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Abstract: The Czochralski method is the primary technique for single-crystal silicon production.
However, anomalous states such as crystal loss, twisting, swinging, and squareness frequently occur
during crystal growth, adversely affecting product quality and production efficiency. To address
this challenge, we propose an enhanced multimodal fusion classification model for detecting and
categorizing these four anomalous states. Our model initially transforms one-dimensional signals
(diameter, temperature, and pulling speed) into time—frequency domain images via continuous
wavelet transform. These images are then processed using a Dense-ECA-SwinTransformer network
for feature extraction. Concurrently, meniscus images and inter-frame difference images are ob-
tained from the growth system’s meniscus video feed. These visual inputs are fused at the channel
level and subsequently processed through a ConvNeXt network for feature extraction. Finally, the
time—frequency domain features are combined with the meniscus image features and fed into fully
connected layers for multi-class classification. The experimental results show that the method can
effectively detect various abnormal states, help the staff to make a more accurate judgment, and
formulate a personalized treatment plan for the abnormal state, which can improve the production
efficiency, save production resources, and protect the extraction equipment.
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1. Introduction

Silicon single crystals are indispensable semiconductor materials in new energy
sources, storage, and electronics [1]. The Czochralski (CZ) method is the primary technique
for preparing large-size silicon single crystals [2], which involves melting polycrystalline sil-
icon in a quartz crucible under complex conditions, including high temperatures, vacuums,
magnetic fields, and inert gases. A seed crystal is then immersed in the solution and slowly
pulled upward at a specific speed, allowing silicon atoms to arrange along the seed crystal’s
direction, forming a single crystal with a specific crystal orientation [3]. The growth process
of silicon single crystals using the CZ method comprises six main stages: seeding, necking,
shoulder release, shoulder rotation, equal diameter, and tailing [4]. Among these, the
equal diameter stage occupies the majority of the crystal-pulling process time. Figure 1a
illustrates the crystal-pulling picture in the equal-diameter stage. During the growth of
silicon single crystals with a <100> crystal orientation, four crystal lines with 90° intervals
between each other are generated on the crystal rod [5]. The solid-liquid interface diagram
in the equal-diameter stage is depicted in Figure 1. The ability to effectively and timely
detect and classify abnormal conditions during the growth of CZ silicon single crystals is
crucial for improving crystal-pulling efficiency and protecting crystal-pulling equipment.
In the current production process, the identification of abnormal conditions primarily relies
on operators” experience. This dependence leads to low accuracy in judging the crystal
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pulling state and delayed discovery of abnormal conditions, which negatively impacts
crystal pulling efficiency and potentially damages the equipment.

(d)

(e) ()

Figure 1. Solid-liquid interface diagram in the equal-diameter stage: (a) the crystal-pulling screen in
the equal-diameter stage; (b) a normal growth picture of silicon single crystal; (c) a picture of silicon
single-crystal loss; (d) a picture of silicon single crystal swinging during growth; (e) a picture of silicon
single-crystal squareness during growth; (f) a picture of silicon single-crystal twisting during growth.

In the equal-diameter stage of producing silicon single crystals using the Czochralski
method, due to inappropriate process parameters and external disturbances, a series of
abnormal conditions that affect crystal quality and production efficiency will occur, among
which loss, twisting, swinging, and squareness are four common abnormal conditions.
Loss is usually caused by impurities, temperature abnormalities, pulling speed fluctuations,
etc.; swinging is usually caused by external disturbances and other factors; squareness is
mainly caused by high pulling speed; and twisting is usually caused by low temperature,
high pulling speed, mechanical failure, etc. [6]. For the two abnormal conditions of loss
and twisting, the quality of the silicon single crystal is changed, and crystal pulling should
be stopped and remelting measures should be taken; for the two abnormal conditions of
swinging and squareness, when the degree is relatively mild, process parameters can be
used to compensate, and when the degree is serious, crystal pulling needs to be stopped
and remelting measures should be taken.

