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Abstract: There have recently been rapid developments in smart healthcare systems, such as precision
diagnosis, smart diet management, and drug discovery. These systems require the integration of the
Internet of Things (IoT) for data acquisition, Digital Twins (DT) for data representation into a digital
replica and Artificial Intelligence (AI) for decision-making. DT is a digital copy or replica of physical
entities (e.g., patients), one of the emerging technologies that enable the advancement of smart
healthcare systems. AI and Machine Learning (ML) offer great benefits to DT-based smart healthcare
systems. They also pose certain risks, including security risks, and bring up issues of fairness,
trustworthiness, explainability, and interpretability. One of the challenges that still make the full
adaptation of AI/ML in healthcare questionable is the explainability of AI (XAI) and interpretability
of ML (IML). Although the study of the explainability and interpretability of AI/ML is now a trend,
there is a lack of research on the security of XAI-enabled DT for smart healthcare systems. Existing
studies limit their focus to either the security of XAI or DT. This paper provides a brief overview of
the research on the security of XAI-enabled DT for smart healthcare systems. It also explores potential
adversarial attacks against XAI-enabled DT for smart healthcare systems. Additionally, it proposes a
framework for designing XAI-enabled DT for smart healthcare systems that are secure and trusted.

Keywords: digital twin; cybersecurity; artificial Intelligence; XAI; adversarial machine learning

1. Introduction

Smart healthcare systems are the result of the fourth industrial revolution (I4.0) that
shifted the world’s attention to automation and digitization [1]. Automation and data
exchange are the essential goals of I4.0. They enable the development of smart factories,
such as smart healthcare, via the integration of IoT, big data, AI, Cloud computing, and
Digital Twins (DT). In order to design a smart healthcare system (i.e., Healthcare 4.0), self-
sustaining wireless and proactive online learning systems are important [2]. An important
characteristic of the first category (i.e., self-sustaining wireless) is automation and of the
second category is an active data exchange and analysis. DT can play a crucial role as
an enabler of the design of smart healthcare systems. Smart health can be defined as an
intelligent and context-aware evolution of remote healthcare services that uses advanced
technologies, such as monitoring wearable devices, mobile devices, sensors, and actuators
to data, for remote support [3]. DTs can be considered to be the building blocks of the
metaverse, a virtual world in which DTs interact as physical entities do in the real world [4].

DT, which are replicas of physical entities (e.g., healthcare), can be used for monitoring
and testing, to suggest changes and improvements, and to support decision-making. Also,
the ability to reflect, mimic and predict the status of physical systems in real time makes DT
a promising technology for smart healthcare systems [5]. DT consists of three components:
the real (physical) space, the virtual space and a communication medium between the
two spaces [6]. Professional health carers can use DT to simulate physical objects and run
experiments on the virtual copies before performing actual actions [7]. In the creation of a
replica of a physical healthcare entity, the Internet of Things (IoT) can play an important role
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in data acquisition and the exchange of tasks. IoT enables smart machines to communicate
with one another and helps build a DT of a person’s health information via wearable
devices [8]. The smart healthcare system uses the Internet of Medical Things (IoMT) devices
to actively monitor medical traffic. Healthcare traffic is received by an artificial intelligence
(AI) enabled framework for disease prediction and remote health monitoring [9]. AI/ML
algorithms can be combined with DT for data processing to make health predictions, detect
early warning signs, suggest optimal treatment and personalize medicine [10]. For ML to
model human DT, continuous interaction between the physical and digital spaces to obtain
updated data is important [2]. In the end, AI and IoT can help DT to perform the following
tasks: prediction, optimization, detection, and dynamic decision-making [1].

1.1. Motivations

Although as a key enabling technology for smart healthcare AI/ML has many benefits,
these are offset by shortcomings such as issues with security, privacy, unfairness, and
trustworthiness. The privacy of the patients’ data makes the adaptation of AI/ML for
healthcare challenging. The management of smart healthcare systems relies on centralized
AI/ML models that are located in the data center or cloud. This centralized architecture
could lead to scalability issues [9]. It can also make AI/ML a valuable target of a security
attack. Additionally, ML algorithms trained on selected biased datasets (e.g., patients
with certain socioeconomic backgrounds) may fail to produce accurate results [11]. The
consequences of a wrong prediction in diagnostics may cause life-changing decisions for a
patient [3].

Explainability of AI (XAI) and Interpretability of ML (IML) are among the major
obstacles to a full deployment of AI-enabled DT for smart healthcare systems. There is a
recent trend in the use of complex ML-based models, such as deep learning models and
fully-connected neural networks. Although these complex models have been proven to
achieve better performances, they are often perceived as black-box models. The opposite
of black-box models is white-box models which are also known as human-interpretable
models. Although there is no formal consensus on the definition for explainability and
interpretability of AI/ML, they can be defined as “methods and models that make the
behaviors and predictions of machine learning systems understandable to humans” [12].
Interpretability and explainability are growing fields in AI/ML and this increased interest
has resulted in a number of studies on different aspects of interpretable/explainable
ML, from medical diagnoses to decision-making in the justice and education systems.
Although the two terms interpretability and explainability are often used interchangeably
in the literature, the two terms have different meanings. Interpretability enables humans
to predict what is going to happen, whereas explainability enables humans to explain
what is happening [13]. The ability to interpret an ML model enables decision makers
(e.g., experts or non-experts) to debug, update, and ultimately trust it [14]. Additionally, ML
interpretability can be either global or local. While global interpretation methods are useful
for understanding the general mechanisms or debugging a model, local interpretation
methods explain individual predictions [12,15].

In the context of the cybersecurity domain, there is a lack of studies that discuss the
explainability and interpretability of AI/ML-enabled DT for smart healthcare systems.
Existing studies focus on XAI for healthcare from the health carers’ perspective. However,
several recent studies have shown that the explainability and interpretability of AI/ML
can be defined on the basis of what to explain (e.g., data, features, or decisions), how to
explain it when to explain it (e.g., design stage) and who to explain it to (users, health
carers, or designers) [16]. Similarly, ref. [3] state that the 6W questions, Why, Who,
What, Where, When, and How, need to be evaluated to design an explainable security
system. The explainability and interpretability of AI/ML are very important to healthcare
practitioners as they add a high level of accountability and trust and can help cybersecurity
administrators debug systems. However, adversaries also can use XAI explanations to
understand how the black box model works.
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1.2. Contributions

Based on these considerations, this paper reviews the security of XAI-enabled DT for
smart healthcare to answer the following research questions:

• RQ1 Do existing studies in the field of XAI-enabled DT for healthcare systems consider
the robustness of the adopted XAI algorithms?

