cerium dioxide (CeO2) nanoparticles, produced
using electrospinning and hydrothermal synthesis, show significant improvement in sen-
sitivity for detecting liquefied petroleum gas. The SnO2/CeO2 composite sensor exhibits
enhanced sensitivity and moisture resistance compared to pure SnO2, which can be at-
tributed to an increased number of oxygen vacancies and the formation of a heterostructure
(see Figure 12g–i) [210].

The addition of various components to the composite structure significantly influences
the morphology, altering the fiber surface and their gas-sensing properties. For instance, a
study produced tri-metallic composite fibers of ZnSnO3/ZnO, which, with their hollow
and rough structure (see Figure 12j–l), show stability in ethanol detection [211].

Additionally, it is possible to create composite materials that are entirely metal-free. In
one study, fibers made from polyacrylonitrile/polyaniline (PAN/PANI) via electrospin-
ning exhibited outstanding performance in detecting trimethylamine, achieving detection
limits below 6 ppb and providing excellent repeatability [212]. These results affirm the
effectiveness of using nanofibers for creating highly sensitive and stable sensors for volatile
organic compounds. The comparative analysis table of various sensors highlights their
advantages and limitations, making the use of electrospun nanofibers a promising approach
for enhancing the monitoring and control of volatile organic compound concentrations in
various environments. These fibers possess unique properties, such as high specific surface
area and a high density of active centers, making them particularly suitable for detecting
low concentrations of various VOCs.

The table provides a comparative analysis of different sensors for detecting volatile
organic compounds, including their key parameters and characteristics. It lists sensor
materials, electrospinning parameters (flow rate, voltage, and distance between the needle
and collector), target gases, response and recovery times, operating temperature, selectivity,
detection range, and sensitivity concentration for each material. For instance, a Pt-SnO2-
based sensor demonstrates high sensitivity to acetone with a detection range from 0.1 to
20 ppm and a response time of 13 s. Similarly, a Rh-SnO2-based sensor is also designed
for acetone detection but features a broader detection range (90–200 ppm) and a slower
response time (2 s). See Table 4.

Table 4. Comparison of electrospun-fiber-based sensors for detecting VOCs.

Materials

ES Parameters
Target Gas Response

Time
Recovery

Time
Operating

T◦C
Selectivity

Detection
Range,
ppm

Sensitive
Concentration,

ppm
Ref.Flow Rate,

mL/h
Voltage,

kv
Needle-to- Collector

Distance, cm

Pt-SnO2 0.003 15 15 Acetone 13 24 150 VOCs 0.1–20 2 [213]

Rh-SnO2 0.3 13 13 Acetone 2 64 200 VOCs 90–200 50 [110]

SnO2/ZnO – 20 15 Acetone 12 s 27 s 350 VOCs 1–100 5 [214]

Pt-SnO2 0.03 15 20 C7H8 – – 300 C6H6,
C7H8, CO 1–10 10 [215]

ZnO – 18 20 Acetone 40 30 260 VOCs 50 [216]

Co–CeO2@SnO2 0.3 16 10 C5H8 5 s 514 s 350 VOCs 0.1–5 5 [217]

MoO3-WO3 1 20 15 Acetone – – 375 VOCs, NH3 ·H2O 20–1000 100 [218]

PANI/P3TI/PMMA 0.6 20 10 n-Butanol 10 – RT n-Butanol, CB, DMF,
n-Propanol, Toluene 100–2000 100 [219]

CuO 0.3 – 12 VOCs – – RT H2, Ethanol, LPG 50–350 350 [220]

Pd-CeO2 0.5 15 15 Methanol 1 5 200 H2, NH3, CO, VOCs 5–2000 100 [221]

Au-SnO2 0.008 11 5 Tetrahydrocannabinol – – 350 Tetrahydrocannabinol,
Methanol 200–1000 1000 [222]

Co3O4 0.016 7 7 Methanol 15 26 350 VOCs 21–2094 4–2094 [223]

EPS/rGO 1 15 20 Ethanol 110 20 RT Ethanol, acetone, toluene 10–80 10 [224]

Pd@Co3O4-ZnO – 10 10 Ethanol 6 12 240 Ethanol, acetone,
isopropanol 1–2000 200 [225]
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Other sensors, such as MoO3-WO3 and Pd@Co3O4-ZnO, exhibit significant recovery
times and wide detection ranges, making them suitable for various applications and types
of VOCs. Comparing these sensors highlights their advantages and limitations to VOC
monitoring. Therefore, the use of electrospun nanofibers for detecting volatile organic
compounds represents a promising direction that can significantly enhance the monitoring
and control of VOC concentrations in diverse environments.

5. Challenges and Future Directions

The increasing emissions of toxic gases are driving the demand for modern, cost-
effective devices for their detection and monitoring. These gases pose a significant threat to
human health, making accurate and continuous monitoring of their concentrations essential.
Gas sensors, with their relatively low cost and ease of use, remain ideal for environmental
monitoring, though their selectivity and durability still require further optimization to meet
the needs of contemporary industries. In medicine, gas sensors are used for diagnosing
diseases based on breath analysis. For instance, the detection of biomarkers like ammonia
serves as an indicator of liver and kidney diseases, opening new possibilities for rapid,
non-invasive diagnostics. This method could complement traditional blood and urine tests,
providing a convenient and safe tool for health screening and monitoring [226]. Moreover,
chemoresistive sensors show potential for food quality control, as they can detect volatile
compounds that indicate spoilage, enabling automated monitoring systems that can be
integrated into household devices [227].