Several researchers have focused on loss detection to ensure the normal growth state
of silicon single crystals. Jun Zhang et al. proposed a deep learning-based detection method
to detect loss problems during the growth of solar-grade silicon single crystals, achieving
an accuracy of 97.33% [7]. S Yuting et al. introduced an improved Yolov4-Tiny model
(Yolo-SPI) to detect loss occurrences, with a detection accuracy of 98.01% [8]. However,
both of these networks only utilize the single-dimensional video signal for loss detection.
Lei Jiang et al. proposed a multimodal fusion method for offline detection during silicon
single-crystal growth. By using the fusion decision of image signals, temperature signals,
pulling speed signals, and diameter signals, they detected loss phenomena with an accuracy
of 98.36 [9].

Although the above researchers have achieved excellent results in the loss detection
of silicon single crystals, other common abnormalities in the growth process of silicon
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single crystals, such as swinging, twisting, and squareness, can also affect the quality of
the crystals. Currently, few researchers have addressed the classification of these three
common abnormal conditions. Moreover, the existing detection methods often rely on
single-dimensional signals, which may not capture the full complexity of the crystal growth
process. The use of multiple data sources and their fusion could potentially provide more
comprehensive and accurate detection and classification of abnormal conditions.

The method for classifying one-dimensional signals can be selected according to the
characteristics of the signal and the application scenario. In the time domain, classification
can be performed based on the mean, standard deviation, maximum value, minimum
value, zero crossing rate, etc. [10]. In the frequency domain, classification can be performed
by extracting frequency domain features through Fourier transform. In the time—frequency
domain, wavelet transform is used to extract features at different scales for classification. In
terms of traditional machine learning algorithms, one-dimensional signals can be classified
using methods such as support vector machine (SVM), decision tree, and random forest [11].
For the classification method of image signals, the convolutional neural network is currently
the core algorithm model for image classification. At present, various improved convolu-
tional neural networks have been proposed, such as ResNet [12], Swin Transformer [13],
and ConvNeXt [14], which have performed well in various image classifications and have
better classification accuracy. For resource-constrained environments, researchers have
developed lightweight networks such as DenseNet [15], MobileNet [16], ShuffleNet [17],
and EfficientNet [18]. Multimodal fusion utilizes the information complementarity of each
modality to achieve more comprehensive and accurate information processing and decision
support. The fusion of different modal information can be divided into data layer fusion,
feature layer fusion, and decision layer fusion according to the fusion stage. In data layer
fusion, the original data of multiple modalities are directly fused, and in feature layer
fusion, the original data are fused after certain feature extraction operations [19]. In feature
layer fusion, multiple layers of the features of a single modality can be fused to strengthen
feature information, or the attention mechanism can be used to focus on important channel
features in a certain layer of features [20-22]. In decision layer fusion, multiple decision
results are obtained after the feature extraction of multiple modalities, and the final decision
result is obtained by fusing multiple decision results [23].

To address the limitations in existing studies of silicon single crystals” abnormal
growth state classifications, we propose a multimodal fusion classification network that
leverages multiple data sources, including one-dimensional signals (diameter, temperature,
and pulling speed) and video data (meniscus images and frame difference images). First,
we employ continuous wavelet transform to extract time—frequency domain features of
one-dimensional signal diameter signal, temperature signal, and pulling speed signal. A
novel convolutional neural network Dense-ECA-SwinTransformer is proposed to process
and extract time—frequency images and output one-dimensional signal abnormal features.
Second, to extract abnormal features from meniscus video signals, the ConvNeXt networks
is employed in the paper to process meniscus image signals and inter-frame difference
image signals and output video abnormal features. Finally, we designed a novel multi-
modal fusion network to fuse the extracted one-dimensional signal abnormal features and
video abnormal features. Leveraging attention mechanisms, the proposed multimodal
fusion network can fully consider abnormal signals across different modalities and realize
abnormal state category detection and classification.

