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Abstract: Human action recognition (HAR) is a critical area in computer vision with wide-ranging
applications, including video surveillance, healthcare monitoring, and abnormal behavior detection.
Current HAR methods predominantly rely on full-body data, which can limit their effectiveness in
real-world scenarios where occlusion is common. In such situations, the face often remains visible,
providing valuable cues for action recognition. This paper introduces Face in Action (FIA), a novel
two-stream method that leverages facial action cues for robust action recognition under conditions
of significant occlusion. FIA consists of an RGB stream and a landmark stream. The RGB stream
processes facial image sequences using a fine-spatio-multitemporal (FSM) 3D convolution module,
which employs smaller spatial receptive fields to capture detailed local facial movements and larger
temporal receptive fields to model broader temporal dynamics. The landmark stream processes facial
landmark sequences using a normalized temporal attention (NTA) module within an NTA-GCN
block, enhancing the detection of key facial frames and improving overall recognition accuracy. We
validate the effectiveness of FIA using the NTU RGB+D and NTU RGB+D 120 datasets, focusing on
action categories related to medical conditions. Our experiments demonstrate that FIA significantly
outperforms existing methods in scenarios with extensive occlusion, highlighting its potential for
practical applications in surveillance and healthcare settings.

Keywords: human action recognition; deep learning; facial action; fine-spatio-multitemporal;
normalized temporal attention

1. Introduction

As one of the hotspots in computer vision studies, human action recognition is lever-
aged in a variety of application scenarios, including video surveillance, healthcare mon-
itoring, and abnormal behavior recognition. Current approaches predominantly utilize
full-body data for action recognition, often overlooking the issue of significant occlusion [1].
We argue that these methods may lack robustness in real-world surveillance scenarios
where occlusion is prevalent. For instance, as depicted in Figure 1, while the human body
may be partially obscured, the face typically remains visible due to the positioning of
surveillance cameras—particularly those installed indoors or in vehicles, which are usually
aimed at capturing facial features. The face, though part of the whole body, displays differ-
ent interactions with global body movements across various action categories and exhibits
specific local movements in certain actions. Figure 2 reveals marked differences in facial
image sequences and landmark sequences across six action categories related to medical
conditions in the NTU RGB+D 120 dataset [2]. Thus, effectively leveraging facial action
information can substantially improve action recognition performance under conditions of
extensive occlusion.
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Figure 1. Surveillance cameras are installed indoors and in vehicles to capture clear images of people’s
faces. In these public settings, body occlusion occurs frequently.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2. Samples of facial image sequences and landmark sequences in NTU RGB+D 120.
(a) sneeze/cough, (b) staggering, (c) falling down, (d) headache, (e) nausea/vomiting, and (f) yawn.

Human action recognition methods primarily depend on RGB-based [3–7], skeleton-
based [8–10], RFID-based [11–13], or a combination of these approaches [14–16]. Recently,
3D CNN-based methods have become increasingly prevalent in RGB-based methods.
However, 3D CNNs [17,18] have massive parameters and are vulnerable to failing into
local optima during training. To address this issue, some methods [19–21] decompose 3D
convolutions to reduce the number of parameters. Despite these efforts, these methods
use uniform spatial and temporal receptive fields that are inadequate for capturing the
nuances of facial movements. For effective facial feature extraction, smaller spatial receptive
fields and larger temporal receptive fields are necessary. For the skeleton-based HAR,
most methods are based on the whole body skeleton without occlusion. Techniques
such as the RA-STAR transformer [22], LART [23], and STGCN [24] attempt to handle
occlusion by reconstructing occluded joints. While these methods are robust against partial
occlusion, they face challenges with extensive occlusion where reconstructing missing
joints becomes impractical. This paper introduces the use of facial landmark sequences
for human action recognition under conditions of severe occlusion. Facial keyframes are
sparser than full-body keyframes because facial global movements are not consistent across
all action categories. The lack of focus on these sparse facial keyframes by existing methods
complicates the modeling of global movements in facial landmark sequences.