• RQ2 What does the XAI/IML of DT-based smart healthcare systems mean from the
perspective of cybersecurity experts?

• RQ3 How can we improve the robustness of XAI-enabled DT for smart healthcare
frameworks?

• RQ4 What are the potential adversarial attacks against XAI-based healthcare systems?

As in [17], the differences between this paper and related papers in the literature are
highlighted in Table 1. It shows the coverage extent of the XAI’s security, DT’s security,
Healthcare systems, and security. For example, the term “partial” refers to the level of
coverage for the selected topics. To the best of the author’s knowledge, this paper is the first
of its kind that attempts to explore the security of the XAI part of XAI-enabled DT for smart
healthcare systems. It discussed the importance of the explainability of XAI-enabled DT
healthcare systems from a cybersecurity perspective. An in-depth examination regarding
the security of XAI of healthcare systems that use DT is provided. To summarize, The main
contributions of the research are as follows:

1. It defines the explainability and interpretability of AI/ML-enabled DT for smart
healthcare systems from a cybersecurity perspective.

2. It provides a survey of important and relevant research that discusses the security of
XAI-enabled DT healthcare systems.

3. It proposes a framework of XAI/IML-enabled DT for healthcare systems.
4. It presents a simulation of potential adversarial attacks against the XAI part of a DT

healthcare system.

Table 1. Comparison between this paper and related studies in the recent literature.

Title XAI’ Security DT’ Security Healthcare Systems Security

[18] NO YES YES YES

[19] NO PARTIAL YES PARTIAL

[5] NO NO YES PARTIAL

[20] PARTIAL NO YES PARTIAL

[3] YES NO YES YES

[21] NO NO YES PARTIAL

[22] NO YES YES PARTIAL

[23] NO NO NO PARTIAL

[4] NO NO YES NO

[24] NO NO YES NO

[17] NO NO YES PARTIAL

[25] NO NO YES PARTIAL

[26] NO NO YES PARTIAL

[27] YES NO YES YES

[28] NO NO YES PARTIAL

This paper YES YES YES YES

The rest of the paper is organized as follows: Section 2 discusses related work in
the field of XAI, DT and smart healthcare. A systematic literature review was presented
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in Section 3. Section 4 defines the explainability of AI-enabled DT for smart healthcare
systems from a cybersecurity perspective. Section 5 proposes a DT framework architecture.
Section 6 presents the results and analysis of a potential adversarial attack against an XAI
model. Section 7 presents the limitations of the study and discusses the results of the
experiments. Section 8 concludes the paper and discusses future work.

2. Related Work

Researchers have experimented with the creation of virtual and simulated systems
(i.e., mirrored systems) of physical systems. However, the systems that were created lacked
a continuous connection and real-time data exchange, which are essential elements in
the “twinning” of digital to physical systems [29]. The twinning is a result of seamless
interaction, communication, and synchronization between the DT, the physical twin and
the surrounding environments. Authors in [22] state that mirror systems can be classified
into three types: (1) a Digital Model (DM) which is an isolated system that does not have a
connection to the real world; (2) a Digital Shadow (DS), which is an automatic one-way
communication between physical and virtual spaces and (3) a DT which is an automatic
two-way communication between the two spaces. A combination of technologies, such as
big data, AI, cloud computing, and IoT allow the communication and interaction between
a physical entity and its DT twin [29]. The DT concept was introduced by Michael Grieves
in 2002 [30,31]. Since then, there has been an increased interest in the potential of using
DT in healthcare systems. Although most studies focus on the application of DT in the
context of industry [32], there is increased interest in studying the potential of DT in
healthcare applications.

The Internet of Things (IoT) is an important technology for smart healthcare systems.
It provides long coverage communication between different entities that can be used for
data collection. Medical Internet of Things (MIoT) is a variant of IoT that has been deployed
with DT in healthcare systems. Firouzi et al. [10] discuss how Wearable IoT (WIoT) has
improved healthcare systems during the COVID-19 pandemic. WIoT devices enable the
remote tracking of patients and the monitoring of their health for an early diagnosis.
However, security and privacy issues brought up by the use of IoT are obstacles that need
to be addressed. Yang et al. [33] carried out a survey on security research, threats, and
open issues on MioT. Taimoor et al. [34] also discuss the challenges of the fourth-generation
healthcare systems in terms of security and privacy. The authors state that although
IoT and AI can improve healthcare systems, issues remain regarding their security and
privacy limitations.

Another key technology that can empower DT in healthcare systems is AI/ML. The
majority of AI-enabled DTs in healthcare involve human digital twins. To date, research
has focused on digitally twinning some aspects of human biology [35]. It has not yet been
possible to create fully functional replicas of humans. The large amount of data collected by
IoT sensors needs to be analyzed in order for DT to generate a digital twin. Thus, AI/ML
is considered to be the brain of DT [6]. Learning, self-correction, and reasoning are three
human skills that AI tries to replicate digitally. It learns from collected data by drawing
domain-specific conclusions from numerical data faster than humans can. The ability to
select the best option to achieve the desired goal is an example of the digital reasoning
ability of AI. Also, the third skill of AI is self-correction, which is a process of learning and
repeatedly making decisions [1]. AI/ML algorithms or technologies enable DT to perform
the following tasks:

• Prediction: Predicting diseases.
• Detection: Detecting early signs.
• Optimization: Monitoring disease progress.

One of the promising ML algorithms that has frequently been discussed in the health-
care field is Federated Learning (FL). Federated learning introduces a new distributed
interactive AI concept for smart healthcare as it allows a number of hospitals to participate
in AI training while maintaining data privacy or locally train their own model while shar-
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ing parameters with other hospitals. One of the biggest concerns of FL is that it includes
data transfer mobile application usage and allows remote access to healthcare information.
Also, it is vulnerable to communication cyber security attacks, such as jamming and Denial
of Service a(DDoS) [25,26]. Consequently, FL improves the privacy of healthcare, but it
increases the attack services. Also, the black-box nature of FL is one of the challenges that
hinder adaptation in the healthcare system. Designing explainable FL could be a future
research direction.

Among the biggest challenges for the full deployment of AI/ML are the explainability
and interpretability of AI/ML. Helping human decision-making is one of the ultimate goals
of using AI/ML. To enable this, AI/ML needs to be able to produce a detailed rationale for
its decisions that can facilitate interaction with humans. This is known as AI explainability.
Kobayashi et al. [5] state that XAI is important for accurate predictions. The authors discuss
the importance of complex ML for DT-enabled systems in prediction and system update.
They define explainability as allowing users to understand the most important factors in
the model’s prediction and interpretability as ensuring that the model predictions can be
understood by non-technical users. Authors in [36] studied the importance of XAI and
IML for AI applications designed for healthcare and medical diagnosis. They conclude
that using existing libraries for the model’s interpretability with XAI frameworks and other
clinical factors helps humans understand “black box” AI.