To validate our proposed methods, we conducted extensive experiments using a
dataset collected from real silicon single-crystal growth processes. The experimental
results demonstrate that our multimodal fusion approach significantly outperforms single-
modality methods, achieving an overall classification accuracy of 99.2% for abnormal
growth states. The Dense-ECA-SwinTransformer fusion model shows a 2.1% improvement
in accuracy compared with only using one-dimensional signals. Furthermore, our fusion
approach for video signal processing yields a 1.8% increase in detection accuracy for subtle
abnormalities compared with using meniscus images alone.
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The main contributions of this article are as follows:

e Advanced Multimodal Fusion Network: We propose a novel multimodal fusion
classification network for fault phenomenon detection in CZ silicon single-crystal
growth. This network integrates time—frequency domain feature maps from one-
dimensional signals with image and inter-frame difference signals from video data,
implementing a channel attention mechanism for enhanced abnormal state detection
and classification;

e Innovative Signal Processing Techniques: We introduce advanced processing tech-
niques for both one-dimensional and video signals. This includes applying continuous
wavelet transform to one-dimensional signals and applying transformers to the classi-
fication of abnormal states of silicon single-crystal growth for the first time, converting
video signals into image signals and inter-frame difference signals for more nuanced
abnormal state detection;

e  According to the results of this study, we detect and classify abnormal states by fusing
multimodal data. Compared with only using one-dimensional signals or video signals,
the detection and classification model proposed in this paper has better robustness
and accuracy.

2. Data Collection

The experimental data come from the production of 12-inch series single-crystal
furnace. The diameter data are collected using the high-temperature infrared sensor EIMH-
R26-V-0-0 which purchased from Fluke in the Everett, WA, USA, the pulling speed data are
obtained through S/L SERVO which purchased from Mitsubishi Group in Tokyo, Japan, the
temperature data are collected using the term temperature sensor model FTKX-ANE0600-
0300R201-000 which purchased from JAPANSENSOR CORPORATION in Konan, Japan,
and the meniscus signal is collected using the camera model MV-EM500 which purchased
from Microvision in Beijing, China, as shown in Figure 2.

MV-EM500C

E1MH-R26-V-0-0

JAPANSENSOR
Xy

FTKX-ANE0600-0300R201-000
S/L SERVO

Figure 2. CZ single-crystal furnace equipment and corresponding sensors: high-temperature infrared
sensor EIMH-R26-V-0-0 collects diameter data, S/L SERVO collects speed data, FTKX-ANE0600-
0300R201-000 collects temperature data, and camera MV-EM500 collects meniscus data.
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The equipment can produce 100-308 mm CZ silicon single crystals. The diameter
detection range is 4-350 mm. The diameter of the quartz crucible is 800 mm and the
maximum charge of poly silicon is 450 kg. The maximum power of the side heater of
the equipment is 180 kw. The maximum power of the bottom heater of the equipment
is 80 kw. The crucible speed adjustment range is 0-15 rpm, the crystal speed adjustment
range is 0-20 rpm, the crucible lifting speed adjustment range is 0-1.3 mm/min, the crystal
lifting speed adjustment range is 0—6 mm/min, the ultimate vacuum degree is 0.3 Pa,
the air intake adjustment range is 0-200 L/min, the maximum magnetic field strength
is 4000 Gauss, the crystallizer lifting stroke is 2.8 m, and the crucible lifting stroke is
750 mm. The temperature adjustment is determined according to the input amount of
silicon material, and the adjustment range is usually 800-2500 (dimensionless).

The experimental data used in this study are the one-dimensional signal data collected
during the growth of the CZ silicon single crystal and the image of the meniscus video
signal data surface. Figure 3 shows the image of the normal growth in the diameter stage of
the crystal-pulling process. It can be seen from the figure that only the lower half can show
the solid-liquid interface image, and with the growth of the crystal rod or the different
camera angles, part of the solid-liquid interface in the middle will be blocked. Based on
the above situation, the images in the red box in Figure 3 are used as the input image.

Figure 3. Pictures of the equal diameter stage, the images in the red box are used as the input image.

According to the one-dimensional signal dataset collected by the sensor, including
diameter, temperature, and pulling speed, the corresponding number of one-dimensional
related signals are collected according to the corresponding image set signals. Since the
CZ silicon single-crystal growth system is a large time-delay system, for the diameter
signal, the data point used corresponds to the image signal collection time point; for the
temperature signal, it is 40 min forward of the current image signal collection point; for the
pulling speed signal, it is 8 min forward of the current image collection point. The time
alignment of the one-dimensional signal data and the image signal data is guaranteed.