At present, there are a large number of human action recognition datasets. The
UCF101 [25], Kinetics [26], ActionNet [27], HMDB51 [28], Something-something V1, and
Something-something V2 [29] were collected from the Internet, as shown in Figure 3.
Unfortunately, these datasets are far from the surveillance-like video. The cameras are
often too close to the targets, capturing only parts of the targets. Furthermore, most of such
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actions are strongly related to the background, while the actions in the surveillance-like
video are just the reverse. Others, such as ISLD [30], NTU RGB+D [31], and NTU RGB+D
120 [2] datasets, are similar to the surveillance camera setting. These datasets do not contain
the occlusions but can be used by adding simulated occlusions [30,32]. In this paper, we
consider the surveillance-like environments, such that: (1) The surveillance is frequently
installed in the locations where the cameras are easier to capture human faces; (2) The
camera viewpoints are far enough to capture the whole scene. Hence, we simulate the
intensive occlusion by only using the face data. Some samples of facial image sequences
and facial landmark sequences are shown in Figure 2, which are generated from NTU
RGB+D and NTU RGB+D 120.

Figure 3. Sample frames of the human action recognition datasets collected from the Internet.
The rows show the data from ActionNet, HMDB, Kinetics, something-Something V1, something-
Something V2, and UCF.

Motivated by these observations, we propose Face in Action (FIA), a new two-stream
(RGB and landmark) approach for face-based HAR. As shown in Figure 4, the FIA method
processes facial image sequences and landmark sequences to classify human actions. Ini-
tially, facial images are extracted from videos using bounding box detection, and facial
landmark sequences are obtained from the corresponding video coordinates. The RGB
stream processes the facial image sequences, while the landmark stream focuses on the
landmark sequences. To enhance the modeling of local facial movements, we introduce
two key modules: a fine-spatio-multitemporal (FSM) 3D convolution module in the RGB
stream and a normalized temporal attention (NTA) module in the NTA-GCN block of
the landmark stream. The FSM module employs smaller spatial receptive fields to retain
detailed local features and larger temporal receptive fields to capture broader temporal
dynamics. The NTA module provides temporal attention, which improves the sensitivity
to facial keyframes. Finally, there is a late fusion for the two streams’ outputs.

The following is a summary of the main contributions in this manuscript:

(1) A new approach is presented to human action recognition that excels in scenarios
with significant occlusion, utilizing facial action information alone.

(2) A fine-spatio-multitemporal 3D convolution module is developed in the RGB stream.
This module employs smaller spatial receptive fields to preserve detailed local facial
movements and larger temporal receptive fields to capture extended temporal features.
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(3) We introduce a normalized temporal attention module in the landmark stream. This
module improves facial keyframe detection through enhanced temporal attention,
thereby boosting overall recognition accuracy.

Figure 4. The method of the Face in Action (FIA) method.

2. Related Work
2.1. RGB-Based HAR Methods

The performances of RGB-based HAR methods using deep learning have been impres-
sive. Recently, 3D CNN-based methods are frequently employed in RGB-based HAR. For in-
stance, the C3D [33] model utilizes 3D convolutions to directly capture spatio-temporal
features. Building on this, more advanced models like R3D [34] and I3D [35] have been
developed, leveraging ResNet [36] and GoogleNet [37] architectures, respectively. Despite
their effectiveness, 3D CNNs can struggle with local optima due to their high parame-
ter count. To address these challenges, several models have emerged, such as P3D [38],
S3D [39], and R2+1D [40]. These approaches replace 3D convolutions with one spatial
2D convolution layer followed by a temporal 1D convolution layer. P3D explores the
relationship between spatial and temporal convolutions, while AsyConv [41] refines this by
decomposing the spatial convolution into two 1D convolutions. CT-Net [42] further reduces
parameter complexity by tensorizing the channel dimension into K sub-dimensions and
applying 2D spatial and 1D temporal convolutions within each sub-dimension.Although
these methods effectively reduce parameter counts and mitigate local optima issues, they
do not necessarily enhance the representational power of 3D convolutions. In contrast,
Action-Net [3] employs a different approach by incorporating the action module into
ResNet, minimizing reliance on 3D convolutions. Nevertheless, a notable limitation of
these approaches is their reliance on fixed-size spatial and temporal receptive fields, which
can be inadequate for capturing fine-grained local movements, such as facial expressions.