Research into new synthesis methods and the effects of dopants on the gas-sensing
properties of materials remains key to the development of multisensor systems. Despite
the promising sensitivity of heterojunctions to NO2 under high humidity, the precise
mechanisms of their operation are not yet fully understood. One of the main challenges
for sensors in breath analysis is the high relative humidity, which can reach nearly 100%,
significantly altering gas-sensing mechanisms. Under low humidity, sensors typically
operate based on oxygen adsorption, but at high humidity, the mechanism shifts to physical
water adsorption through the Grotthuss mechanism. This complicates the development of
sensors that can effectively function under conditions similar to exhaled breath.

On the other hand, reducing energy consumption remains another critical challenge,
as the high operating temperatures of metal oxide semiconductor sensors (100–450 ◦C) [228]
present significant issues for practical use. These sensors require high temperatures, leading
to reduced long-term stability, increased production costs, and higher energy consump-
tion. These limitations make them less suitable for portable devices, where low power
consumption and compact size are crucial. Recent studies have proposed various solutions,
including the use of low-power LEDs [229], functionalization with noble metals [230],
hybrid materials [231], self-heating modes, and integration with MEMS platforms [232].
However, despite these advancements, doping SMOx materials with transition metals
and rare earth elements remains a promising direction for further improving sensor per-
formance. This allows for the optimization of electrical and surface properties, thereby
enhancing gas sensitivity and device stability. In advanced applications, semiconductors
doped with rare-earth oxides are recognized as among the most suitable materials due to
their enhanced selectivity and durability [233]. For example, studies have shown that dop-
ing metal oxides with praseodymium and europium improves the humidity resistance of
sensors by neutralizing the effects of hydroxyl groups and restoring sensitivity to NO2 [234].
This approach could be the foundation for developing sensors that are independent of
humidity levels.

At the same time, unresolved issues of sensor reproducibility, scalability, and sensitiv-
ity remain. Although commercial electrochemical sensors for NO2 detection are already
available, they still struggle to reach ppb-level sensitivity [235]. Meanwhile, 1D carbon
materials exhibit limited sensitivity to specific gases without surface modification. Func-
tionalization or doping of materials such as SMOx and transition metal dichalcogenides
can enhance their gas-sensing properties and address issues of durability and aggregation



Sensors 2024, 24, 6797 21 of 31

in carbon nanotubes and nanofibers. In this context, the electrospinning method can be a
crucial tool. Electrospinning allows for the creation of nanofibers with a high surface area
and unique morphology, which can significantly improve the sensitivity and selectivity of
sensors by increasing the number of active centers for gas interaction.

However, sensor selectivity toward various gases remains a major challenge. Modern
materials often show high sensitivity to one gas but low sensitivity to others. Detecting
gases with similar physicochemical properties is even more difficult. Furthermore, the need
to develop individual sensors for each specific gas makes the process labor-intensive and
expensive, demanding further innovation [236].

In a recent study, researchers demonstrated the potential of using heterostructures
based on 2D metal sulfides and oxides to enhance gas sensitivity due to the unique electronic
properties at the interface. They showed that heterostructures of SnS and SnS2-SnO2
in the form of vertically oriented 1D nanostructures exhibited improved sensitivity to
NO2 at high humidity (90% RH), with a theoretical detection limit of 1.67 ppt [237]. The
moisture resistance of tin sulfides maintained active centers for gas interaction, ensuring
high sensitivity.

The future of gas sensors lies in their integration with other sensing technologies,
which will allow for increased sensitivity and the creation of more complex gas monitoring
systems. The electrospinning method represents a promising direction, enabling the cre-
ation of new structures with unique properties, enhancing sensor sensitivity and selectivity.
Success in gas sensor development will require an interdisciplinary approach, bringing
together expertise in materials science, chemistry, and engineering. Through collaboration,
it will be possible to integrate new materials and synthesis methods, leading to the creation
of more efficient sensor systems for a wide range of applications [238].

6. Conclusions

This review article highlights the critical role of gas sensors, particularly those based
on electrospun nanofibers, in ensuring safety and air quality control across various fields—
from industry to medicine. The electrospinning technique enables the formation of
nanofibers with unique morphologies characterized by high surface area and porous
structures. These features significantly enhance key gas-sensing properties of sensors, such
as sensitivity, selectivity, and response time.

Despite substantial advancements in nanomaterials and technologies, nanofiber-based
sensors face significant challenges, including limited selectivity for specific gases and
difficulties in scaling up for mass production. Promising research directions include
optimizing fiber morphology, incorporating functional materials, and developing advanced
post-annealing techniques such as surface modification or doping with active elements.
These approaches are expected to improve the selectivity and stability of sensors, unlocking
new possibilities for their effective application in real-world conditions.

Thus, focusing on the precise tuning of electrospun fiber morphology and its impact
on gas-sensing properties is a key aspect of advancing gas monitoring technologies. It is
anticipated that a detailed analysis of new materials and methods will overcome existing
limitations, significantly enhancing the performance of gas sensors and broadening their
application across various industries.
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