This experimental environment uses the operating system Windows 10(21H1), the
CPU is Inter(R) Core(TM) i7-10700 which purchased from Intel in the United States, the
memory is 16G, and it runs on a GeForce RTX 3060 GPU workstation which purchased
from NVIDIA in the United States. The CUDA version used is 11.3, the deep learning
framework used is Pytorch1.9, and the data preprocessing tool and network building tool
used are Python, version 3.7. During the training process of this network, the dataset is
divided into a ratio of 7:2:1 for the training set: validation set: and test set, the batch size is
set to 16, and the Adam optimizer is used. The optimizer has a learning rate of 0.0001, and
the maximum training round is set to 100 times. If the loss does not decrease within five
consecutive epochs, the training is stopped.

3. Multimodal Fusion Classification Model

To effectively detect and classify the state of the CZ silicon single-crystal growth
process, this paper proposes a multimodal fusion multi-classification network, and its
overall framework is shown in Figure 4. During the growth of CZ silicon single crystals, the
time—frequency domain graph is obtained by continuous wavelet transform of the collected
one-dimensional diameter signal, pulling speed signal, and temperature signal. This paper
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proposes a Dense-ECA-SwinTransformer neural network module to extract features from
the time—frequency domain graph. It combines dense blocks and SwinTransformer modules
and adds an ECA attention mechanism. The meniscus video signal collected by the camera
is processed into an image signal and an inter-frame difference signal. First, the video
signal is fused with the inter-frame difference image at the same time at the channel level
and sent to the ConvNeXt neural network for feature extraction. After feature extraction,
concatenation is used to fuse the feature graph extracted from the one-dimensional signal
time-frequency domain graph with the feature graph extracted from the meniscus image.
The ECA attention mechanism is added to the fused feature graph, so that the model pays
more attention to providing more effective channels, further improving the model's ability
to distinguish. Finally, it is sent to Softmax to obtain the state category of the CZ silicon
single-crystal growth process.
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Figure 4. Overall framework of a multimodal fusion classification model.

3.1. Continuous Wavelet Transform

The continuous wavelet transform is essentially a convolution of a one-dimensional
signal with a translation-shrinkage wavelet basis function that has localized properties in
the time domain and frequency domain, thereby providing local information of the signal
in both the time and frequency domains. Mathematically, the continuous wavelet function
is defined as

CWT(a,b) = [ by, )

Among them, f(t) is the input signal, ¢, ;(¢) is the wavelet function generated by the
mother wavelet through the scaling parameter 4 and the translation parameter b, ¥ , (t)
represents the complex conjugate of the wavelet function, parameter a controls the scale
(frequency) of the wavelet, and parameter b controls the position (time) of the wavelet.
The mother wavelet is a zero-mean, localized function. In this paper, the data length is
150 data points, and the Morlet wavelet is used. The wavelet scale ranges from 2 to 14, with
every 0.5 as an interval. The 1250 x 938 x 3 time—frequency domain graph is generated by
continuous wavelet change of one-dimensional data.
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3.2. Dense-ECA-SwinTransformer

The 1250 x 938 x 3 time—frequency domain image is resized to a 224 x 224 x 3 image,
which is then sent to Dense-ECA-SwinTransformer for feature extraction. The structure of
this network module is shown in Figure 5a, which involves three modules: DenseBlock,
ECA attention mechanism, and SwinTransformer Block.

A P
b = [ DenseBlock .
e S LY o i i
2 |&l &l 2 |. 2 | BN-ReLU-Conv (3x3, k=K, S=1, P-1) ||
AL ol &AL g S H i
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Figure 5. The structure of the network module: (a) Dense-ECA-SwinTransformer network structure;
(b) Dense Block; (c) the ECA attention mechanism; (d) SwinTransformer Block.

To extract the features of the one-dimensional signal time—frequency domain graph,
we first pass through a 7 x 7 convolution layer with a stride of 2 and a 3 X 3 maximum
pooling layer with a stride of 2. Then, we use dense blocks for feature extraction. Dense
blocks establish direct connections between layers so that the features of the previous layer
can be reused by subsequent layers, thereby reducing feature redundancy and improving
the efficiency of the model. The network structure of the dense block is shown in Figure 5b.
First, there is a convolution layer with a convolution kernel size of 1 x 1, the number of
convolution kernels is 4K, K is the growth rate, which is used to control the number of
feature channels output by the dense block, the stride is 1, the padding is 1, and then a
3 x 3 convolution layer with K convolution kernels, a stride of 1, and a padding of 0 is
used. For each convolution layer, normalization is performed first, then nonlinearization,
and finally convolution operation is performed. In this paper, two dense connection layers
are used, one dense connection layer consists of 4 dense connection blocks, and the other
dense connection layer consists of 8 dense connection blocks.