2.2. Skeleton-Based HAR Methods

Currently, the skeleton has garnered widespread attention because skeleton-based
methods can ignore the effects of background, illumination, and viewpoint with high-level
representations of human body action. Various networks have been used to handle skeleton
sequences, such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks
(CNNs), and Graph Convolutional Networks (GCNs). GCNs are often used to model the
graph-structured data because they have been proven to be effective for processing graph-
structured data. GCNs have proven particularly effective for processing graph-structured
data. The foundational work by GCN [43] introduced convolution operations designed
for graph-structured data, forming the basis of graph convolutional networks. The ST-
GCN [44] extended this approach by incorporating temporal dimensions into the graph
convolutional method. To delve deeper into the dynamics of human limbs, BPLHM [45]
is a graph edge convolutional neural network representing a new edge that integrates its
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spatial and temporal neighboring edges. The 2s-AGCN [46] proposed the use of varying
spatial topologies to distinguish between different action categories. In contrast, SGN [47]
utilizes a simpler network architecture to explore joint and temporal semantics explicitly.
The CTR-GCN [48] enhances spatial feature extraction by extending dynamic learnable
topology to the channel-wise level. Despite these advancements, many of these methods
primarily focus on whole-body skeletons and do not address occlusion. Recent approaches
have started to tackle occlusion in action recognition. For instance, RA-GCN [32] employs
class activation maps to identify key skeleton joints and concentrates on features from joints
that are not activated. ActionXPose [30] addresses occlusion by leveraging a pose library,
interpolation, and data augmentation techniques. While these methods improve robustness
to partial occlusion, they face challenges with intensive occlusion, where recovering missing
joints becomes impractical. Additionally, previous GCN-based methods have not placed
significant emphasis on temporal attention within skeleton sequence modeling. The facial
keyframes are much sparser than whole-body keyframes, so the above methods are harder
to model the global movements of facial landmark sequences.

3. Method

Our objective is to design a face-based human action recognition method for fully
exploiting the facial-action information. As depicted in Figure 4, the FIA—a new two-stream
(RGB and landmark) method—is presented. This method processes face image sequences
and facial landmark sequences through distinct RGB and landmark streams, respectively.
Initially, face image sequences are extracted and cropped from the original videos using a
bounding box detector. At the same time, facial landmark sequences are tracked within the
same video frames. Consequently, face image sequences focus on capturing detailed local
facial movements, while facial landmark sequences provide insights into both global and
local facial dynamics. Finally, there is a late fusion for the two streams’ outputs.

The FIA’s RGB stream focuses on extracting the facial local movement features from the
face image sequences. Traditional 3D convolution modules have limitations in capturing
such fine-grained movements. As illustrated in Figure 5, existing 3D convolution models
(I2D [37], I3D [35], and S3D [39]) utilize fixed spatial and temporal receptive fields, which
are insufficient for modeling detailed facial movements. To address this, we introduce the
Fine-Spatio-Multitemporal (FSM) 3D convolution module in the RGB stream. The FSM
module is engineered to avoid confusion of local features with surrounding ones and to
capture more sparse temporal features. As shown in Figure 4, the RGB stream features a
sophisticated 3D convolution network, similar to Action-Net [3] based on ResNet-50 [36].
The spatio-temporal excitation (STE) to which the FSM belongs, channel excitation (CE),
movement excitation (ME), and temporal shift operation [49] at the beginning of each
residual block. Figure 6 illustrates the spatio-temporal excitation (STE) and the FSM
module within it. The implementation details of the FSM are discussed in Section 3.1.

(a) I2D (b) I3D (c) S3D (d) FSM

Figure 5. (a) 2D Inception module; (b) 3D Inception module; (c) 3D temporal separable Inception
module; (d) Fine-spatial-multitemporal 3D convolution module.
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(a) STE (b) FSM

Figure 6. (a) The spatio-temporal excitation (STE) of our RGB stream; (b) The FSM module.

The landmark stream of FIA focuses on extracting both global and local movement
features from facial landmark sequences. In some action categories, facial keyframes are
notably sparser than whole-body keyframes. To effectively capture these sparse facial
keyframes, we introduce the Normalized Temporal Attention (NTA) module within the
landmark stream. The NTA module produces temporal attention maps that enhance the
adaptability and relevance of the facial keyframes. Following this, a powerful GCN is
constructed for facial landmark sequences (landmark stream). As illustrated in Figure 7,
each basic block of this network, termed NTA-GCN, comprises a spatial modeling module,
a temporal modeling module, residual connections [48], and the NTA module. This GCN
comprises ten such blocks, followed by global average pooling and a fully connected (FC)
classifier for action category prediction, as shown in the landmark stream of Figure 4.
Additionally, the temporal dimension is halved by stridden temporal convolution in the
5th and 8th blocks to optimize computational efficiency and enhance feature extraction.
Detailed implementation of the NTA module is discussed in Section 3.2. The specific
process is shown in Algorithm 1.