The security and privacy of AI/ML are among the challenges that make health carers
hesitant about fully adopting AI/ML-enabled systems. The robustness of ML-based models
against adversarial attacks has recently become subject to increased interest in the research
community [37]. Although ML-based models have been widely used to automate different
types of systems, these models are vulnerable to well-crafted, small perturbations. The vul-
nerability of ML has been examined by a large number of studies, where authors develop
frameworks for evaluating algorithms [38,39], launching attacks against ML models, and
designing countermeasures [40]. Also, authors in [38,39,41] propose frameworks for evalu-
ating the security of ML and envisioning different attack scenarios against ML algorithms.
The framework suggests the following steps: (1) identify potential attacks against ML
models by using the popular taxonomy; (2) simulate these attacks to evaluate the resilience
of ML models and assume that the adversary’s attacks are implemented according to their
goals, knowledge, and capabilities/resources and (3) investigate some possible defense
strategies against these attacks. Defending against adversarial attacks is challenging be-
cause these attacks are non-intrusive in nature. Thus, designing proactive models rather
than traditional reactive models is a necessity for AI/ML-enabled healthcare systems. This
has motivated researchers to formulate different attack scenarios against machine learning
algorithms and classification models and propose some countermeasures [42].

Designing XAI-enabled systems is challenging because interpretability and accuracy
are two competing concepts. Senevirathna et al. [3] add that explainability is regarded as a
third property constraining performance and security. Simplification and generalization
are the main concerns of interpretability, as accuracy favors nuance and exception [14].
There are two approaches that are widely used for interpretations of ML models: regression
analysis and rule-based ML [12]. These models provide descriptions of a class as well
as predicitions [43]. On the one hand, linear regression models can be interpreted by
analyzing the model structure or a weighted sum of features. For example, the weights
can be interpreted as the effects that the features have on the prediction. On the other
hand, rule-based ML models, such as decision trees [44] or decision sets [43], interpret
a learned structure (e.g., IF-THEN) to understand how the model makes predictions.
Some recent studies have attempted to make complex models interpretable; for example,
refs. [36,45] have visualized the features of CNN and [46] the important features of a
random forest. However, in high-dimensional scenarios, linear regression, decision trees,
or complex models may become not interpretable [12]. Additionally, a decision-set type of
rule-based ML has some shortcomings. Understanding all of the possible conditions that
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must be satisfied is difficult and limits interpretability. This is especially so in multi-class
classification [14] or complex AI/ML-enabled healthcare systems [15].

Although, increasingly, there are methods being developed that explain how algo-
rithms work and reach their final decision (Designing AI Using a Human-Centered), there
is a lack of studies that focus on designing methods for the security of AI explainability.
To design an explainable AI-based system, the researcher needs to answer the following
questions: What to explain? Who to explain to? How to explain? and Why to explain?
The answer to these questions regarding XAI for cybersecurity will be different according
to the target audience [16]. Some studies suggest overcoming the XAI shortcomings by
removing humans from the loop, which is dangerous in the healthcare domain. Others
propose using less complex AI models, which may lead to systems that do not provide the
desirable results. Thus, the degree of explainability is another important question to ask.
Taimoor et al. [34] state that XAI research includes feature engineering, developing and
testing algorithms, risk and opportunities, ethical considerations, and trust. We believe
that robustness to adversarial examples needs to be included. Authors in [47] state that
IoT and AI are not secure solutions. The number of publications that survey DT in terms
of definitions, characteristics, development, and application has increased, but there is
a lack of studies that focus on the security of DT-based healthcare systems. Designing a
simplified approximation model to make complex models interpretable to cybersecurity
administrators/experts is one of the goals of this paper. The level of AI explainability/ML
interpretability to users should be evaluated as it may make the system vulnerable to
adversarial attacks. Thus, this paper focuses on exploring the security of AI explainability
as part of smart healthcare systems that use DT.

3. A Survey of Related Works

This section aims to answer the following question: (RQ1) Do existing studies in the
field of XAI-enabled DT for healthcare systems consider the robustness of the adopted
XAI algorithms? A systematic literature review has been conducted by identifying the
top research findings in the domain of the security of XAI-enabled DT smart healthcare
systems. The following subsections describe the methodology followed for extracting
articles, selection criteria and filtering processes.

3.1. Methodology

The current literature was summarized and analyzed by following the methodology
introduced in [48,49]. This SLR was conducted in three stages: (1) defining the search
keywords, (2) selecting the list of databases to be used for the search, and (3) defining the
inclusion and exclusion criteria.

3.1.1. Procedures for Defining Keywords and Data Sources

Following the procedure proposed in [50], the research questions were used to define
a list of keywords to be used for search queries. The following is the defined search query:
“(Explainable AI OR XAI) AND (Interpretable ML OR IML) AND Healthcare AND (“Digital
Twin” OR DT) AND security”. Then, related research papers were downloaded using the
selected string of keywords. Google Scholar was selected as our data source. As suggested
by [29], using Google Scholar as the main web search engine helps avoid bias towards
any specific publishers. Only English papers published between 1 January 2013 and 1
December 2023 were included.

3.1.2. Eligibility Criteria

The inclusion–exclusion criteria were applied at five levels (see Figure 1), and ineligible
studies were eliminated after each level. A list of inclusion criteria (IC) and exclusion criteria
(EC) were defined and applied as follows:

• IC 1: A well-discussed studies that report at least two out of the keywords.
• IC 2: Articles written in English language.
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• IC 3: Articles published in a peer-reviewed journal or a conference.
• IC 4: Articles published in the last ten years were included (i.e., 2013–2023)
• IC 5: Relevance to the security of XAI-enabled DT for smart healthcare systems
• EC 1: Thesis, news articles, reports, or websites were excluded.
• EC 2: Articles published in languages other than English were excluded.

Any articles published in a language other than English were excluded. Only articles
published in the last decade were included (i.e., 2013–2023). Theses, news articles, reports,
or websites were excluded.

Figure 1. Number of research papers identified and reasons for exclusion.

3.1.3. Results

We identified 572 articles from different publishers, including MEDLINE, Web of
Science, IEEE Xplore digital library, and ACM digital library. After removing 10 duplicated
articles, the titles of 562 articles were screened. Articles with titles that did not include at
least two out of the four keywords (XAI, DT, healthcare, and security) were excluded. The
abstracts of the remaining 72 studies were then screened based on the keywords. Twenty
four articles were retained for a full-text review, resulting in only four articles being deemed
relevant to include in the final full-text extraction. Figure 1 depicts the SLR’s flow chart.

