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Abstract: The hyperspectral image (HSI) classification task is widely used in remote sensing image
analysis. The HSI classification methods based on convolutional neural networks (CNNs) have greatly
improved the classification performance. However, they cannot well utilize the sequential properties
of spectral features and face the challenge of increasing computational cost with the increase in
network depth. To address these shortcomings, this paper proposes a novel network with a CNN-
Mamba architecture, called DBMamba, which uses a bidirectional Mamba to process spectral feature
sequences at a linear computational cost. In the DBMamba, principal component analysis (PCA)
is first used to extract the main features of the data. Then, a dual-branch CNN structure, with the
fused features from spectral–spatial features by 3D-CNN and spatial features by 2D-CNN, is used to
extract shallow spectral–spatial features. Finally, a bidirectional Mamba is used to effectively capture
global contextual information in features and significantly enhance the extraction of spectral features.
Experimental results on the Indian Pines, Salinas, and Pavia University datasets demonstrate that the
classification performance surpasses that of many cutting-edge methods, improving by 1.04%, 0.15%,
and 0.09%, respectively, over the competing SSFTT method. The research in this paper enhances the
existing knowledge on HSI classification and provides valuable insights for future research in this
field.
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1. Introduction
1.1. Background

In the field of remote sensing technology, hyperspectral imaging and synthetic aper-
ture radar [1–3] have attracted considerable attention from researchers due to their wide
applications in remote sensing imaging. Hyperspectral imaging is the process of acquiring
and analyzing the spectral information of objects, ranging from the visible spectrum to
the infrared spectrum. Compared to traditional color images, hyperspectral images (HSIs)
provide richer details and more spectral information. By capturing the reflection or ra-
diation characteristics of the target object in hundreds of narrow-band spectral channels,
hyperspectral imaging can provide detailed information about the composition, structure,
and state of the object. It has been widely used in agriculture, environmental monitoring,
and ground object classification. In these applications and studies, HSI classification is an
important link and has become an active research topic in the fields of remote sensing and
Earth observation.

HSI classification aims to classify the pixels in the HSI according to their corresponding
land cover categories. However, as the acquisition of HSIs by sensors is often affected by
the atmosphere, acquisition angle, and acquisition instruments, it is difficult to accurately
identify the land cover categories corresponding to the pixels. Improving the accuracy of
classification is therefore a goal that researchers are pursuing.
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With the rapid development of deep learning, various HSI classification methods
based on deep learning have been proposed to improve the accuracy of classification. Trans-
former [4], based on the attention mechanism, can respond to valuable regions of the entire
image and has become a mainstream backbone network. Taking advantage of the powerful
local feature extraction capabilities of convolutional neural networks (CNNs) [5–7], many
researchers have adopted CNN-Transformer architectures for HSI classification [8–10].
Typically, when processing HSI classification tasks, Transformers convert HSI features into
longer sequence tasks. However, as indicated by reference [11], Transformers are more
likely to capture irrelevant or weakly related information when dealing with sequences,
which introduces noise. This further distracts the attention mechanism, preventing it from
focusing on the important parts of the input and altering the overall focus. In addition, HSI
classification tasks face the problem of same spectrum–different materials [12–14], where
the same material can exhibit different spectral characteristics. Furthermore, due to the high
spatial resolution of HSI, the abundant information in the images increases intra-class vari-
ation, such as rooftops with shadows in hyperspectral images. These factors interfere with
the attention mechanism when processing hyperspectral image classification, thus affecting
classification performance. Motivated by these challenges, we aim to explore alternative
strategies to replace Transformers and improve the accuracy of HSI classification.

1.2. Related Work

Early work on the HSI classification focuses on traditional classification methods, such
as support vector machine (SVM) [15], logistic regression [16], random forest [17], k-means
clustering [18], and other methods. For example, Melgani et al. [15] demonstrated that SVM
has a high classification potential in the high-dimensional feature space by combining theo-
retical analysis and experimental research. Bo et al. [19] proposed a classification method
based on the joint collaborative representation (JCR) and the SVM model, and adopted a
decision fusion technology. The authors used the JCR method to extract mid-features to
train the multi-classification SVM model, and improved the classification accuracy through
multiplication fusion rules. Zhao et al. [20] proposed a method that combines the spectral
gradient, SVM, and spatial random forest (RF) to better describe and capture both the edges
and the details of HSIs. Mounika et al. [21] introduced principal component analysis (PCA)
into the SVM to reduce the negative impact of the noise band on classification results. The
above traditional methods provide multiple effective solutions for HSI classification and
promote the development of HSI classification. However, these traditional methods are
often prone to more misclassifications, resulting in unsatisfactory classification accuracy.

