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Abstract: This study evaluates the performance of the MaskFormer model for segmenting and
classifying breast lesions using ultrasound images, addressing ultrasound’s limitations. Ultrasound
used for breast cancer detection faces challenges like low image contrast and difficulty in the detection
of small or multiple lesions, further complicated by variability based on operator skill. Initial
experiments with U-Net and other CNN-based models revealed constraints, such as early plateauing
in model loss, which indicated suboptimal learning and performance. In contrast, MaskFormer
demonstrated continuous improvement, achieving higher precision in breast lesion segmentation
and significantly reducing both false positives and false negatives. Comparative analysis showed
MaskFormer'’s superior performance, with the highest precision and recall rates for malignant lesions
and an overall mean average precision (mAP) of 0.943. The model’s ability to detect a diverse range
of breast lesions, including those potentially missed by the human eye, especially by less experienced
practitioners, underscores its potential. These findings suggest that integrating AI models like
MaskFormer could greatly enhance ultrasound performance for breast cancer detection, providing
reliable, operator-independent image analysis and potentially improving patient outcomes on a
global scale.

Keywords: breast lesion; ultrasound; benign; malignant; MaskFormer; deep learning

1. Introduction

As per the World Health Organization (WHO), an estimated 2.3 million women
were diagnosed with breast cancer in 2022 [1]. This staggering number underscores the
widespread prevalence and significant impact of the disease on women worldwide. Addi-
tionally, breast cancer claimed the lives of approximately 670,000 women globally last year,
highlighting the severity of the disease [2]. Whether in high-income or low-income regions,
breast cancer remains a universal health challenge that requires our collective attention
and action [3]. Therefore, the early detection and diagnosis of breast cancer are critical, as
they facilitate prompt treatment initiation, which can significantly enhance survival rates
by preventing the progression of the disease.

According to the American College of Radiology (ACR), the early detection of breast
lesions—abnormalities in the breast tissue often presenting as lumps or swellings—can be
achieved through various imaging modalities: mammography, magnetic resonance imaging
(MRI), and ultrasound [4]. Each of these imaging modalities offers its own advantages and
disadvantages.

Table 1 highlights The Breast Imaging Reporting and Data System (BI-RADS), a set of
guidelines to standardize breast imaging reporting and assist radiologists in categorizing
their findings [5]. Category 0 indicates that the mammography, ultrasound, or MRl is in-
complete. Category 1 and 2 indicate normal and benign cases, respectively, and hence, they
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do not require any further evaluation. Category 3 indicates probably benign findings, with
a low probability of being cancerous (less than 2%), but follow-up imaging is recommended.
Category 4 indicates suspicious findings, with a probability of malignancy ranging from
2% to 95%, necessitating a biopsy for definitive confirmation. Category 5 signifies highly
suggestive malignancy, with a probability greater than 95%, requiring an immediate biopsy.
Category 6 indicates known, biopsy-proven malignancy, for which cancer has been con-
firmed by biopsy, and appropriate action is required. In summary, based on whether a
biopsy is needed or not, it is crucial to determine whether the patient has normal (no actions
required), benign (yearly follow-up), or suspicious/confirmed malignant (biopsy needed)
findings.

Table 1. BI-RADS guidelines.

BI-RADS Category

Assessment Description

Category 0

Category 1
Category 2

Category 3

Category 4
Category 5
Category 6

Need additional imaging evaluation and/or prior examination

Incomplete .
for comparison
Negative No evidence of cancer
Benign Non-cancerous findings such as cysts
Probable benign Low probability of malignancy (<2%), but follow-up imaging
recommended
Suspicious Findings that do not look definitively benign and require biopsy

Highly suggestive of malignancy High probability (>95%) of cancer, requiring immediate biopsy
Known, biopsy-proven malignancy =~ Cancer confirmed via biopsy, necessitating appropriate action

The first imaging modality, mammography, is widely used and highly effective for the
early detection of breast cancer, especially in women over 50 [6]. It can detect tumors that
are too small to be felt. Despite this, mammography involves exposure to X-ray radiation.
Moreover, it can be less effective in women with dense breast tissue and may sometimes
result in false positives or false negatives [7]. False positives occur when a mammogram
indicates the presence of cancer when there is none, leading to further biopsies [8,9]. On the
other hand, false negatives happen when a mammogram fails to detect an existing cancer,
consequently leading to misdiagnosis, potentially delaying the treatment required, and
adversely affecting outcomes [10]. Additionally, the mammography procedure is painful
for all women, which might discourage regular screenings.

Next, MRI is highly sensitive and capable of producing detailed images, making it
particularly valuable for patients at high risk and for evaluating the extent of cancer [11].
However, MRI is associated with higher costs and often requires significant wait times
before an appointment can be scheduled. Additionally, it may generate false positives,
leading to unnecessary biopsies.

Lastly, ultrasound is a non-radiation imaging technique that is widely accessible and
effective for distinguishing between solid and fluid-filled cysts [12]. Solid masses are dense
tissue growths in the breast that can be benign (non-cancerous) or malignant (cancerous),
while fluid-filled cysts are sac-like structures filled with fluid within the breast tissue, and
they generally do not entail the risk of cancer [13]. Despite its numerous benefits, the main
disadvantage of ultrasound is that its effectiveness can be influenced by the operator’s
skill, introducing variability in diagnostic accuracy [14]. Specifically, less experienced
practitioners may miss lesions, particularly when multiple lesions are present.