Table 2 presents a comparative analysis of the existing work on the security of XAI-
enabled DT for smart healthcare systems. The analysis of 14 articles is provided in the
table. Four topics were considered for the comparisons. Topics (XAI, DT, Healthcare, and
security). In the table, four colors (High coverage, medium coverage, low coverage, or not
applicable) were used to show the extent of coverage on the four topics for each article.
Only 4 out of the 562 articles identified were found to focus on the security of XAI-enabled
DT for smart healthcare systems. Although 24 articles were identified in a full-text review,
14 articles were selected for the comparative analysis as they discussed some of the security
challenges of smart healthcare systems. The results show that only four articles were
found to partially focus on the security of the adopted XAI algorithms of DT-based smart
healthcare systems. This shows that more research in this area is needed. Following are
summaries of the four papers that were included in the final full-text extraction.
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Table 2. Summary of Literature.

Title XAI DT Healthcare Security Summary

[18] NA H H L It proposes an AI-enabled DT healthcare system. It briefly talks about secu-
rity challenges of DT in healthcare domain

[5] H H H L

It discusses the importance of XAI and IML to ensure the trustworthi-
ness of AI-enabled DT for healthcare. A detailed explanation of the dif-
ferences between XAI and IML and a brief discussion about DT’s security
were provided.

[20] H NA H L It discusses current challenges that face healthcare industry when adopting
a metaverse technology including security. Briefly talks about XAI security.

[3] H NA H H

A comprehensive survey on the potential of using XAI in the security domain
of B5G. It discusses some possible adversarial attacks against AI-enabled
smart healthcare systems and how XAI can improve the robustness of Health-
care systems.

[21] H NA M L
A comprehensive survey of AI and XAI methods that are used in the industry
4.0 including smart healthcare. Some XAI tools were discussed, but it does
not discuss the security of DT

[22] NA H H L

It discusses about the importance of improving the robustness of interactive
medium between DT and AI. An example of a causative adversarial attack
against ML was presented. It discusses about the potential of improving
DT’s security by using XAI.

[23] H NA NA H Limitations of AI in cybersecurity that necessitate the adaptation of XAI were
discussed. However, it does not focus on the security of XAI-enabled DT

[4] NA NA H NA
A comprehensive survey of AI and XAI methods that are used in the industry
4.0 including smart healthcare. Some XAI tools were discussed, but it does
not focus on the security of XAI-enabled DT

[24] H NA H NA
It addresses some challenges presented in healthcare when using XAI. For ex-
ample, accuracy versus explainability, human involvement, and explanation
assessment.

[17] M M H H Security and privacy issues of eHealth were diseased. A brief discussion
about XAI-enabled DT in eHealth were presented.

[23] NA NA M M
It briefly discusses about the benefits and challenges of using FL in
smart healthcare systems. However, it does not focus on security of
XAI-enabled DT

[26] L NA H H

Potential benefits of using FL in smart healthcare systems for security im-
provement were discussed. Specifically, it provides a scenario of using FL
to reduce the likelihood of data attribute and inference attacks. A brief
discussion about one of the issues of FL is a lack of explainability.

[27] H NA L L
Briefly discusses the vulnerabilities of XAI in B5G/6G including smart health-
care. Benefits of using FL as a solution for improving the privacy of XAI. XAI
security in Healthcare, but not DT.

[28] NA NA H H
It provides a review of general cybersecurity challenges and solutions in
healthcare industry. However, it does not focus on the security of XAI-
enabled DT.

This paper H H H H
A survey of related studies that discuss the security of XAI and DT used in
smart healthcare systems. A scenario of potential adversarial attacks against
XAI-enabled DT healthcare systems is presented.

High Coverage, Medium Coverage, Low Coverage, Not Applicable.

In [18], the authors propose a framework for the healthcare metaverse that contains
three environments: (1) the healthcare practitioners’ environment, (2) the metaverse or
virtual environment, and (3) the patient environment. The framework includes different
technologies (i.e., XAI, Blockchain, DT) to provide virtual health services. Doctors need
to enter the doctor’s environment from which they can interact with patients. Patient
treatment requests are processed in the patient environment by nurses, caregivers, and
robots. In the metaverse environment, which is the main part of the framework, avatars
of patients, medical staff, and doctors can interact with one another. The XAI is used
to provide logical reasoning for the framework’s predictions, and the blockchain was
incorporated to ensure patients’ data privacy and track users’ activities. Although the
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authors discuss data privacy and security concerns and include the blockchain to address
them, the vulnerability of XAI to adversarial examples was not considered.

In [5], the authors investigate the importance of XAI and IML in the prognostic and
health management (PHM) that uses a Digital Twin framework. The remaining useful life
(RUL) was used as the explanation parameter target. The authors employ different XAI
and IML tools/methods to study the target model. They conclude their study by observing
that the prediction accuracy of RUL is affected by the adopted explainable or interpretable
AI. The paper presents a detailed investigation of the importance of XAI and IML for a
DT-based healthcare framework but does not consider the presence of adversaries who
may abuse the explainability and interpretability of the target framework.

An investigation of using AI for improving the security of DT-based systems was
performed in [22]. The authors discuss possible cybersecurity attacks, such as MITM,
and DDoS, on DT’s network and IoT. As a potential countermeasure for such threats, the
authors state that AI can play an important role in improving the robustness of IoT and
DT platforms. For example, FL can ensure the exchange of data/information privately,
and the explainability of XAI can help with the detection of adversarial examples. On the
other hand, there are methods that use AI to attack DT, such as infiltration, poisoning, or
exploratory attacks. The paper focuses on the security of DT but does not investigate the
security of XAI when used as part of a DT-based healthcare system.

The authors of [17] investigate how XAI can improve the security and privacy of
eHealth data. Security properties to protect data were defined as follows: anonymity,
accountability, authenticity, confidentiality, integrity, non-repudiation, and revocability.
The authors discuss existing and potential approaches to data privacy, such as cloud
computing, blockchain, and encryption. Briefly, they discuss the importance of XAI tools
in improving security and privacy through global or local explainability. However, the
security of XAI when used in eHealth was not discussed.