The rapid development of deep learning technology has had a significant impact
on various fields, especially in the field of computer vision, including image classifica-
tion [22–24], object detection [25,26], and semantic segmentation [27]. Popular backbone
networks in deep learning include convolutional neural networks (CNNs), recurrent neu-
ral networks (RNNs) [28], generative adversarial networks (GANs) [29,30], and graph
convolutional networks (GCNs) [31,32]. To extract high-level features of HSI, Chen [33]
proposed a new hybrid framework based on PCA, the deep learning architecture, and logis-
tic regression. Since CNNs have a powerful ability to extract high-level semantic features
of HSIs, determining how to use CNNs for HSI classification has become an important
research topic. Since HSIs contain a large amount of spectral information, Hu et al. [34]
used a 1D-CNN to extract spectral features and directly classified HSIs in the spectral
dimension. However, this method does not effectively utilize spatial information, resulting
in suboptimal classification performance. Makantasis et al. [35] constructed a multi-layer
2D-CNN to reduce the dimension of spectral information and to obtain both the deep and
the valuable spatial features. Nevertheless, HSIs contain both 2D spatial information and
1D spectral information, but the methods in [34,35] only handle hyperspectral image (HSI)
data from a single feature dimension. This leads to insufficient application of hyperspectral
data and failure to fully leverage the powerful feature extraction capabilities of CNNs,
which negatively impacts classification results. To make full use of the multi-dimensional
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characteristics of HSI, He et al. [36] proposed a multi-scale 3D-CNN (M3D-CNN) for HSI
classification, which can jointly learn the 2D multi-scale spatial features and 1D spectral
features in HSI in an end-to-end manner. In [37], Li et al. proposed a multi-scale deep mid-
level feature fusion network (MMFN), which fully integrates the strong complementarity
and correlation information between features of different scales and extracts more discrimi-
native features to improve classification accuracy. Although the two methods mentioned
above leverage multi-scale features to extract significant information from the feature
maps, they also introduce the problem of information redundancy. Hamida et al. [38]
employed multiple stacked 3D-CNNs to achieve hyperspectral image classification. While
this approach reduces the likelihood of redundant feature extraction, it also increases the
computational burden of the model. Furthermore, using only the 2D convolution to extract
features will lose the spectral information of the image, and using only the 3D convolution
will lose the spatial information of the pixels. If no other strategies or structures are added,
a single network model with only the 2D or the 3D convolution will always fail to extract
more effective information. Roy et al. [39] proposed a hybrid spectral convolutional neural
network (HybridSN), which consists of a spectral–spatial 3D-CNN followed by a spatial
2D-CNN. The 3D-CNN first extracts joint spatial–spectral features, and the 2D-CNN learns
more abstract spatial features on top of the 3D-CNN. This method addresses the issue of
insufficient data application when using only 2D CNNs, while also utilizing 2D CNNs to
replace certain components of 3D CNNs, thereby reducing the number of parameters in the
model. However, as the number of the network layers increases, the gradient may become
very small and even disappear during the back-propagation process. To solve this problem,
He et al. [40] introduced residual networks for image classification. The residual network
ensures more comprehensive feature information extraction through skip connections
and residual blocks, minimizing the information loss of each convolutional layer. Zhong
et al. [41] designed an end-to-end spectral–spatial residual network (SSRN) that uses resid-
ual blocks to connect each 3D convolutional layer and uses the features of the next layer to
supplement the feature information of the previous layer to improve classification accuracy.
Yang et al. [42] proposed a CMR-CNN method for HSI classification that simultaneously
utilizes the spatial information and spectral information of pixels, which includes a 3D
residual structure for extracting spectral features and a 2D residual structure for extracting
spatial features. The above methods all use CNNs and their variants, which show strong
capabilities of CNNs in extracting spatial information and local contextual information.
However, the above methods still have certain limitations in capturing sequence properties.
CNNs are good at extracting local features, but the spectral sequence information in HSIs
exhibits long-range dependencies. Relying solely on CNNs may not effectively capture the
global spectral–spatial features. In addition, the presence of noise in the spectral sequences
can adversely affect classification accuracy, as CNNs may be sensitive to this noise without
adequate regularization or preprocessing.

Recently, researchers have introduced Transformer, which is commonly used in natural
language processing, to computer vision tasks, showing great potential. Dosovitskiy
et al. [43] proposed the Vision Transformer (ViT) model, which uses the self-attention (SA)
mechanism to effectively capture the relationship between different positions in the image.
By dynamically adjusting the input weights, the model can flexibly capture and utilize the
most relevant information and perform well in the field of image processing. Subsequently,
more and more Transformer-based methods have been proposed for HSI classification.
Liao et al. [44] used Transformer to obtain long-term dependencies between long-distance
features and adaptively focus on the characteristics of different regions. They integrated it
with CNNs for comprehensive feature extraction and embedded a Gaussian modulation
attention module between Conv3D and Conv2D, which can enhance secondary features and
suppress the most and least important features. Cao et al. [45] proposed a model (MRViT)
that mixed residual convolution with Vision Transformer (ViT). This model used ViT for
spectral feature extraction, overcoming the limitation of CNNs that spectral features are
difficult to process. Ma et al. [46] proposed a Vision Transformer (VIT) method based on the
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lightweight Gaussian self-attention (LSGA) mechanism to address the limitations of local
modeling and increased computational cost of CNNs in HSI classification. Sun et al. [47]
proposed a method called SSFTT, which organically integrates CNN and Transformer,
transforms the spectral–spatial features extracted by the convolution layers into semantic
tokens, and models the semantic features using Transformer Encoder, making the analysis
of land cover characteristics more comprehensive. However, the attention mechanism in
the Transformer model has a high computational complexity. As the length of the input
sequence increases, the amount of computation increases exponentially, requiring a lot of
time and computational memory, and it is easily affected by noise and outliers.

1.3. Motivation and Contribution

Motivated by the challenge that Transformer is susceptible to distraction from noise
and outliers, we are exploring new strategies to address this issue. Recent research advances
have attracted widespread attention on the potential of state space models (SSMs) [48] for
modeling long sequences. SSMs can establish long-distance dependencies through state
transitions and achieve parallel computing through convolution, so that they can handle
sequence problems with near-linear complexity. Mamba [49] is a new class of selective
SMM that introduces time-varying parameters into SSM and proposes a hardware-aware
algorithm to achieve very efficient training and inference. Inspired by the successful appli-
cation of Mamba in processing natural language sequences, more and more studies have
attempted to apply Mamba to visual tasks. Zhu et al. [50] and Liu et al. [51] successfully ap-
plied Mamba to the field of two-dimensional image classification. Similar to transformers,
Mamba can capture long-range dependencies but with greater computational efficiency,
making it particularly well suited to high-dimensional datasets such as HSI. Currently,
many researchers are trying to apply this model to HSI classification. Li et al. [52] proposed
a Mamba-based HSI classification model that can simultaneously model long-range interac-
tions across the entire image and adaptively integrate both spatial and spectral information.
However, pure Mamba used for HSI classification tasks faces challenges, such as unidi-
rectional modeling and lack of positional awareness. Yang et al. [53] utilized bidirectional
reversed CNN pathways to extract spectral features and incorporate a specialized block for
spatial analysis. However, this method achieves spatial feature extraction only by stacking
2D CNNs, which may result in insufficient feature extraction and consequently affect the
classification performance of the model.

This paper proposes a new network called DBMamba, which includes a CNN-based
dual-branch feature extraction module, an HSI feature tokenization module, and a bidi-
rectional Mamba (Bim) encoder module. To make full use of the rich spectral and spatial
information of HSI data, a CNN-based dual-branch feature extraction module is used to
extract shallow spectral–spatial features. Specifically, the first branch extracts the spectral–
spatial features, and the second branch extracts the spatial features. In addition, the features
obtained from the two branches are fused in the channel dimension. Next, the fused fea-
tures are segmented into non-overlapping patches and are flattened. The flattened feature
is then fed into the HSI feature tokenization, where it undergoes Gaussian weighting to
enhance the focus on key features. In HSI classification, to replace the attention mechanism
in Transformers with bidirectional modeling and position awareness, a Bim encoder mod-
ule is proposed to combine bidirectional SSM and position embedding for global visual
modeling and visual position perception of the data, respectively. Specifically, features are
extracted from the sequence in both the forward and backward directions, and the output is
obtained by adding them after being gated by linear mapping, and finally the classification
result is obtained by the multi-layer perceptron head (MLP head).