Incorporating artificial intelligence (Al) into ultrasound imaging can help address these
limitations by reducing dependence on the operator’s skill and improving the detection
and classification of lesions as normal, benign, or malignant [15]. Al-enhanced ultrasound
systems can analyze images more consistently and accurately, providing valuable support
to physicians, particularly those who are new or less experienced.

The following are leading companies providing ultrasound solutions that incorporate
specific Al features for breast lesion detection. Table 2 ranks these solutions by their
reported accuracy in sensitivity and specificity.
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Table 2. Commercial Al solutions for breast ultrasound.
Manufacturer Feature Description Reported Accuracy
Al-powered BI-RADS classification, Sensitivity: ~93%
GE Healthcare [16] Invenia ABUS user-friendly, seamless-integration GE Hvity: o ?
Specificity: ~80%
ultrasound system
. . . Automated analysis, integration with Sensitivity: ~87%
Siemens Healthineers [17] =~ Al-Rad Companion Breast imaging workflows, BLRADS support Specificity: ~83%

Philips [18]

Hologic [19]

Advanced Al algorithms, integration with

Al Breast Ultrasound Solution  Philips ultrasound systems, BI-RADS Sensitivity: ~88%

Specificity: ~83%

support
. Real-time imaging and biopsy, Al Sensitivity: ~85%
Brevera Breast Biopsy System algorithms for classification Specificity: ~80%

GE Healthcare’s Invenia Automated Breast Ultrasound System (ABUS) exhibits a
sensitivity of approximately 93% and a specificity close to 80% [16]. This solution employs
3D ultrasound imaging to complement traditional mammography. Siemens Healthineers’
AlI-Rad Companion Breast achieves a sensitivity of around 87% and a specificity of roughly
83% [17]. It offers automated analysis and integrates efficiently with existing imaging work-
flows. Philips” Al Breast Ultrasound Solution demonstrates a sensitivity of approximately
88% and a specificity of about 83% [18].

Hologic’s Brevera Breast Biopsy System provides a sensitivity of about 85% and
a specificity of around 80% [19]. This system combines real-time imaging and biopsy
capabilities with Al algorithms for accurate lesion classification. Overall, all of these
commercial models use Al, specifically including convolutional neural networks (CNNs),
to enhance detection accuracy.

2. Related Works

In recent years, various studies have built upon the critical need for early breast cancer
detection and classification through the integration of deep learning.

2.1. Al Solutions for Breast Lesion Detection

This study, based on CNN and ABUS, utilized a multicenter dataset to enhance the
model’s robustness, achieving an internal accuracy of 78% and an overall accuracy of 71%
when including data from all test centers [20]. However, its performance diminished for
lesions smaller than 10 mm, underscoring the need for continued refinement in detecting
small lesions.

Another study employed CNNs with patch-based U-Net and transfer learning across
two datasets for breast lesion detection [21]. It achieved true positive fractions of 0.99 for
dataset A and 0.92 for dataset B; the study highlighted the reduction in false negatives,
which is crucial for accurate diagnosis.

In a different approach, researchers evaluated various deep learning architectures,
including Fast R-CNN and Single Shot MultiBox Detector (SSD300), using a newly anno-
tated dataset of 579 benign and 464 malignant cases [22]. Specifically, the study found that
SSD300 achieved the best performance in terms of the average precision rate (APR) for
lesion detection, while DenseNet proved the most effective in classification tasks, achieving
a high APR.

Research incorporating the Viola Jones and YOLOvV3 algorithms for breast lesion
detection achieved diagnostic accuracy by enhancing the sensitivity and specificity of the
detection process, reaching as high as 70% [23].

Another noteworthy study investigated the use of an anchor-free network for breast
lesion detection from ultrasound images, enhanced through segmentation-based techniques.
This method focused on the contrast enhancement of ultrasound images, followed by lesion
classification using an anchor-free network, achieving a mean average precision (mAP) of
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0.802 for the BUSI dataset [24]. The detection precision for benign and malignant lesions
was 0.816 and 0.789, respectively, with recall values of 0.932 and 0.889.

In another novel approach, YOLOv3 was combined with enhanced feature extraction
techniques for breast ultrasound tumor detection and classification. This method utilized
an improved YOLOv3 algorithm integrating the ResNet and DenseNet architectures with
the Darknet-53 framework, aiming to address the challenges of low contrast, blurred
boundaries, and artifacts in ultrasound images [25]. Evaluated on a dataset of 3259 images,
the model achieved a mAP of 0.745, with a benign precision of 0.851 and a malignant
precision of 0.637.

2.2. Problem Statements

Despite significant advancements in breast cancer detection, accurately segmenting
and classifying breast lesions using ultrasound imaging remains challenging due to the
variability in lesion appearance and the inherent limitations of ultrasound, including
operator dependency and difficulty in detecting complex lesions due to low image contrast.
Existing Al-enhanced imaging solutions, while promising, often fall short in terms of
consistency and accuracy, particularly for these challenging lesion types. Therefore, there is
a pressing need to develop more reliable and precise Al-based models that can enhance the
early detection and accurate diagnosis of breast cancer by aiding in the segmentation and
classification of breast lesions in ultrasound images.