4. XAI from Cybersecurity Perspectives

One of the research questions that this paper is trying to answer is (RQ2) what does the
XAI/IML of DT-based smart healthcare systems mean from the perspective of cybersecurity
experts? To answer this question, two points are considered: (1) whether there is any
difference between AI’s explainability and interpretability and (2) why it is important to
define whether the XAI/IML is designed for security purposes. First, the explainability
and interpretability of AI/ML are always used interchangeably, but some recent studies
show that these are not the same. Thus, the first step to understanding the XAI/IML of
DT-based smart healthcare systems from a cybersecurity perspective, explainability and
interpretability need to be defined clearly. Kobayashi et al. [5] define XAI as the ability of an
AI system to provide reasoning behind its actions (i.e., predictions and decisions), whereas
IML is the process of explaining the relationship between a model’s input and output
variables to the decision-making process. Also, Fischer et al. [13] state that interpretability
enables humans to predict what is going to happen, but explainability enables humans
to explain what is happening. This shows that it is very important for cybersecurity
administrators/analysts to distinguish between the two as interpretability (a.k.a pre-model
explainability) is crucial at the design stage and explainability is crucial after an attack and
at the debugging stage. However, it may not be important for doctors or nurses to learn
about the correlation between input and output samples to the prediction process; they
may be more interested in the reasoning behind the predictions.

The second important point to be taken into consideration when addressing this
research question is that one of the two categories of adversarial attacks against AI/ML
is an exploratory attack, where an adversary tries to learn some of the characteristics of
AI/ML. In the case of XAI/IML, adversaries may take advantage of the explainability and
interpretability of an XAI/IML. In other words, as the adversaries’ knowledge increases,
the effectiveness of the attacks also increases. This idea supports the statement discussed
in [3] about the importance of defining the XAI/IML’s involved to improve accountability.
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The authors state that by answering the 6W questions, Why, Who, What, Where, When,
and How explanations would be generated. Table 3, inspired by [3,51], shows the steps
for designing XAI. For smart healthcare systems, stakeholders can be categorized into
the following groups: creators (i.e., developers, testers, or cybersecurity experts), system
operators who manage systems on a daily basis, and end users (i.e., doctors or nurses).
The granularity of explanations should be different for these groups. For instance, system
operators need a level of explanation that is higher than the explanation needed by end
users and slightly lower than the explanation needed by the creators. Another thing that
necessitates the identification of XAI stakeholders is that XAI does not support solely the
decision making, but also the security and accountability. Thus, the purpose of adapting
XAI is different for stakeholders.

Table 3. 6W for Designing XAI

Why? Who? What? Where? When? How?

Why is an
explanation
needed?

Who needs an
explanation? What to explain?

Where the
explanations
should be made
available?

When the
explanation should
be given?

How the
explanation should
be generated?

Decision-making Creators System predictions As a prediction
remark Pre-model. NLP (textual)

Debugging System operators Possible
vulnerabilities.

As a part of
security
notification/report

Post-hoc. Visual (trees or
graphs)

Improving Security
or accountability

End users

System
specifications. Explanation-as-a-

service

In-model
GamificationImproving

performance Threat model. After attacks.

To summarize, the requirements of designing XAI/IML-enabled DT for smart health-
care systems from the cybersecurity experts’ perspective are different as the objective,
granularity, and methods used for explanation are different. Also, the expertise level re-
quired is different and thus requires distinct explanations [52]. Answering the 6W questions
is important; existing literature often discusses XAI, in general, without differentiating the
stakeholders. For example, ref. [53] state that visual-based XAI methods could be useful
for users with low AI/ML domain knowledge; whereas, some of the existing XAI tools or
libraries require a significant amount of technical knowledge.

5. A Secure DT Architecture

The results of the existing studies show that the security of XAI algorithms in DT-based
healthcare systems is overlooked. This section aims to answer (RQ3) by reviewing existing
XAI-enabled DT frameworks and adding a new security layer.

DTs create a digital replica of a physical object using IoT, AI, and communication
technology. Cybersecurity issues of DT have not yet been sufficiently explored which
is a problem because DTs are a critical part of the automation process and represent the
digital copy of the physical world. Also, because DTs consist of three spaces, the physical,
communication, and digital space, potential adversarial attacks against them vary. For
instance, adversaries can increase computational overheads to corrupt the processes of
generating replicas, manipulate required information of the representation models, or
take control of physical objects from the digital space [54]. Thus, when DTs are used in
critical systems (i.e., healthcare), considering the vulnerabilities of DTs becomes a must.
Since the XAI is the brain of DTs, the vulnerability of the XAI will be examined in the
following section.
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Proposed DTs Architecture

There are different approaches for designing DT’s architecture layer models in the
literature. Reference [22] stated that existing frameworks have some limitations. For
example, the functional details required for building a functional architecture are missing,
and some models cannot be generalized. To design a secure XAI-enabled DT framework,
the conceptualization of a DT’s layers needs to be considered. Frameworks presented
in [22,54,55] were adopted and updated. The proposed DT framework consists of five
layers that are described below:

• Layer 1—data collection and acquisition: technologies (i.e., cyber-physical systems
(CPS) and IoT (IIoT)) are used to capture the dynamics of the physical space and
prepare the control instructions for the physical assets

• Layer 2—data management and analysis: Big Data (BD) and AI/ML are needed for
data management, analysis and decision-making. Cloud, fog, and edge are the best
computing infrastructures for processing and analyzing big data. These allow Layer 3
services to be executed.

• Layer 3—data modeling and additional services: XAI tools can be used to provide
reasoning for the Layer 2 decisions and predictions. Also, tools, such as CAD/ECAD
electronic computer-aided) systems and CAM (computer-aided manufacturing) have
been used to characterize states, behaviors and shapes of a physical object. Also, it
provides additional services, such as recommendations, encryption, and cybersecu-
rity detection.

• Layer 4—model evaluation and verification: Human-in-the-loop approach is inte-
grated to evaluate the security of the designed model before the virtualization.

• Layer 5—data visualization and accessibility: Allows end users to visualize digital
models to make decisions regarding physical objects.

Figure 2 depicts the five layers of the Digital Twin framework. The figure is adapted
from [22,35,54,55] and updated. Physical space data are collected by Layer 1 via wearable
devices, cameras, and medical records. Collected data are managed and processed in Layer
2 using AI/ML algorithms to prepare data for Layer 3. An ensemble of ML algorithms with
a voting classifier can be used for capturing different features, improving accuracy, and
detecting errors. In Layer 3, XAI has been added as an additional service along with data
modeling technologies, such as ECAD, and CAM. The explanation of the created model is
important for healthcare practitioners and cybersecurity experts for the reasons that have
been discussed above. Reference [5] states that understanding the explainability of the
AI/ML algorithms used in the DTs framework from the decision-making aspect is crucial.
Also, XAI is important for updating DT frameworks, which is a key component that is not
considered in ordinary simulations. Thus, an ensemble of XAI tools can be employed in
Layer 3 to provide different levels of explanations (i.e., global and local), which can be used
to generate warnings if there is a disagreement. Layer 3 not only models the collected data,
but it provides the reasoning behind its decisions using the XAI tools and warnings based
on the generated explanations. A new layer was added between Layer 3 which produces a
model of the physical space and the virtualization in Layer 5. Evaluating the generated
warnings or recommendations from Layer 3 requires a certain amount of human work,
although this may be costly and time-consuming [56]. Also, ref. [57] states that for some
practical tasks (e.g., medical diagnosis) humans need to verify labeled data. Hence, the
integration of the human-in-the-loop (HITL) approach in the DT’s architecture is crucial.
To the best of the author’s knowledge, this is the first study that integrates XAI and HITL
into the DTs architecture and proposes a security layer for verification.