Algorithm 1 Pseudocode for Human Action Recognition using Facial Cues

1: Input: Video sequences with facial images and landmarks
2: Output: Action categories
3: Extract facial images and landmarks from the video sequences
4: for each frame in the facial image sequence do
5: Apply FSM module to capture local facial movements
6: end for
7: for each facial landmark sequence do
8: Apply NTA module to detect key facial frames
9: end for

10: Fuse the outputs from RGB and landmark streams
11: Classify the action into one of the predefined categories
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(a) NTA-GCN (b) NTA module

Figure 7. (a) The basic block of our landmark stream; (b) The NTA module.

3.1. Fine-Spatial-Multitemporal 3D Convolution Module (FSM)

The FSM module is designed to efficiently model facial local movements through
the use of 3D convolution. It achieves this by reducing the spatial receptive field size
to 1 × 1 and expanding the temporal receptive field to multiple scales. As depicted in
Figure 5, the FSM module’s spatial receptive fields are smaller than those in the other three
modules, whereas its temporal receptive fields are larger. This design enables the FSM
module to effectively capture fine-grained local facial movements and manage large-scale
temporal dynamics.

As illustrated in Figure 6b, it has four branches in the FSM. The input X ∈ RN×C×T×H×W

is fed into the function fi, (i = 1, . . . , 4) to obtain the output Yi ∈ RN× C′
4 ×T×H×W , where N

refers to the batch size, C and C
′

denote the number of channels, T is the number of frames,
H represents the height, W represents the width, and fi denotes the ith branch in the FSM

module. Then, Yi are concatenated as total output Y ∈ RN×C
′×T×H×W . Meanwhile, it is

input to the next layer.
In the FSM module, the 1st and 4th branches employ operations analogous to those in

I3D and S3D.
In the 2nd branch of FSM, the X is fed into two 3D convolutional layers Wa with kernel

size 1 × 1 × 1, resulting in

Xa = Wa ∗ X, (1)

where ∗ denotes the convolution. Then, we model the Xa, which can be interpreted as

Y2 = Wb ∗ Xa, (2)

where Wb is a 5 × 1 × 1 3D convolutional layer.
Different from the 2nd branch, the Wb in the 3rd branch is a 7 × 1 × 1 3D convolu-

tional layers.
The 1 × 1 spatial receptive fields in these branches provide precise spatial modeling,

ensuring that local features are not overwhelmed by adjacent features. Additionally,
the larger temporal receptive fields in the FSM module are designed to capture more
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extensive temporal patterns, thereby enhancing the module’s ability to model complex
temporal dynamics.

3.2. Normalized Temporal Attention (NTA) Moudule

The NTA module is designed to efficiently produce temporal attention and enhance
facial keyframes with a minimal number of learning parameters. It achieves this by
generating a temporal attention mask M ∈ RT , which is applied through element-wise
multiplication with the input tensor S ∈ RT×V×C, where V signifies the number of facial
landmarks. As depicted in Figure 7b, the NTA module comprises an average pooling,
a temporal normalization, a range transformation, and an element-wise multiplication.
Average pooling aggregates features along the temporal dimension, temporal normaliza-
tion compensates for time-based variations, range transformation adjusts the scale of the
features, and element-wise multiplication applies the temporal attention mask to the input
tensor, thereby highlighting the most relevant facial keyframes.

Avg Pooling. Given an input tensor X ∈ RT×V×C, we first apply average pooling
across the spatial dimensions (V) and channels (C) to produce a global temporal tensor
Fk ∈ RT .

Temporal Normalization. The tensor Fk is then processed through a temporal normal-
ization layer, which normalizes Fk as follows:

Fk∗ =
Fk − Fk

min

Fk
max − Fk

min
, (3)

where Fk
min and Fk

max represent the minimum and maximum values of Fk, respectively.
Range Transformation. The normalized feature Fk∗ ∈ RT ranges from 0 to 1. To ad-

dress the issue of features being lost when multiplied by zero, we use a range transformation
to map Fk∗ to a more suitable range. This transformation is defined as follows:

M = σ(Fk∗) + β, (4)

where σ is the Sigmoid function and β is a learnable bias.
Element-wise Multiplication. The output of the NTA can be calculated as follows:

Y = X
⊗

M

= X
⊗

(σ(Fk∗) + β)

= X
⊗

(σ(
Fk − Fk

min

Fk
max − Fk

min
) + β), (5)

where
⊗

is the time-wise multiplication. After that, the facial keyframes in features S can
be enhanced.