2.3. Contribution

In our proposed research, we aim to contribute to the field of breast lesion segmentation
and classification for ultrasound images by harnessing the latest advancements in Al
technology. Specifically, we focused on developing a MaskFormer-based segmentation and
classification model. More precisely, our contributions are summarized below.

e  We developed and implemented an innovative MaskFormer-based approach for seg-
menting and classifying breast lesions in ultrasound images. This method leverages
state-of-the-art techniques in semantic segmentation to identify and classify breast
lesions more accurately than traditional methods.

e  We applied our MaskFormer-based model to the Breast Ultrasound Images (BUSI)
dataset in order to evaluate its efficacy. The BUSI dataset, which includes various
annotated breast ultrasound images, serves as a robust benchmark for assessing the
performance of our model.

e  Our research demonstrates significant improvements in diagnostic metrics, including
sensitivity, specificity, and mean average precision (mAP). By systematically com-
paring our results with existing methods, we show that the MaskFormer model can
reduce false negatives and positives, thereby enhancing diagnostic reliability. Our
comprehensive evaluation reveals the model’s superior performance in malignant pre-
cision and recall rates, with a high mAP. The model’s robustness is further highlighted
because of its ability to detect a variety of lesions that might be missed by the human
eye, particularly by less experienced clinicians.

3. Materials and Methods

Our proposed research focuses on the integration of Al for breast lesion segmenta-
tion and classification using advanced image segmentation techniques and models. The
methodology includes detailed explanations of the dataset, model development, evaluation
metrics, software environment, and overall mechanism/architecture. Each of these aspects
is elaborated on in subsequent sections.

3.1. Dataset

The dataset utilized in this study is derived from the Breast Ultrasound Image Dataset
(BUSI) [26]. Originally collected from Baheya Hospital for Early Detection and Treatment
of Women'’s Cancer in Cairo, Egypt, BUSI comprises 891 benign images, 421 malignant
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images, and 266 normal images. To maintain consistency, the dataset was divided into
training (80%), testing (10%), and validation (10%) sets using an 8:1:1 ratio, respectively.

3.2. Image Segmentation Technigues

Image segmentation is a crucial task in computer vision, especially in medical imaging,
as it involves partitioning an image into meaningful segments in order to facilitate analysis
and interpretation. This process can be broadly categorized into three types: instance
segmentation, semantic segmentation, and panoptic segmentation.

Instance segmentation identifies and delineates each object instance in an image, which
is essential for applications requiring distinguishing between individual objects of the same
category. Semantic segmentation assigns a label to every pixel in an image based on its
class, treating all objects of a class as a single entity. Meanwhile, panoptic segmentation
combines both instance and semantic segmentation by labeling each pixel with a class and
distinguishing between different instances of the same class [27].

Among these, semantic segmentation is most suitable for our research due to its
ability to provide a detailed understanding of the entire scene context. This approach
is particularly beneficial for distinguishing between areas where lesions are present and
where they are not in ultrasound images. The accurate delineation of lesion boundaries
is crucial for proper diagnosis, and by focusing on pixel-level segmentation, semantic
segmentation ensures the comprehensive and precise analysis necessary for effectively
separating the lesion from the rest of the image.

Several models have been developed for image segmentation, each with its own
strengths and limitations. Some notable models include YOLOvV3 (You Only Look Once,
version 3), U-Net, and DeepLab.

YOLOV3 is designed primarily for object detection, and it performs segmentation
by dividing images into a grid and predicting bounding boxes and class probabilities
for each cell [28]. While YOLOV3 is fast and efficient, it is less suited to the pixel-level
accuracy required in semantic segmentation. U-Net, a CNN widely used in biomedical
image segmentation, excels in scenarios requiring detailed and precise segmentation but
may struggle with more complex, real-world scenes [29]. DeepLab, developed by Google,
employs dilated convolution to capture multi-scale context, offering high accuracy but at
the cost of increased computational resources [30].

MaskFormer represents a significant advancement in computer vision, particularly for
its innovative mask-classification framework [31]. This framework unifies both semantic
and instance-level segmentation tasks, moving beyond traditional per-pixel classification
methods. Instead of classifying individual pixels, MaskFormer predicts a set of binary
masks, each associated with a global class label. This allows the model to capture contextual
information and long-range dependencies across the image. These features make it highly
effective for segmenting breast lesions in ultrasound images, where boundaries may be
unclear due to low contrast or noise in the image; hence, we chose MaskFormer for
segmentation in our research. MaskFormer’s transformer decoder can produce per-segment
embeddings, in which each embedding corresponds to a distinct region or object within the
image, which are combined with per-pixel features [31]. This enables the model to directly
predict binary masks representing regions of interest without relying on pixel-by-pixel
classification. This process can allow for a faster and more accurate detection of both small
and large breast lesions in our research.

Furthermore, we researched MaskFormer’s application in ultrasound or medical imag-
ing. We found an interesting article on the use of different transformer-based models
including MaskFormer for the detection of different kinds of cancer cells in histopatho-
logical breast images. Research suggested that augmenting MaskFormer’s transformer-
based architectures with advanced techniques like auto-augmentation can further enhance
performance, particularly in medical imaging tasks [32]. This research showed that the
MaskFormer-based model could reliably detect unclear cancer cells in histology slides,
which might be missed during microscopic examination. Overall, MaskFormer’s advanced
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architecture and flexibility make it an ideal choice for our research on detecting subtle and
unclear lesions in ultrasound images that might be missed by less experienced practitioners
in ultrasound-based breast lesion detection.