After using dense blocks for feature extraction, the ECA attention mechanism is
introduced. This attention mechanism uses one-dimensional convolution to perform local
cross-channel interactions. By adaptively selecting the size of the convolution kernel to
capture important inter-channel dependencies, the ECA mechanism can better capture and
focus on important local features and improve the quality of feature expression. The ECA
attention mechanism is shown in Figure 5c. In the ECA module, the input is represented
by x € RHFXWXC H x W represents the size of the feature map, C represents the number
of channels, o represents the Sigmoid function, and the output is defined by x. The
specific operation is as follows: global average pooling is performed on the input features
to generate a global feature description for each channel. One-dimensional convolution
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uses 1D convolution with adaptively selected convolution kernel size to interact between
channels, calculate the attention weight, and apply the calculated weight to the original
feature to obtain the weighted output.

After using the ECA attention mechanism to assign channel weights, two Patch
Merging and SwinTransformer modules are used for feature extraction. The role of the
Patch Merging layer is to downsample, reduce the resolution, adjust the number of channels,
and form a hierarchical design. The SwinTransformer Block uses a shifted window-based
self-attention mechanism to divide the input feature map into non-overlapping windows
and calculate self-attention within each window. The shift operation in the alternating
layer realizes cross-window connections, enhancing the model’s ability to capture long-
distance dependencies while maintaining computational efficiency. The module is shown in
Figure 5d. Each SwinTransformer block consists of a window multi-head attention mechanism
(W-MSA), a shifted window multi-head attention mechanism (SW-MSA), layer normalization
(LN), and a multi-layer perceptron (MLP), and is connected through residuals.

3.3. Image Signal Feature Extraction Module

This paper uses the ConvneXt neural network module to classify image information.
The ConvNeXt network structure diagram is shown in Figure 6a.
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Figure 6. (a) ConvNeXt network structure diagram; (b) ConvNeXt Block.

The ConvNeXt Block is proposed in this network, as shown on the right of Figure 6.
In the ConvNeXt Block, an inverse bottleneck structure and a residual structure are used.
First, a DW convolution of size 7 x 7 and stride 1 is used, and then the LN layer is used for
normalization. The second layer consists of a convolution kernel of size 1 x 1 and stride
1 for convolution, and the GELU function is used for activation. At the same time, the
number of channels is increased to 4 times the original. The third layer uses a convolution
operation of size 1 x 1 and stride 1 to reduce the dimension to the initial number of channels
of the ConvNeXt block, forming an inverse bottleneck structure. Then, a Layer Scale layer
is added to achieve the scaling of data in each channel through learnable parameters, and
finally, the Drop Path is used for regularization.

4. Discussion

The experimental data used in this study are one-dimensional signal data collected
during the growth of a single silicon crystal and images of the meniscus video signal
data surface. After processing the collected image data, a total of 2814 groups of normal
growth images, 2723 groups of loss images, 2474 groups of swinging images, 2566 groups
of twisting images, and 1942 groups of squareness images were obtained. Each group
of images included a meniscus image, an inter-frame difference image, a diameter time—
frequency domain image, a temperature time—frequency domain image, and a pulling
speed time—frequency domain image. To verify the effectiveness of the model and the
accuracy of the detection and classification, we used the most widely used evaluation
indicators, including accuracy, recall, precision, F1Score, and confusion matrix.
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4.1. State Multi-Classification of One-Dimensional Signal

The diameter signal, temperature signal, and pulling speed signal were used sepa-
rately for multi-state classification, and the Dense-ECA-SwinTransformer neural network
proposed by us was used for classification. The classification network is shown in Figure 7.

Softmax

Des-ECA-
SwinTransformer

Classification

Figure 7. One-dimensional signal classification network structure diagram.

The classification results are shown in Table 1 below, and the confusion matrix is
shown in Figure 8.

Table 1. Classification results of one-dimensional signals in each dimension.