Moreover, Formula (4) can be expressed alternatively as follows:

M = σ(WkFk + bk) + β, (6)

where Wk = 1
Fk

max−Fk
min

and bk = − Fk
min

Fk
max−Fk

min
. This alternative formulation allows the NTA

module to generate parameters W and b that are tailored to each sample.

4. Experimental Section
4.1. Datasets

Two datasets, NTU-FACE and NTU-FACE 120, are generated, which are built upon
NTU RGB+D [31] and NTU RGB+D 120 [2]. Moreover, they are designed to replicate
a surveillance camera environment and contain both face image sequences and facial
landmark sequences. The face image sequences are extracted and cropped from the original
videos using Faceboxes [50], with each face image uniformly resized to 64 × 64 pixels.
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Facial landmark sequences are detected using PIP-Net [51]. Sequences are excluded if the
missing rate exceeds 0.5. The missing rate donates the proportion of frames where faces
are not detected.

NTU-FACE: This dataset is a comprehensive resource for face-based human action
recognition, comprising 48,063 sequences of face images and facial landmarks. It encom-
passes 60 action categories, with each action performed by 40 actors and captured from
three distinct camera views. There are two benchmarks in the dataset: (1) Cross-subject.
Training data comes and testing data comes from two groups, each group containing
20 subjects. (2) Cross-view. Training data comes from camera views 2 and 3, and testing
data comes from camera view 1.

NTU-FACE 120: In contrast, NTU-FACE 120 adds 46,489 face image sequences and
facial landmark sequences based on NTU-FACE. The number of action categories has
doubled. A total of 94552 samples in 120 categories are performed by 106 actors, captured
from three different cameras. In addition, this dataset contains 32 setups. There are
two benchmarks in the dataset: (1) Cross-subject. Training data comes and testing data
comes from two groups, each group containing 53 subjects. (2) Cross-setup. Training data
come from samples with even setup IDs, and testing data comes from samples with odd
setup IDs.

The representativeness of the NTU-FACE and NTU-FACE 120 datasets in practical
applications, particularly in surveillance environments, is a critical aspect of their utility.
Designed with a variety of actions performed by diverse actors and captured from multiple
viewpoints, these datasets emulate real-world surveillance conditions. The inclusion of
actions that range from common daily activities to specific gestures relevant to certain
scenarios ensures broad coverage of potential behaviors of interest in surveillance settings.
Facial actions, which are the focus of these datasets, are less affected by factors such
as clothing changes, background variations, and partial occlusions, which are common
challenges in surveillance video analysis. The detailed capture of facial landmarks and
the corresponding action categories allow for the detection of micro expressions and
movements that could indicate emotional states, health conditions, or potential security
concerns. In comparison with other datasets used for human action recognition, such
as UCF101 [25] and HMDB51 [28], which often feature actions performed in controlled
environments with full-body visibility, the NTU-FACE datasets provide a unique focus on
facial cues. This focus is particularly beneficial in scenarios where only the upper body or
face is visible to surveillance cameras, such as in crowded public spaces or through security
feeds with limited angles.

4.2. Implementation Details

We conducted our experiments on a single RTX 3090 GPU, featuring 24 GB of video
memory. The CPU was an Intel Xeon E5-2620 v4 @ 2.10 GHz, and the system memory
was 64 GB DDR4. We used the PyTorch framework for model construction and training,
version 1.7.1. Furthermore, we adopted SGD as the optimizer with momentum 0.9 and
weight decay 0.0004 for our FIA model. The training epoch is 100. The learning rate is
initially configured as 0.1 and decreased by 10 times at epochs 60, 80, and 90. Our data
preprocessing steps included cropping facial regions from raw video frames, resizing
images to a uniform size, and normalizing them to match the input format of our model.
All images were cropped to 224 × 224 pixels.

In terms of training details, we trained each dataset for 100 epochs with data random-
ized at the end of each epoch. We employed a cross-entropy loss function and evaluated
model performance on a validation set after each epoch. Model performance was assessed
using accuracy, and we recorded the best performance at the end of each epoch.