3.3. Image Classification Techniques

The accurate classification of breast lesions is essential for determining appropriate
patient treatment. Our study focused on classifying lesions into three categories: normal,
benign, and malignant, based on the BI-RADS guidelines. Category 1 indicates normal
findings, while categories 2 and 3 indicate benign findings, which typically do not require
immediate action beyond regular monitoring. In contrast, Categories 4, 5, and 6 indi-
cate suspicious or confirmed malignant lesions, necessitating a biopsy or further medical
intervention.

Several models have been developed for image classification, each with its own ad-
vantages. Traditional models like support vector machines (SVMs) and k-nearest neighbors
(k-NNs) have been widely used for various classification tasks due to their simplicity and
effectiveness [33]. ResNet, Inception, and VGG are notable CNN architectures known for
their high accuracy and robustness in image classification tasks [34]. Despite their strengths,
these models can face challenges when dealing with class imbalances and subtle differences
between categories.

To address these challenges, we further utilized the MaskFormer model for image
classification as well. MaskFormer is a state-of-the-art approach that integrates both seg-
mentation and classification into a unified framework, leveraging the power of transformers
for comprehensive image analysis. This model is particularly adept at handling the com-
plexities of medical imaging, where precise lesion boundary delineation and accurate
classification are critical. More specifically, MaskFormer’s architecture is based on trans-
formers, which are renowned for their ability to capture long-range dependencies and
contextual information within an image. Unlike traditional convolutional neural networks
(CNNs), which may struggle with the intricate spatial relationships necessary for accurate
segmentation, transformers excel at understanding the broader context and finer details of
an image. This capability is crucial for differentiating between subtle variations in lesion
characteristics and for segmenting lesions pixel by pixel with high precision.

Additionally, MaskFormer’s unique mask-classification framework allows it to simul-
taneously segment and classify objects. It predicts a set of binary masks, each associated
with a class label, enabling it to segment the image into precise shapes of lesions while
also determining their classification (normal, benign, or malignant). This dual functionality
ensures that the lesion boundaries are accurately defined and classified, enhancing the
model’s ability to distinguish between different lesion types and their respective clinical
significance.

By leveraging MaskFormer, our study benefits from its advanced architecture and uni-
fied approach to segmentation and classification. MaskFormer’s adaptability and precision
make it an ideal choice for meeting our classification objectives and advancing the diagnos-
tic capabilities in breast lesion assessment, as lesion shapes and internal characteristics can
vary widely.

3.4. Beast Lesion Detection Architecture

The overall architecture of MaskFormer, as illustrated in Figure 1, integrates various
components to achieve the precise and accurate identification of lesions for segmentation
and classification. Firstly, the input to our model comprises breast ultrasound images along
with corresponding mask images indicating the regions of interest (ROIs), lesions. Before
the images are fed into the model, they undergo a series of preprocessing steps, including
normalization, resizing, and relabeling. This ensures uniformity in the input data and
prepares them for effective processing in the subsequent layers.
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Figure 1. Architectural diagram of MaskFormer-based breast lesion detection and classification of
ultrasound images.

At the core of our architecture lies the ResNet-50 backbone, configured with the base-
ade20k-150.yaml settings and optimized using the ADAM optimizer, as shown in Figure 1.
ResNet-50 is a deep convolutional neural network (CNN) known for its robustness in
extracting high-level features from input images. It consists of several layers, including
convolutional, batch normalization, and activation layers, organized into residual blocks.
The ultrasound images, after preprocessing, are fed into the ResNet-50 backbone. The
network processes the images through multiple stages, extracting hierarchical features that
capture both low-level details and high-level semantic information.

Following the ResNet-50 backbone, the extracted features are passed to a transformer
decoder. The transformer architecture is renowned for its capability to capture long-
range dependencies and contextual relationships within the image data. Concurrently, a
pixel decoder processes the features to refine the segmentation map at a pixel level. This
decoder helps in achieving the precise delineation of lesion boundaries by reconstructing
the segmented output from the high-level features.

The refined features from the pixel decoder are utilized by the segmentation head to
generate a segmentation map. This map indicates the presence or absence of lesions in each
pixel of the ultrasound image, as shown in Figure 1. To ensure accurate segmentation, a
binary mask loss function is employed. This loss function penalizes discrepancies between
the predicted segmentation map and the ground truth mask, thereby guiding the model to
improve its segmentation accuracy.

Parallel to the segmentation process, the high-level features extracted via the ResNet-50
backbone are also fed into a classification model. This model is responsible for categorizing
the lesions into three classes: normal, benign, and malignant, as illustrated in Figure 1.
The classification head outputs the class predictions, which are compared against the
ground truth labels using a classification loss function. This function helps the model
differentiate effectively between normal, benign, and malignant lesions, enhancing its
diagnostic reliability.

The final outputs of the model include a segmentation map that highlights the lesion
regions and a class prediction indicating the nature of the lesion. Overall, our MaskFormer-
based architecture leverages the strengths of ResNet-50 and transformers to achieve supe-
rior performance in the segmentation and classification of breast lesions. The integration of
semantic segmentation and classification within a unified framework allows for precise le-
sion boundary delineation and accurate classification, making our approach highly suitable
for aiding in the early detection and diagnosis of breast cancer.