The main contributions of this paper can be summarized as follows:

• To comprehensively extract spatial and spectral feature information from HSI, we
designed a high-performance end-to-end network. This network combines a CNN-
based dual-branch feature extraction module, a HSI feature tokenization, and a Bim
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encoder module. This integration further enhances the classification performance of
the CNN-Mamba network.

• In our DBMamba network, we introduce an efficient dual-branch CNN module de-
signed to extract shallow spatial–spectral features. This module arranges a 3D convolu-
tional layer and a 2D convolutional layer in parallel and uses a 2D convolutional layer
to fuse the features obtained from the two branches. This module is then combined
with a bidirectional Mamba structure to further improve the classification performance.

• Considering the challenge that Transformer is susceptible to noise and outliers in HSI
classification tasks, we design the Bim encoder, which effectively improves classifica-
tion performance by capturing global contextual information from features in both
the forward and backward directions. From leveraging CNN networks for shallow
feature extraction to using the Bim framework to effectively capture global contex-
tual information in images, the proposed DBMamba enables comprehensive learning
of spectral–spatial features in HSIs, significantly improving joint classification ac-
curacy. Experimental verification on three classic public datasets demonstrates the
effectiveness of the network framework.

2. Materials and Methods

The section proposes a novel network, i.e., DBMamba, for HSI classification. The
overall architecture of the network model is shown in Figure 1. It mainly consists of the
following three parts: the CNN-based dual-branch feature extraction module, the HSI
feature tokenization module, and the Bim encoder module.
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Figure 1. The overall framework of the proposed DBMamba network for the HSI classification. Figure 1. The overall framework of the proposed DBMamba network for the HSI classification.

In particular, the CNN-based dual-branch feature extraction module aims to extract
shallow spatial and spectral features simultaneously through a dual-branch structure.
The HSI feature tokenization module can emphasize the distinction between key features
and secondary features, thereby enhancing discriminability. The bidirectional Mamba
(Bim) encoder module aims to enhance the ability to model long-range dependencies by
processing feature sequences in both forward and backward directions at linear cost.
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2.1. CNN-Based Dual-Branch Feature Extraction

In the field of HSI classification, CNNs have demonstrated powerful feature extraction
capabilities. HSI contains rich spectral and spatial information. It is well known that 3D-
CNN and 2D-CNN can not only obtain the joint spectral–spatial features of HSI, but also
obtain the spatial dimension information separately. Therefore, the proposed CNN-based
dual-branch feature extraction module first uses 3D-CNN and 2D-CNN to extract HSI
features.

We represent the original HSI data using a 3D tensor Z ∈ Rm×n×k, where m × n repre-
sents the spatial dimensions of the HSI and k is the number of spectral bands. Each pixel in
the HSI belongs to one of the ground object coverage categories. We use Y = (y1, y2, . . . , yL)
to represent the label of the HSI data, where L is the number of ground object coverage
categories in the current area, and each pixel contains k spectral bands. Note that a large
number of spectral bands in the HSI data will cause redundancy in the spectral data, affect
the accuracy of the HSI classification, and increase the computational complexity. Hence,
the PCA operation is first used to reduce the number of spectra bands from k to b, and the
HSI data after the PCA are denoted as Zpca ∈ Rm×n×b, where b is the number of spectra
bands after the PCA.

We extract N adjacent 3D blocks B ∈ Rs×s×b from the HSI data Zpca, and these
extracted 3D blocks are used as the input of the entire model, where s × s represents the
spatial dimensions of the extracted block, and b is the number of spectral bands of the
extracted block. The center pixel position of these extracted 3D blocks is represented by
(xa, xe), where 0 ≤ a < m, 0 ≤ e < n. HSI classification classifies each pixel as a certain
category in the current area coverage, and the true label of each 3D block is determined by
the label of the center pixel. When extracting 3D blocks from edge pixels, padding with
(s−1)/2 width is applied to the original HSI data to fully extract pixel information and
solve the problem of missing edge pixels. After removing the background information
of all 3D blocks, the remaining 3D blocks are divided into a training set and a test set for
model training and evaluation.

After a series of data preprocessing, these 3D blocks are input into the CNN-based
dual-branch feature extraction module to extract the shallow spectral–spatial features. As
shown in Figure 2, this module contains two sub-modules: 3D and 2D. The 3D module
consists of a 3D convolution layer, a BN layer, and a ReLU layer. The convolution kernel is
set to 8@ (3 × 3 × 3), and the padding size is set to (0 × 1 × 1). The 3D convolution layer is
implemented by applying a 3D convolution kernel to convolve with each individual 3D
block. The spectral–spatial features are expressed as follows:

vx,y,z
i,j = f (∑

d

Hi−1

∑
α=0

Wi−1

∑
β=0

Ri−1

∑
γ=0

ω
α,β,γ
i,j,d · v(x+α),(y+β),(z+γ)

(i−1),d + bi,j) (1)

where f (·) is the activation function, vx,y,z
i,j represents the neuron at the j-th feature map

(x, y, z) of the i-th layer, and Hi, Wi, and Ri represent the height, width, and depth of the 3D
convolution kernel of the i-th layer, respectively, ω

α,β,γ
i,j,d is the weight parameter of the d-th

feature cube at position (α, β, γ), and bi,j is the bias term. In the first branch, 8 3D feature
cubes with rich spectral–spatial features are generated after the 3D blocks pass through the
3D module.
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At the same time, to make full use of the spatial information, the second branch
converts the 3D blocks into 2D data and uses a 2D module to extract spatial features. In
the 2D module, it consists of a 2D convolution layer, a BN layer, and a ReLU layer. The
convolution kernel is set to 64@ (3 × 3) and the padding size is set to (1 × 1). The spatial
features can be expressed as follows:

vx,y
i,j = f (∑

d

H′
i−1

∑
α=0

W ′
i −1

∑
β=0

ω
α,β
i,j,d · v(x+α),(y+β)

(i−1),d + bi,j) (2)

where H′
i and W ′

i are the height and width of the 2D convolution kernel, ω
α,β
i,j,d represents

the weight of the d-th feature map at position (H′
i , W ′

i ), and bi,j is the bias term. Next, to
effectively merge the features obtained from both branches, we first fuse the 3D feature
cubes, which carry rich spectral–spatial features, along both the channel and spectral
dimensions to obtain 2D data. The resulting 2D data are then concatenated with the 2D
spatial feature data obtained from the second branch along the channel dimension. Finally,
we use a 2D-CNN to further extract the fused features. The convolution kernel is set to
128@ (3 × 3), and the padding size is set to (1 × 1). The CNN-based dual-branch feature
extraction module can be expressed as follows:

Xcancat = Concat[Conv3D(Xin, k1, p1), Conv2D(X′
in, k2, p2)] (3)

Xout = Conv2D(Xcancat, k3, p3) (4)

In Equations (3) and (4), “Concat” represents the concatenation operation in the channel
dimension, Xin represents the 3D blocks, X′

in represents the 2D data converted from 3D
blocks, Xcancat represents the fused feature obtained by concatenating the features from the
two branches, k represents the size of the convolution kernel, k1 is (3 × 3 × 3), k2 and k3 are
(3 × 3), p represents the padding size, p1 is (0 × 1 × 1), and p2 and p3 are (1 × 1).