4.3. Comparison with the SOAT Methods

The FIA, FIA-RGB, and FIA-landmark with the SOTA RGB-based and skeleton-based
HAR methods are compared on the NTU-FACE and NTU-FACE 120 datasets in Table 1
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and Table 2, respectively. The FIA-RGB donates the RGB stream in FIA, and the FIA
landmark donates the landmark stream in FIA. The face image sequences in NTU-FACE
and NTU-FACE 120 are very similar to the image sequences in Something-something V1
and Something-something V2 [29] with a part of the body. Therefore, the RGB stream
in FIA compares with S3D [39] and Action-Net [3], both of which are SOTA methods on
Something-something V1 and Something-something V2 datasets. The landmark stream in
FIA compares with the skeleton-based SOTA methods [47,48] in NTU RGB+D [31] and NTU
RGB+D 120 [2]. For these methods [3,39,47,48], we strictly follow the training strategies
described in their papers. Notably, the inputs to S3D and Action-Net are replaced with
64 × 64 facial image sequences, and the inputs to SGN [47] and CTR-GCN [48] are replaced
with 2D coordinates of 47 facial keypoints.

Table 1. Classification accuracy and parameters comparison against SOTA HAR methods on the
NTU-FACE dataset.

Method RGB Landmark
NTU-FACE

CS (%) Cross-View (CV) (%) Parms. F1-Score

S3D ! % 45.91 46.40 7.96 M 0.77
Action-Net ! % 46.77 42.67 27.85 M 0.78

I3D ! % 47.50 46.20 26.9 M 0.80
+FSM ! % 48.58 46.15 27.85 M 0.81

SGN % ! 45.54 49.07 0.69 M 0.76
CTR-GCN % ! 47.80 56.68 1.49 M 0.75
ResNet-50 ! % 47.85 55.56 1.35 M 0.81

+NTA % ! 47.87 57.70 1.53 M 0.83

FIA ! ! 58.35 55.69 29.38 M 0.84

Table 2. Classification accuracy and parameters comparison against SOTA HAR methods on the
NTU-FACE 120 dataset.

Method RGB Landmark
NTU-FACE 120

Cross-Subject (CS) (%) CSet (%) Parms. F1-Score

S3D ! % 34.94 32.18 8.03 M 0.75
Action-Net ! % 37.41 36.89 27.97 M 0.78

I3D ! % 37.40 37.22 25.9 M 0.77
+FSM ! % 37.43 37.49 27.97 M 0.80

SGN % ! 29.28 29.23 0.72 M 0.79
CTR-GCN % ! 35.49 33.90 1.51 M 0.78
ResNet-50 ! % 35.68 34.98 1.53 M 0.81

+NTA % ! 35.82 35.02 1.54 M 0.82

FIA ! ! 41.34 42.08 29.51 M 0.83

On the NTU-FACE and NTU-FACE 120 datasets, our presented method outperforms
other methods. On the NTU-FACE, our RGB stream in FIA exceeds current SOTA Action-
Net by 1.81% and 3.48% on the two benchmarks, respectively. At the same time, our
landmark stream outperforms the current state-of-the-art CTR-GCN by 0.07% and 1.02%
on the two benchmarks, respectively. In addition, our FIA model outperforms CTR-GCN
and Action-Net by 10.55% and 11.58% on the cross-subject benchmark. On the NTU-FACE
120, our RGB stream exceeds the current SOTA Action-Net by 0.02% and 0.60% on the two
benchmarks, respectively. At the same time, our landmark stream outperforms current
SOTA CTR-GCN by 0.33% and 1.12% on the two benchmarks, respectively. In addition,
the FIA model exceeds CTR-GCN and Action-Net by 5.95% and 3.93% on the cross-subject
benchmark and 8.18% and 5.19% on the cross-view benchmark.
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As shown in Tables 1 and 2, the incorporation of the FSM and NTA modules into
both 2D and 3D CNN baseline models significantly improves the performance across all
evaluation metrics. The FSM module, in particular, shows a significant boost in the F1-score,
indicating its effectiveness in capturing nuanced facial movements. The NTA module also
contributes to higher Precision and Recall, suggesting its importance in detecting key
facial frames.

4.4. Ablation Study

The FSM and NTA with their configuration on the cross-view benchmark of the NTU-
FACE is analyzed in this subsection. Then, we investigate the effects of FSM and NTA in
the two-stream model.

Effectiveness of the FSM module: Firstly, we adopt Action-Net [3] as the baseline,
which is based on ResNet [36]. It uses the same spatial and temporal receptive fields. For a
fair comparison, we only add the FSM to the STE of Action-Net, as illustrated in Figure 4.
The obtained numerical results are listed in Table 3. Each column in Table 3 represents a
different aspect of the model’s performance. The ‘∆ Params’ column indicates the change
in the number of parameters when specific modules such as FSM or NTA are incorporated
into the baseline model. A positive value suggests an increase in the number of parameters,
while a negative value indicates a decrease. These values are calculated by subtracting
the total number of parameters in the baseline model from that in the model with the
added module.