3.5. Evaluation Parameters

In assessing the performance of our segmentation and classification models, several
key metrics are utilized to quantify their accuracy and effectiveness. These metrics play
a crucial role in evaluating the reliability and precision of our results in identifying and
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categorizing breast lesions. Equations (1)—(5) are the statistical representations to calculate
the mean average precision (mAP), mean average recall (mAR), mean average specificity
(mASpecificity), mean average sensitivity (mASensitivity), and mean F1 score (mF1), re-
spectively, for our proposed models.

Mean average precision (mAP) is a metric that aggregates the precision across different
categories (normal, benign, and malignant). It is calculated as the average of the precisions
for each category, quantifying the model’s ability to correctly classify each type of lesion
when it predicts them as such (TP;, TPy, and TPy,) as detailed in (1). A high mAP indicates
that the model maintains high precision across all categories, which is crucial for ensuring
that identified lesions are pathologically significant.

mAP = %(TP,ITJI:WFP” * TP;,TJI:bFPb + TPmTimFPm) @
mAR = §(TP,1T4I—JV}N” + TPbebFNb + TPmTJI:n;Nm) @
mASpecificity = %(TN: Z:—IHPP,I + TNZ:\—[bFPb + TN,: Z:[—mFPm) ©)
mASensitivity = %(TPHZP ”TNn + TPbebTNb + TPmTf”’TNm) (4)

1 2xP, xR,  2XPyxRy 2xPy XRy

Fl=-2
mi =35 1R, P, + R, Po + R

Here, TP, TP, , and TP, denote true positive for normal, benign, and malignant
images. TNy, TNy, , and TN, denote true negative for normal, benign, and malignant
images. FP,, FP, , and FP, denote false positive for normal, benign, and malignant
images. FN;,;, FN; , and FN,;, denote false negative for normal, benign, and malignant
images. P,, P, , and P, denote precision for normal, benign, and malignant images.
Ry, Ry, and Ry; denote recall for normal, benign, and malignant images.

Mean average recall (mAR) measures the average recall across all categories. It
signifies the model’s ability to detect each type of lesion among all actual cases of that type,
thus minimizing false negatives, as shown in (2). A high mAR ensures that the model
consistently identifies lesions across all categories.

Equation (3) measures the mean average specificity (mASpecificity) as the average
specificity across all categories. It quantifies the model’s ability to correctly identify normal
cases as negative and distinguish them from benign and malignant cases. High mASpeci-
ficity ensures that the model consistently avoids false positives across all categories.

mASensitivity measures the average sensitivity across all categories via Equation (4). It
signifies the model’s ability to correctly detect each type of lesion among all actual cases of
that type. High mASensitivity ensures that the model consistently identifies true positives
across all categories, minimizing the risk of missing significant lesions.

The mean F1 score (mF1) is the harmonic mean of precision and sensitivity, offering
a balance between the two metrics. It provides a single metric to gauge the overall per-
formance of the model in classifying lesions accurately, considering both precision and
recall simultaneously, as detailed in Equation (5). A high mF1 ensures that the model
maintains a good balance between precision and recall across all categories, indicating
robust performance in detecting and classifying lesions.

Each of these metrics plays a critical role in evaluating the segmentation and classifi-
cation of breast lesions in ultrasound images. They collectively provide a comprehensive
assessment of model performance, aiding in the refinement and validation of our method-

ology.

) (5)




Sensors 2024, 24, 6890

9of 16

3.6. Software Environment

For the development and training of our MaskFormer model focused on breast lesion
segmentation and classification, we utilized Python 3.12.4 as the primary programming
language. The core framework employed was MaskFormer, chosen for its advanced
transformer-based architecture tailored to semantic segmentation tasks. The supporting
libraries included the following: Detectron2 0.6, an open-source object detection library
developed by Facebook Al Research, used for various computer vision tasks; NumPy 1.26.3,
for efficient numerical computations; OpenCV-Python 4.10.0.84, for image processing tasks;
and scikit-learn 1.5.1, for evaluating model metrics.

Our virtual environment was run on a Windows 11 operating system, which was
optimized for compatibility with our hardware configuration. Despite the hardware setup
being less robust, it successfully facilitated the training and execution of MaskFormer. The
hardware included an Intel Core i7-10700K CPU with 8 cores and a maximum clock speed
of 3.80 GHz, 8 GB of Samsung DDR4 RAM, an NVIDIA GeForce GTX 1060 3 GB GPU, and
storage with 55.61 GB free on the C: drive and 976.36 GB free on the D: drive, totaling a
2 TB NVMe SSD. This setup, while not the most advanced, enabled us to effectively run
and train MaskFormer, demonstrating its capability to deliver high performance even with
limited resources, albeit with longer training times.

4. Results and Discussions

In the initial stages of our research, we explored the U-Net architecture for breast
lesion segmentation in ultrasound images, evaluating its performance using the binary
cross-entropy loss and accuracy metrics. We observed that the loss reduction was primarily
limited to the first epoch, with subsequent epochs showing minimal improvement, indi-
cating that U-Net struggled to effectively segment the lesions. To enhance performance,
we integrated an additional convolutional neural network (CNN) for classification tasks,
aiming to classify the segmented regions into normal, benign, and malignant categories.
Despite this combined approach, the model did not achieve the desired improvement, as
the loss plateaued over multiple epochs. Realizing these limitations, we transitioned to
using the MaskFormer architecture, which leverages transformers known for capturing
long-range dependencies and contextual relationships. MaskFormer supports both seg-
mentation and classification within a unified framework, and upon training and testing, it
exhibited a more consistent and substantial decrease in loss over epochs. This indicated
a more effective learning process and better adaptation to the data. MaskFormer demon-
strated superior performance in both segmentation accuracy and classification reliability
compared to the U-Net and CNN approaches, leading us to continue to improve our re-
search with this architecture due to its robust capabilities in handling breast lesion detection
and diagnosis.