Figure 2 shows that the data flows in both directions (upward and downward) of
the five layers to enable the deployed XAI to update both the physical and digital spaces.
The connectivity between the physical and digital spaces of DTs is a major concern; if
they were absent, the DTs would be useless [58]. Thus, B5G or 6G can be used to facilitate
the communication between the DTs’ components, and cloud, fog, and edge are used for
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computation. The integration of these advanced technologies and computation systems
presents serious security concerns at all layers. Reference [54] adds that any security
analysis of DTs needs to consider the functionality layers in terms of availability, integrity
and confidentiality. The authors categorize attack surfaces into digital and physical. The
first includes software and components that provide resources for computation; whereas,
the physical attack surface comprises all security threats associated with CPS/IIoT nodes,
communication infrastructures and facilities. Since the attack surface is very wide, potential
adversarial attacks against the XAI part of the DTs were simulated as described in the
following section.

Figure 2. Proposed DTs framework and layer.

6. Adversarial Attacks Against XAI

The aim of this section is to answer (RQ4) What are the potential adversarial attacks
against XAI-enabled DT for healthcare systems? Despite the fact that XAI can play an
important role in improving the trustworthiness, transparency, and security of DT-based
healthcare systems, their explainability can also be used to compromise the system. It
is important to consider vulnerability to cyber attacks for both the AI models deployed
and the explainability part [59]. Employing XAI increases the attack surface against smart
healthcare. Falsifying the explainability can be a target for an attacker [3]. Adversaries
can modify explanations (i.e., post-hoc) without affecting the model’s prediction which
may cause a stakeholder to make the wrong decision [3]. Thus, designing proactive XAI-
enabled DT for healthcare systems rather than traditional reactive systems is a necessity
in an adversarial environment, where the arms race between system designers and ad-
versaries is never-ending. Since reacting to detected attacks will never prevent future
attacks, proactively anticipating adversaries’ activities enables the development of suitable
defense methods before an attack occurs [39]. This has motivated us to formulate an attack
scenario against the XAI part of DT-based healthcare systems using existing proposed
frameworks [15,38,39,60].

A taxonomy proposed in [38,39,61] was adapted and updated to simulate a potential
attack scenario against XAI algorithms considering the four following axes:
The attack INFLUENCE

• Causative:
The attack influences the training data to cause wrong predictions (i.e., poisoning
attacks).
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• Exploratory: The attack exploits knowledge about the deployed classifier to cause
wrong predictions without influencing training data (i.e., evasion and privacy attacks.).

The type of SECURITY VIOLATION

• Integrity violation: An adversary accessing algorithm’s explanation without compro-
mising normal system operations.

• Availability violation: An adversary compromises the normal system functionalities
available to legitimate users.

• Privacy violation: An adversary obtains private information about the system, such
as algorithms’ explanations.

The attack TARGET

• I-attacks target the explanation of the XAI model.
• CI-attacks target the explanation and prediction of the XAI model.

The attack SPECIFICITY

• Targeted attacks focus on a particular instance.
• Indiscriminate attacks encompass a wide range of instances.

The first axis, which is the attack influence, concerns an adversary’s capability to
influence an XAI’s predictions/explanations. The influence is causative if an adversary
misleads the deployed XAI by contaminating (poisoning) the training dataset via injecting
carefully crafted samples (a.k.a adversarial example) into it. On the other hand, the
influence is exploratory if an adversary gains knowledge about the deployed XAI to cause
mis-explanation at the testing phase without influencing training data.

The second axis describes the type of security violation committed by an adversary.
The security violation can be regarded as an integrity violation if it enables an adversary to
alter an XAI model’s explanation. Also, the attack can violate the XAI model’s availability if
it creates a denial of service, where it prevents legitimate users from accessing the system’s
explanation. Additionally, the security violation can be regarded as a privacy violation if it
allows an adversary to have authorized access to the XAI’s explanation.

The third axis, which was adapted from [62], specifies the attackers’ target. Attackers
can either target the explainability or prediction of the XAI model or both. In I-attacks,
attackers attempt to attack the single explanation without affecting the prediction of a
deployed classifier. In the CI-attacks, attackers attempt to concurrently compromise the
integrity of the classifier and explanation.

The fourth axis of the taxonomy refers to the specificity of an attack. It indicates how
specific an adversary’s goal is. The attack specificity can be either targeted or indiscriminate,
depending on whether the attack (1) causes the XAI model to misclassify a single or few
instances, or (2) undermines the model’s performance on a larger set of instances.

The existing literature on adversarial ML models provides different attack examples
and defense methods for both adversarial attack types (causative and exploratory). Ref. [15]
presents a taxonomy of potential attacks against ML models (see Table 4).

Table 4. Common adversarial attacks and defenses.

Causative Attack Exploratory Attack

Attack Poisoning Probing
Red Herring Evasion
Label-Flipping Reverse Engineering

Good Words Attack

Defense RONI Randomization
Game Theory based Disinformation
Multiple Learners
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6.1. Threat Models

Threat modeling, which involves defining an adversary’s goal, knowledge, and ca-
pability [38,39,61], is an important step toward identifying potential attack scenarios. The
attacker’s goal can be based on the type of security violation, on the attack target, and on
the attack specificity. For instance, the adversary’s goal could be to violate the XAI models’
integrity by manipulating a specific instance to cause a wrong explanation. An attacker’s
level of knowledge about the XAI models varies and may include perfect knowledge (hav-
ing full access to XAI’s explanation), limited knowledge (having limited access to XAI’s
explanation), or zero knowledge (not having access to XAI’s explanation). An attacker’s
capability can enable them to either influence training data (causative attack) or testing
data (exploratory attack).