2.2. HSI Feature Tokenization

The fused feature extracted by the CNN-based dual-branch feature extraction module
carry rich shallow spectral–spatial features. We generate 2D features by patching the
fused features. However, the key features and secondary features of the 2D feature have
not yet been distinguished and emphasized. The use of Gaussian weighting helps the
model prioritize key features by assigning them greater importance based on a Gaussian
distribution. This approach ensures that the most critical features receive more attention.
Thus, we redefine the 2D features as semantic tokens, which can represent the high-level
semantic concepts of the HSI feature. We first flatten the 2D features and represent the
flattened feature as X ∈ Ruv×z, where u, v are the height and width of the 2D feature, and z



Sensors 2024, 24, 6899 8 of 22

is the number of channels. The final semantic tokens are defined as T ∈ Rj×z, where j is
the number of tokens. The tokens can be obtained by the following Equation (5):
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where Wa ∈ Rz×j represents a weight matrix initialized with a Gaussian distribution, and
XWa represents element-wise multiplication with dimensions 1 × 1. At this time, the
semantic group is represented by A ∈ Ruv×j. Then, we transpose A and apply so f tmax(·)
to acquire the relatively important semantics part. The tokens finally are generated by the
multiplication of A and X. The operation transforms these features into a new feature space.
This transformation is critical for capturing higher-order relationships between features
that might not be as apparent in the original space. To provide a clear representation of the
tokenization, Figure 3 demonstrates an example of the transformation process layer.
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2.3. Bim Encoder Module

The semantic tokens generated by the HSI feature tokenization can be represented as
[T1, T2, · · · , Tj] and are fed to the Bim encoder module to learn the relationships between
high-level semantic features. This module primarily comprises three main parts.

As the first part, to perform the classification task, we add a learnable class token Tcls
0

in the middle of the tokens. Then, the position embedding is used to mark the position
information of each semantic. This paper is different from Transformer where the cosine
position embedding was used. Instead, we use a learnable position embedding Epos and add
it to the semantic tokens, which can better learn the global features of HSI. The operation of
adding class token and position embedding can be expressed as Equation (6):

Tin = [Tcls
0 , T1, T2, · · · , Tj] + Epos (6)

The second and critical part is the Bim encoder. It mainly contains a normalization
layer, two projection layers, and SSMs. The SSM is a concept derived from the linear time-
invariant system in modern control theory. Many sequence models are generated based
on the SSM, such as the structured state-space sequence model (S4) and Mamba. Inspired
by continuous systems, a one-dimensional function or sequence x(t) ∈ R 7→ y(t) ∈ R is
mapped by a hidden state h(t) ∈ RN, which can be expressed as Equation (7). The system
uses A ∈ RN×N as the evolution parameter and B ∈ RN×1, C ∈ R1×N as the projection
parameters.

h′(t) = Ah(t) + Bx(t),
y(t) = Ch(t).

(7)
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S4 and Mamba are discrete versions of continuous systems, including the time scale
parameter ∆, which converts continuous parameters A and B into discrete parameters
A and B. The commonly used transformation method is zero-order, which is defined as
Equation (8):

A = exp(∆A),
B = (∆A)−1(exp(∆A)− I) · ∆B.

(8)

After discretization, the discretized version of Equation (7) using the step size ∆ can
be expressed as Equation (9):

ht = Aht−1 + Bxt,
yt = Cht.

(9)

Finally, the SSM output is calculated through a global convolution, which is expressed
as Equation (10):

K = (CB, CAB, . . . , CAM−1B),
y = x ∗ K,

(10)

where M is the length of the input sequence x, “∗” is the convolution operation, and K ∈ RM

is the structured convolution kernel.
The original Mamba was designed for one-dimensional sequence tasks and lacks

spatial perception and understanding when processing visual tasks. The Bim encoder uses
bidirectional sequence modeling to better handle visual tasks. By merging past and future
contextual information together, it can more comprehensively obtain the comprehensive-
ness of the previous and next sequence information and extract more useful features.

As shown in Figure 4, in the Bim encoder, the token sequence with class token and
position embedding is first processed by the normalization layer to improve the robustness
and stability of the model. Then the normalized data are linearly projected to x and z, and
x is processed from the forward and backward directions, respectively. In the forward
direction, after the Conv1d operation is performed, y f orward is calculated by the SSM. In the
backward direction, a flip operation is performed on x in the second dimension. Currently,
the feature sequence is flipped. The feature originally at the end will be processed first by
the SSM to obtain ybackward. y f orward and ybackward are gated by z and added together to get
the output token sequence Tout. The third part is the MLP head, where the class token Tcls

0
from Tout is passed into the MLP head to produce the classification results. The complete
procedure of the proposed DBMamba method is shown in Algorithm 1.

Algorithm 1 Dual-branch feature extraction with bidirectional Mamba model

Input: Input the HSI data Z ∈ Rm×n×k and the ground-truth labels Y ∈ Rm×n; Initialize PCA
bands number b = 30, and the size of cube space s = 28; Specify the training sample rate as µ.
Output: Predicted labels of the test dataset.
1: Set batch size to 64, optimizer Adam (learning rate: 5 × 10−4), epoch number ε to 100.
2: Obtain the data Zpca ∈ Rm×n×b after PCA transform.
3: Create all sample cubes in the Zpca, and divide them into training dataset and test dataset.
4: Generate training loader and test loader.
5: for i = 1 to ε do
6: Generate shallow features using the spectral–spatial shallow feature extraction module.
7: Linearly map the extracted 2D shallow spectral–spatial feature maps to obtain a 1D feature
vector.
8: Initialize class token and position embedding weights.
9: The middle positions of feature sequences are combined with learnable class tokens and
positional embeddings are added to them.
10: Perform Bim module.
11: Input the middle classification token into the MLP head and identify the labels.
12: end for
13: Use test dataset with the trained model to get predicted labels.
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3. Results
3.1. Data Description

To verify the effectiveness of the proposed method, experiments were carried out on
the Indian Pines dataset, the Salinas dataset, and the Pavia University dataset. Training
samples were randomly selected from each dataset. Shares of 10% and 90%, 5% and 95%,
5% and 95% of the three datasets were randomly selected as the training and test sets,
respectively. Table 1 lists the land cover categories, the number of training samples, and
the number of test samples for the three datasets.