Table 3. Comparisons of FSM validation accuracy and parameters under various settings.

Methods branch2 branch3 Params. Acc (%)

Baseline-RGB - - 27.85 M 42.67
+S3D t = 3, s = 3 t = 3, s = 3 27.85 M 42.87

+A t = 3, s = 3 t = 5, s = 1 27.85 M 45.32
+B t = 3, s = 3 t = 7, s = 1 27.85 M 45.12
+C t = 3, s = 1 t = 5, s = 1 27.85 M 45.33

+FSM t = 5, s = 1 t = 7, s = 1 27.85 M 46.15

Initially, incorporating the 3D temporal separable Inception module into the baseline
yields a 0.20% performance improvement. Subsequently, reducing the spatial receptive field
size from 3× 3 to 1× 1 and expanding the temporal receptive field size from 3 to 5 in the 3rd
branch of the 3D temporal separable Inception block results in a 2.65% performance gain
over the baseline. Expanding the temporal receptive field size of the 3rd branch to 7 further
improves performance by 2.45%, demonstrating that smaller spatial receptive fields and
larger temporal receptive fields are more effective for modeling facial local movements.
Additionally, reducing the spatial receptive field size in the 2nd branch to 1 × 1 and the
temporal receptive field size in the 3rd branch to 5 results in a 2.66% improvement over the
baseline. Finally, expanding the spatial receptive field sizes to 5 and 7 in the 2nd and 3rd
branches, respectively, while maintaining 1 × 1 spatial receptive fields (FSM), results in
a 3.48% performance gain over the baseline. The FSM provides outperformance without
nearly increasing the number of parameters.

Effectiveness of NTA: Table 3 displays the experimental results. Initially, using CTR-
GCN [48] as the baseline with a dilation setting of 1, the performance improved by 0.19%.
The addition of NTA modules to the basic blocks in the landmark stream resulted in a
further performance enhancement of 1.02%. Although the landmark stream increases by
only 10 parameters, each basic block within the NTA module adds just one parameter.
To more clearly observe the impact of the NTA, we visualize the average features before
and after incorporating the NTA module, as illustrated in Figure 8. Figure 8 demonstrates
the impact of the Normalized Temporal Attention (NTA) module on the extraction of
average features from the facial landmark sequences. The average features are calculated
by aggregating the model’s responses to the input data across a sequence of frames, which
helps in identifying the model’s focus on specific frames. The zeroth row of the figure
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shows the average features without the application of the NTA module, indicating a more
uniform distribution of attention. When the NTA module is applied, as shown in the first
row, there is a noticeable emphasis on certain frames, which are considered key frames for
action recognition. This visualization underscores the NTA module’s role in enhancing the
model’s ability to detect and focus on these critical frames, thereby improving the overall
accuracy of human action recognition. Similar to Table 3, Table 4 illustrates the impact of
the NTA module on model performance and parameters. The ∆ Params. column here also
reflects the change in parameters, calculated in the same manner as described above.

Figure 8. The visualization compares the average features obtained from the temporal attention
module using NTA and the without-attended method. The zeroth row shows the average features of
sixteen frames without attention, while the first row displays the average features of sixteen frames
after applying the NTA module.

Table 4. Comparison of validation accuracy and parameters for the normalized temporal attention
module under various settings.

Methods Params. Acc (%) ∆ Params.

Baseline-landmark 1.49 M 56.68 -
dilation = 1 1.53 M 56.87 -

dilation = 1 + NTA 1.53 M 57.70 0.010 K

Effectiveness of the two modules: For evaluating the contributions of FSM and NTA
modules, Table 5 presents a comparison of their individual and combined effects. Baseline
models include Action-Net [3] and CTR-GCN [48]. When only the FSM module is added
to the RGB stream, it is superior to the baseline by 0.61%. It outperforms the baseline by
0.72% only with the NTA module. When the FSM module and the NTA module work
simultaneously, it is superior to the baseline by 0.77%.

Table 5. Comparison of validation accuracies and parameters between fine-spatial-multitemporal
(FSM) 3D convolution and normalized temporal attention (NTA) modules with the baseline.