4.1. Image Preprocessing

In the image preprocessing stage, our goal was to standardize and prepare the ul-
trasound images and their corresponding masks for effective model training. Initially,
we performed normalization, which involved scaling pixel values to a common range in
order to enhance the model’s learning efficiency. Each ultrasound image and its mask were
resized to a uniform dimension of 512 x 512 pixels in order to ensure consistency across
the dataset. The images were then converted to grayscale in order to reduce computational
complexity while preserving essential features for analysis.

For segmentation tasks, the masks were prepared with two classes: ‘no lesion” (0)
and ‘lesion’ (1). This binary classification allowed the model to differentiate between the
presence and absence of lesions in ultrasound images. For example, in Figure 2a,b, a normal
ultrasound image with no lesions corresponds to an entirely black mask, indicating no
regions of interest.
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(d) Benign ultrasound image (e) Benign mask image (f) Benign preprocessed image

(a) Normal ultrasound image

(b) Normal mask image (c) Normal preprocessed image

(g) Malignant ultrasound image (h) Malignant mask image (i) Malignant preprocessed image

Figure 2. Preprocessing of ultrasound and mask images to produce processed images of 512 x 512 size
with labels after normalization: (a-c) normal ultrasound image, mask image, and preprocessed image;
(d—f) benign ultrasound image, mask image, and preprocessed image; (g-i) malignant ultrasound
image, mask image, and preprocessed image.

When handling images with multiple lesions, like those shown in Figure 2d,e, we
combined multiple mask images into a single mask to indicate all present lesions for the
final preprocessed mask 2f. This combination was achieved through operations such as
XOR, ensuring that each pixel in the combined mask correctly represented the presence of
lesions.

To ensure that our dataset was suitable for training, testing, and validation, we split
the data into a ratio of 8:1:1, resulting in 79 images each for testing and validation. This split
ensured that our models were trained on diverse and representative samples, allowing for
a robust evaluation of their performance. Overall, this preprocessing approach provided a
solid foundation for our subsequent experiments with MaskFormer.

4.2. Image Segmentation Results

For our image segmentation using the MaskFormer model, we iterated over various
hyperparameters to identify the optimal configuration for our segmentation tasks. We
continued using the ADAM solver throughout our training, as it had previously proven
to be the most effective. Initially, we set the learning rate to 0.001, as indicated in Table 3,
which provided a strong baseline performance. However, to potentially refine the model’s
adjustments and improve accuracy, we experimented with reducing the learning rate. We
decreased it to 0.00025, hypothesizing that a lower learning rate might allow for more
precise updates to the model parameters. Despite this, this change resulted in decreased
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performance, as reflected by a drop in mean average recall (mAR) from 0.807 to 0.621.
Table 3 presents these quantitative results from our experiments, showcasing how each
configuration impacted the model’s performance across various metrics, such as mAP,
mAR, mASpecificity, mASensitivity, and mF1 Score.

Table 3. Segmentation results.

Learning Images . P -
Model Rate per Batch Solver  Iterations mAP  mAR mASpecificity mASensitivity —mF1
5 . 0.001 2 ADAM 39,000 1.000  0.807 1.000 0.807 0.893
I\j[gnfé‘ta“on' 0.00025 2 ADAM 39,000 1.000  0.621 1.000 0.621 0.766
askrormer 0.0001 4 ADAM 160,000 1.000  0.838 1.000 0.838 0.912

Realizing that our GPU could handle a larger batch size, we increased the number of
images per batch from two to four. Concurrently, we further reduced the learning rate to
0.0001 and increased the number of iterations to 160,000, assuming these changes might
help the model better capture the complexity of the segmentation task. This combination
yielded the best results, achieving an mAR of 0.838 and an mF1 of 0.912, which indicate a
balanced performance.

Figure 3 demonstrates the qualitative results of our strongest segmentation model,
effectively segmenting lesions across various cases, including normal, benign, and malig-
nant instances. For the normal case, as shown in Figure 3a, the preprocessed image initially
appears to depict potential lesions to the visual eye. However, the AI model correctly
segmented it as lesion-free, as indicated in Figure 3b. This shows the model’s accuracy in
distinguishing true lesions from normal tissue.

(a) Normal preprocessed

(b) Normal segmented

(e) Benign preprocessed-2 (g) Malignant preprocessed-1

(d) Benign segmented-1 (f) Benign segmented-2 (h) Malignant segmented-1 (j) Malignant segmented-2

Figure 3. MaskFormer-based segmentation output images for (b) normal case, (d) benign case with
two lesions, (f) benign case with very small lesion, (h) malignant case, and (j) very unclear malignant

case.