6.2. A Potential Attack Scenario

Here, an experiment that depicts a possible scenario of an adversarial attack against the
XAI part of a DT-enabled healthcare system is discussed. One of the most common types of
a causative attack is a poisoning attack, in which an adversary contaminates the training
dataset to affect ML models’ output [38]. A label-flipping attack, which is an example of a
causative attack, was chosen for the experiment. In a label-flipping attack, an adversary
flips the label of some samples and then injects them into the training data. Different
methods have been used to perform this attack in the literature and, the easiest method
is to randomly flip the label of some samples that may be used for retraining. In [63], it
was shown that randomly flipping about 40% of the training data’s labels decreased the
prediction accuracy of the deployed classifier. However, as the experiment in this current
paper focuses on the XAI model, the model’s explanation was used to select samples to
be flipped.

The settings of the attack scenario are as follows: the adversary’s goal is to violate the
integrity and privacy of the XAI model, the attack target is CI, and the attack specificity
can be either targeted or indiscriminate. In The adversary’s capability, it is assumed that the
adversary is capable of influencing the training data. The adversary’s knowledge is assumed
to be perfect (white-box setting). Within such a scenario, a potential attack strategy is
as follows:

• Adversaries can use the model’s explanation that either has been inferred through
probing or gained via unauthorized access (privacy violation).

• Depending on the knowledge that the adversary gains, they can select samples that
need to be flipped in the training dataset.

6.3. Experimental Settings

This section presents and discusses the experimental results and evaluation. Experi-
ments were run on Linux Ubuntu 18.04 LTS operating system with an Intel(R) Core(TM) i7-
8750H CPU 2.20 GHz x 12 of 983.4 GB memory. A model built in (https://www.kaggle.com/
code/joshuaswords/predicting-a-stroke-shap-lime-explainer-eli5/notebook (accessed on
6 April 2024)) was used for implementation and a Stroke Prediction Dataset (https://www.
kaggle.com/datasets/fedesoriano/stroke-prediction-dataset (accessed on 6 April 2024))
was used. The dataset contains 5110 unique IDs for patients with 12 attributes, such as
gender, age, disease, and smoking status. Each row in the dataset, which provides relevant
information about the patient, is classified into two classes: 1 if the patient had had a stroke
or 0 if not. Different ML algorithms were used for the experiments in this section.

6.3.1. Evaluation Metrics

The following evaluation metrics have been used to measure the models’ performance:
accuracy, recall, precision, and F1 score. These metrics, along with their descriptions, are
defined in Table 5 [15,64,65].

https://www.kaggle.com/code/joshuaswords/predicting-a-stroke-shap-lime-explainer-eli5/notebook
https://www.kaggle.com/code/joshuaswords/predicting-a-stroke-shap-lime-explainer-eli5/notebook
https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset
https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset
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Table 5. Evaluation metrics [42].

Metric Description Function

Accuracy The ability of a classifier to correctly find spam/non-spam
TP + TN

TP + FP + TN + FN
Recall The ability of a classifier to correctly find spam

TP
TP + FN

Precision The ability of a classifier to not misclassify spam
TP

TP + Fp

F1 Score The harmonic mean of precision and recall
2TP

2TP + f p + FN

6.3.2. Models’ Design

The experiments conducted in this section focused on using the adopted models to
predict whether a patient is likely to suffer a stroke based on 11 clinical features. The same
settings used by the author of the adapted models were followed. First, the dataset was
processed to find missing values and explore the features. Then, the dataset was split
into training and testing for model preparation. Also, the SMOTE (Synthetic Minority
Over-sampling Technique) was used to balance the dataset. Three algorithms Random
Forest (RF), Support Vector Machines (SVM), and Logistic Regression (LR) were selected
for the classification task. After building the models, a 10-fold cross-validation was used
for evaluation. The results in Tables 6–8 show that Random Forest performed the best with
88 accuracy.

Table 6. Classification performance of Random Forest.

Precision Recall F1-Score Support

0 0.96 0.91 0.93 3404
1 0.12 0.24 0.16 173
accuracy 0.88 3577
macro avg 0.54 0.57 0.55 3577
weighted avg 0.92 0.88 0.9 3577

Table 7. Classification performance of Logistic Regression.

Precision Recall F1-Score Support

0 0.97 0.76 0.86 3404
1 0.11 0.6 0.19 173
accuracy 0.72 3577
macro avg 0.54 0.68 0.55 3577
weighted avg 0.93 0.76 0.82 3577

Table 8. Classification performance of Support Vector Machines.

Precision Recall F1-Score Support

0 0.96 0.77 0.86 3404
1 0.09 0.43 0.15 173
accuracy 0.76 3577
macro avg 0.53 0.6 0.5 3577
weighted avg 0.92 0.76 0.82 3577

6.3.3. Models’ Explainability

To explain the results of the selected model (i.e., RF), a feature selection and three
explanation methods were used. First, the RF feature importance was plotted and the result
shows that age is by far the most used feature by the model (see Figure 3).
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Figure 3. Feature Importance.

Then, three popular XAI frameworks, namely, SHAP [66], LIME [67], ELI5 [68] were
used. SHAP (SHapley Additive exPlanations) is a tool for determining the contribution of
each feature to the model’s prediction. LIME (Local Interpretable Model-agnostic Explana-
tions) was used to interpret the prediction of the model on a single instance. ELI5 stands for
“explain like I am 5” and aims to explain the prediction of any model. The results shown
in Figure 4, Tables 9 and 10 show that SHAP and ELIS (i.e., global explainers) rank age
and then bmi as the most important features. On the other hand, LIME, which is a local
explainer, ranks gender and bmi as the most important features.

Figure 4. SHAP Explanation.

Table 9. LIME Explanation.

Feature Value
gender 1.00
hypertension 0.00
heart_disease 0.00
age 61.00
avg_glucose_level 202.21
work_type 1.00
bmi 29.88
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Table 10. ELI5 Explanation.

Weight? Feature
+1.988 age
+0.197 bmi
+0.149 avg_glucose_level
−0.291 heart_disease
−0.369 hypertension
−0.376 work_type
−0.394 <BIAS>
−0.784 gender

6.3.4. A Simulation of Potential Adversarial Attack

To simulate a label flipping attack as discussed in Section 6.3, the labeled 10% of the
dataset was flipped considering the most important feature (i.e., age); 25 out of 250 labels,
which account for 10% of label 1 were flipped. Labels of patients aged 2 were flipped to
1, thus labeling 2-year-old patients as being at risk of suffering a stroke. The performance
of the three ML models was evaluated using the contaminated dataset. The results in
Tables 11–13 show that the performance of the SVM and LR was slightly degraded, but it
remained almost the same for RF. However, the results of the four explanation methods
showed that the label-flipping attack affected the explanation. Although the literature
suggests that flipping about 40% of the training data labels decreased the accuracy, 10% of
the training data decreased the performance of the adopted model in this paper.

Table 11. Classification performance of Random Forest Under A Label-flipping Attack.