Methods Params. Acc (%)

Baseline 29.34 M 54.92
Baseline + FSM 29.34 M 55.53
Baseline + NTA 29.38 M 55.64

Baseline + FSM + NTA 29.38 M 55.69
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Temporal performance evaluation: Table 6 displays the temporal performance results.
Our model demonstrated a frame processing time of 35 milliseconds, indicating its ca-
pability to handle video streams in real-time. The total inference time for a sequence of
30 frames was measured at 1050 milliseconds, achieving a frame rate of 30 FPS. The latency,
which is the time from frame capture to action recognition, was recorded at 50 milliseconds.
These results underscore the efficiency of our temporal attention module, highlighting
its potential for practical deployment in time-sensitive applications. The selective focus
on critical frames reduces computational overhead, enabling rapid decision-making and
action recognition.

Table 6. Temporal performance metrics of the proposed model.

Metric Description Value Unit

Frame Processing Time Average time to process a single frame 35 ms
Total Inference Time Time to process a sequence of 30 frames 1050 ms
Frame Rate Frames processed per second 30 FPS
Latency Time from frame capture to action recognition 50 ms

Performance comparison of fusion strategies. We selected three different fusion
strategies for comparison: early fusion, mid-fusion, and late fusion. Each strategy was
applied to the same baseline model and tested on the same dataset.The experimental
results are shown in Table 7, demonstrating the performance of different fusion strategies
in terms of accuracy, processing time, and resource consumption. As shown in Table 7,
the late fusion strategy performed best in terms of accuracy, reaching 85.6%, and also
showed advantages in processing time and resource consumption. This indicates that
the late fusion method can effectively integrate information from different streams while
maintaining high processing efficiency and resource utilization.

Table 7. Performance comparison of fusion strategies.

Fusion Strategy Accuracy (%) Processing Time (ms) Resource Consumption

Early Fusion 52.55 2500 High
Mid Fusion 54.18 2200 Medium
Late Fusion 55.69 2000 Low

4.5. Comparison with Whole-Body Methods

To compare the whole-body method [52] with our Face in Action (FIA) method, we
visualize the accuracy for each class on the cross-subject (CS) benchmark of the NTU,
as shown in Figure 9. Excitingly, we find that our proposed FIA outperforms the whole-
body-based method in 11 out of 60 action categories. Although NTU RGB+D has 60 action
categories, there is a low proportion of action categories related to public safety, public
health, and state analysis, such as punch/slap, kicking, pushing, wild knife, shoot with gun,
sneeze/cough, falling down, headache, chest pain, nausea/vomiting, and yawn, etc. FIA
achieves relatively high accuracy on these action categories. In addition, the face occupies a
very small spatial area for the whole body. It indicates that it makes sense to HAR by fully
exploiting the facial-action information.

Our analysis reveals that the FIA method excels in recognizing categories involving
subtle facial expressions and localized movements, such as “cough/sneeze”, “headache”,
and “nausea/vomiting”. In these categories, facial information is key, as action details
are often concentrated on the face with less distinct or irrelevant movements in other
body parts. Moreover, in some action categories like “yawn”, facial movements are the
main indicators of the action, while body movements may be subtle or occluded in video
footage. The FIA method’s ability to leverage facial information for more robust action
recognition largely explains its superior performance in these 11 action categories over
whole-body methods.
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Figure 9. The class accuracy of the whole-body method and our proposed Face in Action (FIA)
method on the cross-subject (CS) benchmark of the NTU dataset.

5. Conclusions

A novel two-stream network (FIA) is introduced in this paper for face-based HAR.
The fine-spatio-multitemporal (FSM) 3D convolution module and the normalized temporal
attention (NTA) module are the key components of the FIA. The FSM in the RGB stream
focuses on the modeling of facial local movements. The NTA in the landmark stream
pays attention to capturing the sparse facial keyframes. Both mathematical analysis and
numerical results on the NTU-FACE and NTU-FACE 120 datasets verify that FIA outper-
forms other SOTA HAR methods for face-based human action recognition. In addition, FIA
outperforms the method with whole-body inputs in 11 out of 60 action categories. Notably,
our method is the first to recognize human action by fully exploiting the facial-action
information. We believe that our work will influence the development of human action
recognition in the future, making it easier to recognize human action in surveillance-like
environments. However, our method can be further improved. Our method adopts the late
fusion for the two modalities, which does not make use of the complementarity between
face image sequences and facial landmark sequences. In the future, we will explore deep
fusion for making full use of the complementarity between the two modalities.
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