In the benign case with multiple lesions, depicted in Figure 3c, the ultrasound image
reveals two distinct lesions. The Al model accurately segmented these lesions into two
separate regions, as seen in Figure 3d. This illustrates the model’s capability to handle
cases with multiple lesions effectively. When analyzing a benign case with a small lesion,
represented in Figure 3e, the lesion is visually difficult to detect due to its size. Nevertheless,
the model precisely identified and segmented this small lesion, as shown in Figure 3f,
showcasing the model’s sensitivity to detect even minute abnormalities.

Figure 3g presents a malignant case with low contrast conditions. Despite the low
contrast, which complicates visual detection, the Al model successfully identified the
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malignant lesion, as shown in Figure 3h, demonstrating its robustness and reliability under
less-than-ideal imaging conditions. Another visually ambiguous malignant case is depicted
in Figure 3i, where the ultrasound image presents challenges due to low contrast and image
clarity. The Al model accurately segmented the lesion in this instance, as shown in Figure 3j,
further demonstrating its robustness.

Overall, through iterative experimentation and the fine-tuning of hyperparameters,
these results collectively illustrate MaskFormer’s exceptional ability to accurately segment
images and identify lesions, even in challenging conditions, highlighting its potential as a
valuable tool in practical medical diagnostics.

4.3. Image Classification Results

We continued using the ADAM solver for the classification of breast lesions, leveraging
the capabilities of MaskFormer to simultaneously classify and segment lesions pixel by
pixel. During training, we iteratively adjusted the hyperparameters to optimize the model’s
performance. Initially, we started with a learning rate of 0.001, consistent with the first
learning rate used for segmentation, and we set the number of iterations to 160,000, as
shown in Table 4. This configuration provided a solid baseline, yielding reasonable results
with a mAP of 0.870 and mASpecificity of 0.913, indicating a smaller number of false
positives.

Table 4. Segmentation and classification results.

Learning Images . e -

Model Rate per Batch Solver  Iterations mAP mAR mASpecificity mASensitivity —mF1
Segmentation: 0.001 2 ADAM 160,000 0.870  0.833 0.913 0.833 0.847
MaskFormer 0.0015 2 ADAM 480,000 0.903  0.833 0.917 0.833 0.860
Classification: 0.0002 4 ADAM 160,000 0910  0.847 0.927 0.847 0.870
MaskFormer 0.0001 4 ADAM 320,000 0.943  0.863 0.937 0.863 0.893

However, to enhance performance, we increased the learning rate to 0.0015 while
maintaining the batch size. This adjustment aimed to facilitate faster convergence under
the assumption that a higher learning rate might help the model perform more significant
updates during training. This approach resulted in improved metrics, as reflected in a
higher mAP of 0.903, mASpecificity of 0.917, and an mF1 of 0.860, shown in Table 4.

Next, we experimented with a lower learning rate of 0.0002 and increased the images
per batch to four, which improved the result slightly. But once we reduced the learning
rate to 0.0001 and doubled the number of iterations to 320,000, we observed a significant
improvement in the results. This configuration yielded the best results, achieving the
highest mAP of 0.943, mASpecificity of 0.937, and an mF1 of 0.893, indicating well-balanced
model performance across all categories as summarized in Table 4.

Figure 4 demonstrates the qualitative results of our top-performing classification
model. The figures illustrate the model’s ability to accurately differentiate between mus-
cle tissue and lesions and correctly classify various types of lesions under challenging
conditions. In Figure 4a, the ultrasound image shows what might visually appear to be
multiple lesions. However, the model correctly identified this as normal muscle tissue,
as demonstrated in Figure 4b (label 0), indicating the normal case (no lesion). This result
showcases the model’s ability to distinguish between normal muscle tissue and breast
lesions.

Figure 4c presents an ultrasound image with a benign case involving multiple le-
sions. The model accurately segmented and classified these lesions as benign, as shown in
Figure 4d, again demonstrating the model’s effectiveness in handling cases involving mul-
tiple lesions. In Figure 4e, the ultrasound image might look like a normal case with no
lesion due to an unclear anatomical image. Despite this, our model successfully detected
the very large benign lesion and accurately classified it as benign, as shown in Figure 4f.
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(a) Normal preprocessed

(b) Normal class

(c) Benign preprocessed-1

This result is particularly noteworthy because, while large lesions might often be mistaken
for malignant, our model correctly identified them as benign.

(g) Malignant preprocessed-1 (i) Malignant preprocessed-2

(d) Benign class (f) Benign class (h) Malignant class (j) Malignant class

Figure 4. MaskFormer-based classification model output images for (b) normal case, (d) benign
case with two lesions, (f) benign case with very large and unclear lesion, (h) malignant case, and
(j) unclear malignant case.

It is also worth noting that Figure 4i presents a lesion in an ultrasound image with
shadowing. Despite the challenging visual conditions, the Al model accurately segmented
the image and classified the lesion as malignant.

As shown in Figure 5, the area under the curve (AUC) values for the best segmentation
and classification model using MaskFormer are 0.783 for benign cases, 0.863 for malignant
cases, and 0.781 for the overall model. The AUC value for malignant cases indicates
a high ability of the model to correctly distinguish malignant lesions from benign and
normal breast lesions, which is crucial to notice in the early stages. The benign and overall
model AUC also reflect strong performance, demonstrating the model’s ability to classify
breast lesions accurately. These high AUC values across categories indicate that the model
effectively balances sensitivity and specificity, minimizing both false positives and false
negatives. Overall, these examples illustrate how our model performed exceptionally
well, even under challenging conditions. The ability to accurately identify and classify
lesions can greatly assist in medical diagnoses, providing valuable support to healthcare
professionals in their decision-making processes.