Evaluation Indicators Precision Recall F1-Score Accuracy
Diameter 0.943 0.947 0.944 0.947
Temperature 0.692 0.701 0.688 0.691
Pulling speed 0.826 0.827 0.826 0.820
One-dimensional signal fusion 0.966 0.969 0.967 0.968

It can be seen from the classification results that the diameter signal has the most
accurate classification result for the abnormal state, the pulling speed signal has a poor
classification result for the abnormal state, and the temperature signal has the worst
classification result for the abnormal state.

From the confusion matrix of temperature signal classification, it can be seen that
the classification effect of temperature signals for normal, swinging and loss is poor, but
the classification effect for squareness and twisting is relatively good. From the confusion
matrix of pulling speed classification, it can be seen that the pulling speed signal has a good
classification effect for squareness, swinging, and twisting, but the detection of loss is poorly
distinguished from the normal state. From the confusion matrix of the diameter signal, it
can be seen that the classification effect of the diameter signal for each state is best among
the one-dimensional signals. In summary, using only one-dimensional diameter signals,
temperature signals, and pulling speed signals has different defects in the classification of
abnormal states, which affects the classification accuracy. Therefore, the one-dimensional
signal is extracted and fused to make the decision. The network structure diagram is shown
in Figure 9.

The classification accuracy of a one-dimensional signal with a single dimension is the
highest at 94.7%, and the classification accuracy is 96.8% after the processing and fusion
of the one-dimensional signal. However, the confusion matrix of the one-dimensional
signal confusion classification in the lower right corner of Figure 8 shows that although
the classification effect is improved after fusion, there are still misclassifications in the
classification of loss, normal, swinging, and squareness.
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Figure 8. Confusion matrix of one-dimensional signal classification: (a) diameter; (b) temperature;

(c) pulling speed; (d) one-dimensional signal fusion.
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Figure 9. One-dimensional signal fusion network structure diagram.
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4.2. Multi-State Classification of Meniscus Images

To classify the state of the silicon single-crystal growth process, in addition to using a
one-dimensional diameter signal for classification, image signals and video signals are also
important parts of the state detection of the CZ silicon single-crystal growth process. This
study used the meniscus image signal of a CZ silicon single crystal for state classification
through the ConvNeXt network. The classification results are shown in Table 2. The
confusion matrix is shown in Figure 10.

Table 2. Meniscus image classification results.

Evaluation Indicators Precision Recall F1-Score Accuracy
Meniscus image 0.866 0.845 0.850 0.833
Difference image 0.931 0.929 0.930 0.924

Fusion of meniscus image and 0.950 0.947 0.948 0.942
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Figure 10. Confusion matrix: (a): meniscus image; (b): difference image; (c): fusion of meniscus

image and difference image; (d): fusion of all data.

The experimental results show that the classification accuracy of the meniscus image
is 83.3%, while the classification accuracy of the inter-frame difference image is 92.4%. The
confusion matrix of the meniscus image classification shows that the image signal has a
large error for the classification of normal, loss, and swinging, and has a better classification
effect for twisting and squareness. The confusion matrix of the inter-frame difference
image fault classification shows that, compared with the meniscus image classification, the
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detection accuracy of the swinging state has been greatly improved, but the classification
of the normal state has decreased. Therefore, the meniscus image and the inter-frame
difference image are used for feature fusion to make state classification decisions. The
network structure is shown in Figure 11. The classification results are shown in Table 2.

T

Concat Concat Concat Concat Concat

[ [ 1T §

Figure 11. Classification decision of meniscus image and inter-frame difference image fusion.

Classification

It can be seen from Table 3 that the fusion classification using the meniscus image
and the inter-frame difference image achieved a slightly better classification effect than
using the inter-frame difference image; the confusion matrix is shown in Figure 9, and it
can be seen from the confusion matrix that the classification effect of normal growth and
loss using only image signals is poor, while the classification effect of twisting, swinging,
and squareness is excellent.

Table 3. Classification results of meniscus images.