Table 1. Numbers of training and test samples in the India Pines dataset, Pavia University dataset,
and Pavia University dataset.

No.
Indian Pines Pavia University Salinas

Class Training Test Class Training Test Class Training Test

1 Alfalfa 5 41 Asphalt 332 6299 Green_weeds_1 100 1909

2 Corn-notill 143 1285 Meadows 932 17,717 Green_weeds_2 186 3540

3 Corn-mintill 83 747 Gravel 105 1994 Fallow 99 1877

4 Corn 24 213 Trees 153 2911 Rough_plow 70 1324

5 Grass-pasture 48 435 Metal
sheets 67 1278 Fallow_smooth 134 2544

6 Grass-tree 73 657 Bare soil 251 4778 Stubble 198 3761

7 Pasture-mowed 3 25 Bitumen 67 1263 Celery 179 3400

8 Hay-windrowed 48 430 Bricks 184 3498 Grapes_untrained 564 10,707

9 Oats 2 18 Shadows 47 900 Vinyard_develop 310 5893

10 Soybean-notill 97 875 —— —— —— Senesced_green 164 3114

11 Soybean-mintill 245 2210 —— —— —— Romaine_4wk 53 1015

12 Soybean-clean 59 534 —— —— —— Romaine_5wk 96 1831

13 wheat 20 185 —— —— —— Romaine_6wk 46 870

14 woods 126 1139 —— —— —— Romaine_7wk 54 1016

15 Grass-Trees 39 347 —— —— —— Untrained 363 6905

16 Steel-Towers 9 84 —— —— —— Vinyard_vertical 90 1717

- Total 1024 9225 Total 2138 40,638 Total 2706 51,423

Indian Pines dataset: The dataset was collected in 1992 by the airborne visible/infrared
imaging spectrometer (AVIRIS) sensor over the Indian pine test site in northwestern Indi-
ana and consists of 224 spectral reflectance bands covering the wavelength range of 0.4 to
2.5 microns. The image consists of 145 × 145 pixels and 16 land cover categories. In this ex-
periment, a total of 200 bands were selected, discarding the noise bands [104–108, 150–163],
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and 220. The pseudo-color image and the ground-truth map are shown in Figure 5a,b,
respectively.
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Figure 5. Visualization of the India Pines (IP) dataset. (a) Pseudo-color image for the dataset.
(b) Ground-truth map for the dataset.

Pavia University dataset: This dataset was collected in 2001 at Pavia University in
northern Italy using the reflection optical system imaging spectrometer (ROSIS) sensor.
It consists of 115 bands with wavelengths ranging from 0.43 to 0.86 microns. The image
includes 610 × 340 pixels and nine land cover classes with a spatial resolution of 1.3 m.
In the experiment, 12 noisy bands were discarded, and the remaining 103 bands were
used for testing. Pseudo-color images and ground-truth classification maps are shown in
Figure 6a,b.
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Figure 6. Visualization of the Pavia University (PU) dataset. (a) Pseudo-color image for the dataset.
(b) Ground-truth map for the dataset.

Salinas dataset: This dataset was collected by the 224-band AVIRIS sensor in the Salinas
Valley of California. After discarding the noise bands [108–112, 154–167], and 224, there
are 204 spectral bands left. The image consists of 512 × 217 pixels and 16 land cover
classes. The pseudo-color image and the ground-truth map are shown in Figure 7a and b,
respectively.
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Figure 7. Visualization of the Salinas (SA) dataset. (a) Pseudo-color image for the dataset. (b) Ground-
truth map for the dataset.

3.2. Evaluation Indicators

Three evaluation indicators, i.e., overall accuracy (OA), average accuracy (AA), and
kappa coefficient (κ), are used in the experiments for HSI classification. OA, AA, and κ can
be formulated as in Equation (11):

OA =
TP + TN

TP + TN + FP + FN

AA =
1
C

C
∑

i=1

TPi
TPi + FPi

κ =
po − pe

1 − pe

(11)

where TP is the true positive, TN is the true negative, FP is the false positive, FN is the
false negative, C is the number of classes, and TPi and FPi are the true positive and the
false positive of class i, respectively. In addition, po is the observed precision and pe is the
random precision. In classification problems, po can be calculated by OA, while pe can be
calculated by the marginal probability of the class.

3.3. Parameter Analysis

For HSI classification, the spatial size of the input data (window) and the batch size
used in the training process have a significant impact on the classification performance.
This section analyzes them.

(1) Window: To explore the optimal input space size of the three datasets for our
proposed network, DBMamba, the input space size is set to {20, 22, 24, 26, 28, 30} in
sequence for experiments, while other parameters are set to fixed values. The experimental
results are shown in Figure 8. As can be seen in Figure 8, although the OA value for the
Indian Pines and Salinas datasets fluctuates, it shows an overall trend of first increasing
and then decreasing as the input space size increases, with a maximum value of 28. For
the Pavia University dataset, as the size of the input space increases, the value of OA first
increases steadily and then decreases, also reaching the highest value at 28. At the same
time, when the input size is 28, this method has the highest values of OA, AA, and κ on the
three datasets. From the above, this paper adopts 28 × 28 as the input size of the proposed
DBMamba model.
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Figure 8. The impact of different input sizes on OA, AA, and κ obtained by the proposed DBMamba.

(2) Batch size: Figure 9 shows the effect of batch size on OA, AA, and κ obtained by
the proposed DBMamba for the three datasets. The batch size is selected from {16, 32, 64,
128, 256}. Obviously, when the batch size is set to 64, the optimal OA is obtained.

Sensors 2024, 24, x FOR PEER REVIEW 14 of 23 
 

 

 
Figure 9. The impact of different batch sizes on OA, AA, and κ obtained by the proposed DBMamba 
for the three datasets. 