1.00 -
0.90 | P ﬁ : : 75
0.80 |
0.70 -
2060 -
=
- 050 1 AUC for Benign :0.783
2 040 AUC for Malignant:0.863
5 AUCfor Overall :0.781
W 0.30 |
020 | == verall
Benign
0.10 1 =—Malignant
000 +——+7+ T T T T T T T T T T T T T
0.00 0.90 0.94 0.92 0.92 0.93 0.93

Specificity

Figure 5. AUC for benign (yellow), malignant (green), and overall (blue) breast lesion detection
(segmentation and classification) using MaskFormer model.
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5. Discussion

In our study, we evaluated the performance of the MaskFormer model for the detec-
tion and classification of breast lesions, comparing it with previous Al models used for
segmentation and classification tasks. The results demonstrate that MaskFormer is superior
in several key metrics, as shown in Table 5, establishing it as the most effective model for
this critical diagnostic application.

Table 5. Result comparisons.

Benign Benign Malignant  Malignant
Method Precision Recall Precision Recall mAP
MaskFormer (proposed) 0.880 0.980 0.950 0.900 0.943
Anchor-free Network [24] 0.816 0.932 0.789 0.889 0.802
YOLO V3-anchor [25] 0.898 0.954 0.639 0.833 0.769
YOLO V3-res [25] 0.851 0.886 0.637 0.889 0.745

MaskFormer achieved a benign precision of 0.880, which, while slightly lower than the
0.898 achieved using the YOLO V3-anchor model [25], still indicates strong performance.
The lower benign precision suggests that MaskFormer identified more benign cases that
were actually normal or malignant, likely due to its high sensitivity in detecting potential
lesions and erring on the side of caution. Importantly, MaskFormer achieved the highest
benign recall of 0.980 compared to the anchor-free network, YOLO V3-anchor, and YOLO
V3-res [24,25]. This high recall is crucial in medical diagnostics, as it ensures that benign
lesions are rarely missed, providing confidence that almost all benign cases are correctly
identified and reducing the risk of undetected benign lesions.

In terms of malignant lesion detection, MaskFormer excelled with a malignant preci-
sion of 0.950. This high precision indicates that the model is highly accurate in identifying
malignant lesions, minimizing the occurrence of false positives, when benign or normal
cases are mistakenly classified as malignant. Additionally, MaskFormer’s malignant recall
stood at 0.900, showcasing its reliability to correctly identify actual malignant cases. This
high recall is vital for ensuring that most malignant cases are detected early, which is
essential for effective treatment and better patient outcomes.

The mean average precision (nAP) of MaskFormer was 0.943, the highest among all
models compared. This high mAP demonstrates MaskFormer’s balanced performance
across both benign and malignant lesion detection, effectively combining high precision
and recall. Such a balanced and high overall performance is indicative of MaskFormer’s
reliability in breast lesion detection and classification compared to other models [24,25].

Additionally, when comparing the performance of MaskFormer with models that
used different datasets, it becomes evident that MaskFormer excels in both malignant
precision and recall. For example, the SSD300+ZFNet model [22] achieved an accuracy
rate (AR) for malignant detection with an average precision rate (APR) of 97.56% but a
recall of only 58.96%. The lower recall rate shows that many of the lesions that are actu-
ally malignant were missed, which could be detrimental to early detection. In contrast,
MaskFormer’s higher recall ensures that malignant lesions do not go undetected. Further-
more, YOLOV3 [23] achieved a recall of 0.835 and a precision of 0.759, which fall short of
MaskFormer’s balanced performance, with a malignant precision of 0.950 and a recall of
0.900.

The results unequivocally demonstrate that MaskFormer outperforms the other mod-
els in key performance metrics. If we had removed the four outlier images from our normal
dataset, we could have achieved a 100% detection rate in normal cases using our best
models within MaskFormer. With the highest benign recall and malignant precision, along
with the highest overall mAP, MaskFormer stands out as the most reliable and effective
model for breast lesion detection and classification in our study. These findings solidify
MaskFormer’s position as the best model for this critical diagnostic task, offering balanced
and highly accurate performance that is essential for clinical applications.
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6. Conclusions

Our study underscores the significant advancements in breast lesion detection and
classification achieved with the MaskFormer model for ultrasound images. Supporting
physicians, especially new practitioners, MaskFormer can identify lesions of varying shapes
and sizes, including multiple lesions that are easily missed by the human eye. Unlike hu-
mans, who cannot examine images at the pixel level, Al models excel in this detailed
analysis. Initial approaches were limiting, as evidenced by early plateauing in loss and sub-
optimal learning. In contrast, MaskFormer exhibited continuous improvement, delivering
precise segmentation and reducing both false positives and false negatives, as evidenced
by its superior recall for benign (0.980) and malignant (0.900) cases, along with enhanced
mAP (0.943) values. Breast lesion detection using ultrasound heavily depends on operator
skill. MaskFormer addresses this issue associated with ultrasound imaging by providing
consistent, operator-independent automatic analysis. Overall, the clinical implications are
substantial, as accurate early detection and classification facilitated via MaskFormer in
ultrasound imaging can lead to timely and appropriate treatment, enhancing the efficacy of
breast cancer screening programs.
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