Precision Recall F1-Score Support

0 0.96 0.91 0.93 3387
1 0.15 0.27 0.19 190
accuracy 0.88 3577
macro avg 0.55 0.59 0.56 3577
weighted avg 0.91 0.88 0.89 3577

Table 12. Classification performance of Logistic Regression Under A Label-flipping Attack.

Precision Recall F1-Score Support

0 0.96 0.73 0.83 3387
1 0.1 0.52 0.16 190
accuracy 0.72 3577
macro avg 0.53 0.62 0.5 3577
weighted avg 0.92 0.72 0.79 3577

Table 13. Classification performance of Support Vector Machines Under A Label-flipping Attack.

Precision Recall F1-Score Support

0 0.96 0.75 0.84 3387
1 0.1 0.47 0.16 190
accuracy 0.74 3577
macro avg 0.53 0.61 0.5 3577
weighted avg 0.92 0.74 0.81 3577

Figure 5 shows that feature importance order has changed as BMI is replaced by
avg_glucose_level. Also, Figure 6 depicts an order change in the feature importance for
the SHAP explainer. Gender becomes the second most important feature instead of BMI.
LIME explainer Table 14 ranks gender and work_type as the most important features,
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which is different from the original ranking. Moreover, work_type replaces BMI in the ELI5
explanation Table 15.

Figure 5. RF Feature Importance After the Label-flipping Attack.

Figure 6. SHAP Explanation After the Label-flipping Attack.

Table 14. LIME Explanation Under A Label-flipping Attack.

Feature Value
gender 1.00
hypertension 0.00
heart_disease 0.00
age 61.00
work_type 1.00
avg_glucose_level 202.21
bmi 29.88

Table 15. ELI5 Explanation of Under A Label-flipping Attack.

Weight? Feature
+1.975 age
+1.227 work_type
+0.237 avg_glucose_level
+0.093 bmi
−0.104 <BIAS>
−0.248 heart_disease
−0.362 hypertension
−0.814 gender

7. Discussion

One of the challenges in designing an adversary-aware XAI is that explainability is
much more difficult to measure than accuracy or performance as the level of an explanation
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is subjective [69]. Also, ref. [59] adds that the XAI output is as crucial as the format of the
explanation output and could have a strong influence on certain users. For example, a
text-based explanation is commonly used in the Natural Language Processing (NLP) field,
but visualized explanation approaches are used in healthcare. Also, the explainability of
the deployed model can reveal valuable information to adversaries. To attack ML-based
models that do not provide an explanation, adversaries need to probe the model to collect
information. However, the XAI produces helpful information for adversaries. One of the
solutions proposed in the literature is to provide stakeholders with the minimum level of
explanation that enables them to achieve their goals. Model explanations should be catego-
rized according to the stakeholders’ privileges. The models’ explanations (i.e., pre-model
and in-model) need to be encrypted and the model should not reveal detailed information
about features and algorithms. It can provide users with a warning message that consists
of a prediction description, and an explanation of the hazards and consequences (i.e.,
post-model) [62]. However, users with higher privileges can query the model to access the
encrypted detailed explanation. Another defensive method is encrypting the explanation,
so that only stakeholders with a high level of privileges can access it. Moreover, delaying
the explanation availability can disrupt the adversaries’ attack process [3].

The proposed human-in-the-loop approach layer between layer 3 and layer 5 is needed
for verification. The explanation can be used by the system administrators to detect adver-
sarial examples (i.e., explanation-based security approach). For example, if the deployed
XAI predicts that a patient has high blood pressure, the explanation (i.e., feature impor-
tance) needs to be evaluated. Also, using the ensemble of XAI tools for adversarial example
detection can help with the verification task before layer 5 by alerting administrators in
case of an explanation disagreement. For this solution to work, systems designers and
medical professionals need to design explanation messages based on the XAI features.
There are some features that indicate certain types of disease. Consequently, a sudden
change in such features is regarded as a sign of an adversarial attack or a disagreement on
feature importance and the explanation message is a sign of an adversarial attack against
XAI’s explanation.

Grey-box and white-box attacks, such as the label-flipping attack presented earlier,
can be successful against XAI. Designing an adversary-aware XAI-based DT healthcare
system considering the adaptability of the deployed model is important as an increase in
the false positives and false negatives rate can lead to life-threatening consequences. Also,
“the life-critical nature of healthcare applications demands that the developed ML systems
should be safe and robust and should remain robust over time” [70]. Consequently, the
DT framework proposed in this current paper uses an ensemble of XAI tools to help detect
adversarial examples by considering the disagreement between the deployed classifiers
and using the detected adversarial examples to update the framework (i.e., adaptability).
Another important point that needs to be considered at an early stage of designing an XAI
DT-enabled healthcare system is involving humans in data labeling as data generated by
artifacts (i.e., IoT, cameras, robots) lacks context. Manual data labeling is about adding
extra information or metadata to a piece of data [16]. Metadata increase the explainabil-
ity of AI and helps with feature engineering, detecting incorrect labels, and detecting
adversarial examples.

Additionally, one of the promising solutions for protecting privacy in smart-health
systems, such as XAI-enable DT, is federated learning (FL) [71]. It enables models to be
trained in a distributed training fashion by averaging the local model updates from multiple
IoMT networks without accessing the local data [9]. As a result, potential risks of gaining
unauthorized access to the dataset used to train models can be mitigated. However, this
will not protect the likelihood of the explanation disclosure.

8. Conclusions

This paper provided a detailed overview of research on the security of XAI-enabled DT
for smart healthcare systems. Also, it defined the explainability of AI-enabled DT for smart
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healthcare systems from a cybersecurity perspective. An in-depth examination of a potential
adversarial attack against the XAI part of DT healthcare systems was also presented. A
model designed to predict the likelihood of a patient suffering a stroke was adapted and
used as a case study. A label-flip attack was launched against three adapted models that
use four explanation methods. The results showed that a label-flipping attack could affect
the models’ explanation. An adversary-aware DT framework for smart healthcare was also
proposed in this paper.

There are some limitations that future research needs to consider. In this paper, the
adopted model that has been evaluated against a label-flipping attack uses traditional ML
algorithms. Future research may use more complex or cutting-edge healthcare models to
be evaluated against adversarial attacks. Also, future research should focus on evaluating
the robustness of different XAI tools against other adversarial attacks; simulating more
attacks against XAI-enabled DT systems and designing an adversary-aware XAI-enabled
DT for smart healthcare systems. Additionally, FL is one of the promising solutions that can
improve the privacy of healthcare. However, addressing the lack of explainability could
be a future research direction. Finally, a real-time function that details the data flow and
integration procedure of the proposed XAI-enabled DT framework is intended to be carried
out in the future.
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