(3) The impact of different numbers of 3D and 2D convolutional kernels on the OA is 
shown in Figure 10. The 3D kernels and 2D kernels are used to extract spectral–spatial 
features and spatial features, respectively, while the 2DF kernels are used for feature fu-
sion. For the Indian Pines dataset, the classification accuracy decreases as the number of 
3D kernels increases, but increases with the number of 2D kernels, reaching the highest 
value with 8 3D kernels and 64 2D kernels. For the Pavia University and Salinas datasets, 
the highest accuracy is also achieved with 8 3D kernels and 64 2D kernels. Furthermore, 
as the number of 2DF kernels for feature fusion increases, the OA values for all the three 
datasets improve, with the maximum value reached at 128 kernels. This demonstrates the 
effectiveness of feature fusion. 

 
Figure 10. The impact of different number of kernels on OA, AA, and κ obtained by the proposed 
DBMamba for the three datasets. 

(4) The number of tokens also affects the classification performance of the model. We 
set the optimal input space to 28 and varied the number of tokens as {4, 9, 16, 25} to con-
duct experiments on the three datasets. Figure 11 illustrates the impact of the number of 
tokens on the OA. For the Indian Pines dataset, as the number of tokens increases, the OA 
first increases and then decreases, reaching its maximum when the number of the tokens 
is 9. For the Pavia University dataset, while the OA is not the highest at 9 tokens, the dif-
ference from the highest value is minimal. For the Salinas dataset, the OA values at 9 and 
16 tokens are very close. Based on these observations, we chose 9 tokens as the optimal 
number. 

Figure 9. The impact of different batch sizes on OA, AA, and κ obtained by the proposed DBMamba
for the three datasets.

(3) The impact of different numbers of 3D and 2D convolutional kernels on the OA
is shown in Figure 10. The 3D kernels and 2D kernels are used to extract spectral–spatial
features and spatial features, respectively, while the 2DF kernels are used for feature fusion.
For the Indian Pines dataset, the classification accuracy decreases as the number of 3D
kernels increases, but increases with the number of 2D kernels, reaching the highest value
with 8 3D kernels and 64 2D kernels. For the Pavia University and Salinas datasets, the
highest accuracy is also achieved with 8 3D kernels and 64 2D kernels. Furthermore, as
the number of 2DF kernels for feature fusion increases, the OA values for all the three
datasets improve, with the maximum value reached at 128 kernels. This demonstrates the
effectiveness of feature fusion.

(4) The number of tokens also affects the classification performance of the model. We
set the optimal input space to 28 and varied the number of tokens as {4, 9, 16, 25} to conduct
experiments on the three datasets. Figure 11 illustrates the impact of the number of tokens
on the OA. For the Indian Pines dataset, as the number of tokens increases, the OA first
increases and then decreases, reaching its maximum when the number of the tokens is 9.
For the Pavia University dataset, while the OA is not the highest at 9 tokens, the difference
from the highest value is minimal. For the Salinas dataset, the OA values at 9 and 16 tokens
are very close. Based on these observations, we chose 9 tokens as the optimal number.
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3.4. Classification Results and Analysis

In this section, to verify the effectiveness and superiority of the proposed DBMamba,
we make comparisons with several traditional methods and deep learning methods, includ-
ing SVM [21], 1D-CNN [34], 2D-CNN [35], 3D-CNN [38], HybridSN [39], and SSFTT [47].
The comparison methods listed above keep the network parameters and training strategies
in the original paper. The number of training and test samples is shown in Table 1. To
ensure fair comparisons, samples are randomly selected.

All experiments in this paper are implemented on the Pytorch software platform,
using Intel(R) Xeon(R) Platinum 8352V CPU and NVIDIA GeForce RTX 4090 GPU servers.
The Adam optimizer is selected, and the learning rate is set to 5 × 10−4. For batch training,
each mini-batch size is set to 64. Each dataset is trained using 100 training epochs.

3.4.1. Quantitative Results and Analysis

Tables 2–4 show the OA, AA, κ, and accuracy of each category of different methods
for the Indian Pines, Pavia University, and Salinas datasets.

It can be seen from the tables that, compared with the six other methods, the proposed
DBMamba method obtains the highest OA, AA, and κ values. From Table 2, we can
clearly see that SVM, 1D-CNN, and 2D-CNN have lower accuracy in the “Alfalfa” and
“Oats” classifications because the training samples of the Indian Pines dataset are randomly
selected at 10% and the sample size of these categories is relatively small. However, the
classification accuracy obtained by DBMamba is relatively uniform, and it has the best
classification performance in many categories such as “Alfalfa”, “Corn-notill”, “Corn-



Sensors 2024, 24, 6899 15 of 22

mintill”, and “Oats”, which shows the effectiveness and superiority of the DBMamba
method. The same situation can be also observed in Tables 3 and 4.

Table 2. Classification metrics obtained by different methods for the Indian Pines dataset. The optimal
results are bolded.

No. SVM [21] 1D-CNN [34] 2D-CNN [35] 3D-CNN [38] HybridSN
[39] SSFTT [47] Proposed

1 57.89 38.63 85.31 99.56 90.00 100.00 100.00
2 68.55 73.76 61.58 75.95 97.76 97.68 98.14
3 70.29 60.99 78.99 68.41 94.81 96.97 98.38
4 56.31 66.66 90.86 69.17 95.88 94.14 97.67
5 92.01 74.56 96.98 94.78 99.18 94.10 98.61
6 92.70 89.45 97.97 94.46 93.88 99.24 99.39
7 74.07 68.18 50.00 78.56 66.67 92.85 86.20
8 93.75 89.17 93.66 95.66 99.22 99.53 99.55
9 66.67 57.14 65.21 66.66 51.61 100.00 100.00
10 71.30 65.09 59.15 69.75 96.81 98.34 96.50
11 81.74 71.22 73.83 77.91 99.28 98.24 99.63
12 78.47 61.08 65.54 72.42 95.44 96.92 97.39
13 89.95 90.55 93.87 88.65 98.20 95.85 99.46
14 93.24 90.19 94.97 95.61 98.42 98.50 99.73
15 68.38 88.02 90.03 85.85 97.16 94.60 98.85
16 96.25 97.14 95.18 89.65 77.01 94.04 100.00

OA (%) 79.90 75.25 77.51 81.49 96.96 97.68 98.72
AA (%) 73.61 68.68 69.88 75.63 97.08 93.73 97.58
κ × 100 77.08 71.69 74.14 78.82 96.54 97.35 98.54

Table 3. Classification metrics obtained by different methods for the Pavia University dataset. The
optimal results are bolded.