Classification Network Models Precision Recall F1-Score Accuracy
VGG 0.849 0.790 0.789 0.780
ResNet 0.832 0.828 0.826 0.820
DenseNet 0.831 0.832 0.829 0.825
MobileNet 0.886 0.821 0.820 0.814
Swin Transformer 0.844 0.838 0.836 0.828
ConvNext (In Figure 6a) 0.866 0.845 0.850 0.833

In order to show the superiority of the model, the classification of meniscus data
in this study is compared between the ConvNeXt network and the classical excellent
classification network. Table 3 shows the classification performance of the above networks
for this dataset. Precision, recall, Fl1-score, and accuracy were also used to evaluate the
classification performance.

It can be seen from Table 3 that the ConvNeXt network is used for feature extraction
classification to obtain the best results.

4.3. Abnormal State Classification Results by Fusing One-Dimensional Signal and Meniscus
Image Signal

After research, this paper found that the detection and classification effect obtained
using only one-dimensional signal fusion is better than using only image signals for fusion
detection and classification. The detection and classification effect of one-dimensional
signals for twisting is better, but the detection and classification effect for loss, normal,
swinging, and squareness is poorer, while the detection and classification effect of image
signals for swinging, twisting and squareness is better, but the detection and classification
effect for normal growth and loss is poorer. From this analysis, only one-dimensional signal
fusion for detection and classification or only image signal detection and classification
still have their shortcomings, so by making a fusion decision on one-dimensional signals
and two-dimensional signals, the effective information of each modality is fully utilized to
realize the classification of five states. The network structure used is shown in Figure 10,
and the classification results obtained are shown in Table 4.
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Table 4. Fusion signal classification results.
Evaluation Indicators Precision Recall F1-Score Accuracy
Fusion of all data 0.992 0.992 0.992 0.992

The confusion matrix in the lower right corner of Figure 10 shows that by using one-
dimensional signals and image signals as the input, after feature extraction and modal
fusion, the problem of single-dimensional signals being insensitive to some abnormal
conditions can be overcome, and the best classification results can be achieved. Table 4
shows that the classification accuracy is as high as 99.2%.

In a later experiment, we compared the performance of the method proposed in this
study with other recent silicon single-crystal anomaly detection classification methods,
particularly in the aspect of loss detection. To ensure fairness, we used the same dataset and
evaluation metrics. Since current research primarily focuses on loss detection, we compared
our proposed method with other methods specialized in this task. Existing methods, such
as those proposed by Jun Zhang et al. and S Yuting et al., rely solely on image-based loss
detection, which neglects the importance of sensor measurement data during the silicon
single crystal-growth process [7,8]. This limitation leads to inaccurate anomaly detection.
In contrast, our study employs a multimodal fusion technique that integrates both image
data and sensor signals, resulting in more reliable classification results. Therefore, we
conducted a comparative experiment between our method and the MMFN (Multimodal
Fusion Network) method proposed by Lei Jiang et al. [9]. The comparison results are shown
in Table 5.

Table 5. Comparison of classification results to existing methods.

Methods Precision Recall F1-Score Accuracy
MMEFN 0.993 0.978 0.985 0.986
Novel multimodal fusion network 0.996 0.989 0.993 0.993

Table 5 indicates that our method outperforms across four evaluation metrics. This
improvement is primarily attributed to the use of a more efficient network structure for fea-
ture extraction and the introduction of inter-frame difference images, which provide richer
modality information. In addition, this study also makes a more detailed classification of
the abnormal state of silicon single-crystal growth, including four cases of loss, twisting,
swinging, and squareness.

5. Conclusions

In this paper, a novel multimodal fusion classification network is proposed for silicon
single-crystals” abnormal growth state classification. The proposed network could leverage
multiple data sources, including one-dimensional signals (diameter, temperature, and
pulling speed) and video data (meniscus images and frame difference images) to fully
monitor the working condition of a single-crystal growth system. First, a novel Dense-
ECA-SwinTransformer was proposed to extract temporal-frequency variations from one-
dimensional signals” wavelet transforms. Next, ConvNeXt was utilized to obtain the video
abnormal features from meniscus video signals. Finally, we designed a novel multimodal
fusion network to fusion the extracted abnormal features from one-dimensional signals and
video signals and output the final abnormal detection results. The extensive computational
experiments demonstrated that the proposed multimodal fusion classification network
could achieve the best classification experimental results with a classification accuracy
of 99.2%.
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