No. SVM [21] 1D-CNN [34] 2D-CNN [35] 3D-CNN [38] HybridSN
[39] SSFTT [47] Proposed

1 94.48 85.46 92.48 93.32 97.92 99.53 99.60
2 95.47 91.59 96.10 96.38 99.53 99.83 99.89
3 82.02 72.23 89.50 82.10 92.14 97.09 97.10
4 96.97 88.39 99.10 96.56 99.49 98.43 99.75
5 97.91 96.88 99.45 99.92 99.07 98.45 99.92
6 93.91 77.27 93.57 89.48 100.00 99.76 100.00
7 88.76 77.16 94.66 93.90 98.34 100.00 99.29
8 86.65 68.53 77.97 84.11 96.44 95.75 97.03
9 100.00 99.22 88.83 99.21 99.15 99.19 98.78

OA (%) 93.81 85.82 93.30 93.52 98.62 99.25 99.40
AA (%) 91.69 83.25 89.49 91.22 96.59 98.47 98.99
κ × 100 91.75 81.17 91.07 91.37 98.17 98.85 99.21

The results of the experiments show that the proposed bidirectional Mamba outper-
forms SSFTT. Specifically, multi-head self-attention in the SSFTT plays a key role. It is
sensitive to attention, where an outlier or noise in a pixel can influence the overall result.
Due to this, the problem of same spectrum–different materials in HSIs could affect the
model accuracy. However, our proposed bidirectional Mamba takes into account positional
information from both forward and backward directions, which greatly suppresses this
issue.

To further verify the effectiveness of the proposed method and its performance under
limited training samples, a recent Mamba-based method, HSIMamba [53], and a recent
Transformer-based method, CSIL [54], are used for comparison. For each dataset, 50 sam-
ples per class were selected as training samples. Table 5 shows the classification results.



Sensors 2024, 24, 6899 16 of 22

From the comparison result, it can be seen that the proposed DBMamba outperforms both
CSIL and HSIMamba in terms of classification performance. For example, on the Pavia
University dataset, the OA, AA, and κ values are all higher than those of the other two
methods.

Table 4. Classification metrics obtained by different methods for the Salinas dataset. The optimal
results are bolded.

No. SVM [21] 1D-CNN [34] 2D-CNN [35] 3D-CNN [38] HybridSN
[39] SSFTT [47] Proposed

1 100.00 99.94 100.00 99.84 100.00 100.00 100.00
2 99.49 99.79 99.60 99.91 99.97 100.00 100.00
3 98.52 87.68 99.89 99.62 99.76 99.97 100.00
4 98.87 97.91 99.25 97.69 98.86 99.26 99.70
5 99.28 92.29 98.44 99.00 99.55 99.58 99.88
6 99.97 99.65 97.65 99.81 99.83 99.92 100.00
7 99.35 96.85 99.82 99.97 99.95 99.91 99.97
8 81.46 78.79 83.17 85.61 99.43 99.99 100.00
9 99.49 97.65 99.62 99.44 100.00 99.95 100.00
10 96.54 94.82 97.06 97.22 100.00 99.84 99.97
11 99.00 98.41 99.69 99.89 99.68 99.71 100.00
12 99.83 98.44 99.12 97.72 100.00 99.72 99.89
13 98.18 92.90 97.97 95.29 99.96 100.00 100.00
14 95.65 93.77 96.77 96.85 98.66 98.29 100.00
15 82.62 76.12 74.78 83.90 99.82 99.90 99.91
16 99.12 99.40 99.30 99.46 100.00 100.00 100.00

OA (%) 93.17 90.39 92.63 94.22 99.82 99.88 99.97
AA (%) 96.46 93.72 96.61 96.52 99.82 99.82 99.96
κ × 100 92.38 89.29 91.79 93.55 99.81 99.87 99.96

Table 5. Comparison of experimental results between Transformer-based, Mamba-based methods,
and the proposed method.

Datasets Indian Pines Pavia University Salinas

Methods DBMamba CSIL HSIMamba DBMamba CSIL HSIMamba DBMamba CSIL HSIMamba

OA (%) 96.02 92.65 90.01 97.47 94.32 84.90 99.67 98.49 -
AA (%) 97.11 91.60 89.98 96.69 92.54 88.35 99.59 98.31 -
κ×100 95.43 95.99 89.79 96.63 96.01 80.57 99.64 99.30 -

The method proposed in this paper uses PCA for dimensionality reduction of hyper-
spectral image spectral dimensions. In reference [55], a good idea was proposed to use
a 1 × 1 convolution for spectral feature compression, which achieved reasonable results.
We replaced the PCA part of the proposed method with a 1 × 1 convolution for dimen-
sionality reduction, keeping the reduction amount and subsequent processing unchanged.
Experiments were conducted on three datasets, and the results are shown in Table 6. From
Table 6, it can be observed that the 1 × 1 convolution did not perform well in this method,
and overfitting occurred during training. This may be due to the fact that using 1 × 1
convolution increased the training parameters, which required more data for training.

Table 6. The effect of PCA and 1×1 convolution on dimensionality reduction.

Dataset India Pines Pavia University Salinas

Methods PCA 1 × 1 Conv PCA 1 × 1 Conv PCA 1 × 1 Conv

OA (%) 98.72 88.46 99.40 74.66 99.97 96.62
AA (%) 97.58 85.48 98.99 62.39 99.96 94.70
κ × 100 98.54 86.85 99.21 65.88 99.96 96.24
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3.4.2. Visual Evaluation and Analysis

The classification maps of different methods on the Indian Pines, Pavia University,
and Salinas datasets are shown in Figures 12–14, respectively.
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Figure 13. Classification maps of Pavia University dataset. (a) Ground-truth map, (b) SVM
(OA = 93.81%), (c) 1D-CNN (OA = 85.82%), (d) 2D-CNN (OA = 93.30%), (e) 3D-CNN (OA = 93.52%),
(f) HybridSN (OA = 98.62%), (g) SSFTT (OA = 99.25%), (h) Proposed (OA = 99.40%).
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= 99.82%), (g) SSFTT (OA = 99.88%), (h) Proposed (OA = 99.97%). 

Through visual comparison, it can be seen that the classification maps of the pro-
posed DBMamba are closest to the actual ground-truth maps on all datasets. The classifi-
cation maps of SVM, 1D-CNN, 2D-CNN, and 3D-CNN are mixed in color and contain a 
lot of noise, which indirectly shows that these methods cannot achieve accurate classifica-
tion. 

For the Indian Pines dataset, the small purple rectangular block in the center of the 
left side of each image is a relatively difficult area to distinguish. Almost all the compared 
methods misclassify it as pink or mixed with green close to its position. The proposed 
method perfectly identifies the purple area, which also proves the superior performance 
of the method. For the Pavia University dataset, in the middle light-blue area, several other 
compared methods show considerable dark-blue clutter. However, the classification map 
in DBMamba looks very clean and closer to the actual ground-truth map. A similar situa-
tion also occurs in the classification map of the Salinas dataset. The excellent classification 
performance of the proposed method is verified by visual comparison of multiple classi-
fication maps. 

3.5. Complexity Analysis 
We compared the proposed DBMamba with 2D-CNN, 3D-CNN, HybridSN, and 

SSFTT in terms of running time, parameters, and floating-point operations (FLOPs) on the 
Indian Pines dataset. Ttr and Tte refer to the training time and testing time, respectively. 
From the results in Table 7, we observe that the proposed DBMamba has fewer parameters 
than HybridSN. Although our method uses a similar structure to HybridSN, employing 
3D-CNN and 2D-CNN to extract hyperspectral features, the introduction of Bim in the 
proposed DBMamba reduces the number of parameters, proving the effectiveness of Bim. 
In addition, the proposed DBMamba uses a 3D block with a window size of 28, which is 
larger than in other methods. However, as shown in reference [52], increasing the input 

Figure 14. Classification maps of Salinas dataset. (a) Ground-truth map, (b) SVM (OA = 93.17%),
(c) 1D-CNN (OA = 90.39%), (d) 2D-CNN (OA = 92.63%), (e) 3D-CNN (OA = 94.22%), (f) HybridSN
(OA = 99.82%), (g) SSFTT (OA = 99.88%), (h) Proposed (OA = 99.97%).

Through visual comparison, it can be seen that the classification maps of the proposed
DBMamba are closest to the actual ground-truth maps on all datasets. The classification
maps of SVM, 1D-CNN, 2D-CNN, and 3D-CNN are mixed in color and contain a lot of
noise, which indirectly shows that these methods cannot achieve accurate classification.

For the Indian Pines dataset, the small purple rectangular block in the center of
the left side of each image is a relatively difficult area to distinguish. Almost all the
compared methods misclassify it as pink or mixed with green close to its position. The
proposed method perfectly identifies the purple area, which also proves the superior
performance of the method. For the Pavia University dataset, in the middle light-blue
area, several other compared methods show considerable dark-blue clutter. However, the
classification map in DBMamba looks very clean and closer to the actual ground-truth map.
A similar situation also occurs in the classification map of the Salinas dataset. The excellent
classification performance of the proposed method is verified by visual comparison of
multiple classification maps.

3.5. Complexity Analysis

We compared the proposed DBMamba with 2D-CNN, 3D-CNN, HybridSN, and SSFTT
in terms of running time, parameters, and floating-point operations (FLOPs) on the Indian
Pines dataset. Ttr and Tte refer to the training time and testing time, respectively. From
the results in Table 7, we observe that the proposed DBMamba has fewer parameters
than HybridSN. Although our method uses a similar structure to HybridSN, employing
3D-CNN and 2D-CNN to extract hyperspectral features, the introduction of Bim in the
proposed DBMamba reduces the number of parameters, proving the effectiveness of Bim.
In addition, the proposed DBMamba uses a 3D block with a window size of 28, which is
larger than in other methods. However, as shown in reference [52], increasing the input
size significantly increases the computational load, slowing down the running time. This
explains why the proposed DBMamba takes more time compared to others.
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Table 7. Comparison of parameters, FLOPs, and running time on the Indian Pines dataset.

Metrics 2D-CNN 3D-CNN HybridSN SSFTT DBMamba

Parameters
(M) 0.295 0.32 4.846 0.148 4.338

FLOPs (M) 0.489 0.52 50.822 11.403 55.362
Ttr (s) 135 170 359.8 137 369
Tte (s) 3.23 4.90 7.92 5.19 7.95

3.6. Ablation Analysis

Note that CNNs extract local spectral–spatial features of HSIs through a small receptive
field, while the Bim encoder processes sequence data simultaneously from both forward
and backward directions to more comprehensively capture the dependencies and features
in the data. The proposed DBMamba method combines the advantages of both the CNNs
and Bim. To fully demonstrate the effectiveness of the proposed DBMamba, we performed
ablation experiments on the Indian Pines dataset according to different components to
evaluate the impact on OA, AA, and κ. The experimental results are shown in Table 8.

Table 8. Ablation studies on different components for the Indian Pines dataset (accuracy in %). The
optimal results are bolded.

Cases
Components Indicators

SSFE Forward Backward OA (%) AA (%) κ × 100

1
√

× × 93.47 90.89 92.53

2 Conv3D +
Conv2D

√ √
98.22 96.17 97.97

3
√ √

× 98.05 94.95 97.78
4

√ √ √
98.72 97.58 98.54

Specifically, the entire model is split into three components, including a spectral–
spatial feature extraction (SSFE) module consisting of a dual-branch structure of 3D and
2D convolutional layers and a module that processes data in the forward and backward
directions in Bim. Notably, when Bim is removed, the OA drops by 5.25%. In the second
experiment, using a serial arrangement of Conv3D and Conv2D instead of a parallel
arrangement resulted in a 0.5% decrease in OA. The third experiment removed the data
processing in the backward direction, and the result decreased by 0.67%. Therefore, the
ablation experiment fully verifies the effectiveness of the main modules in the proposed
DBMamba model.

4. Conclusions

This paper proposes a novel method called DBMamba to improve the performance
of HSI classification. This method organically combines CNN and Mamba structures to
significantly improve the classification accuracy. In the extraction of shallow spectral–
spatial features, we adopt a dual-branch structure. The first branch mainly uses 3D-CNN to
extract spectral–spatial features from HSIs, and the second branch uses 2D-CNN to extract
spatial features. The features obtained from the two branches are fused and converted into
a token sequence, and position encoding is added to it. In order to make full use of the
contextual information of feature sequences and enhance the ability of Mamba to perceive
the position of image features, we employ bidirectional sequence modeling to process the
feature sequences from both forward and backward directions, thereby improving the
overall performance of the model. Comparative experiments with existing classification
methods are performed on three public hyperspectral datasets. The experimental results
confirm the effectiveness and superiority of the DBMamba method. At the same time,
although the proposed DBMamba method achieves excellent classification performance,
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there is room for improvement in terms of model complexity, for example, by reducing the
number of parameters to shorten runtime.

Future research will focus on designing an end-to-end lightweight Mamba archi-
tecture to reduce the computational resource consumption and combining the idea of
cross-scanning with Mamba to improve HSI classification accuracy. In addition, Mamba
has the advantage of fast response in processing long sequence tasks, which provides new
ideas for designing classification models for the joint fusion of hyperspectral and lidar data.
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