Functionalization of ZnO Nanorods with Au Nanodots via In Situ Reduction for High-Performance Detection of Ethyl Acetate
Abstract
:1. Introduction
2. Experimental
2.1. Chemical Regent
2.2. Materials Synthesis
2.3. Fabrication and Measurement of Sensors
2.4. Characterization
3. Results and Discussion
3.1. Material Characterizations
3.2. Sensing Performance
3.3. Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiang, L.J.; Wu, S.H.; Hua, Q.L.; Bao, C.Y.; Liu, H. Volatile Organic Compounds in Human Exhaled Breath to Diagnose Gastrointestinal Cancer: A Meta-Analysis. Front. Oncol. 2021, 11, 606915. [Google Scholar] [CrossRef] [PubMed]
- Konvalina, G.; Haick, H. Sensors for Breath Testing: From Nanomaterials to Comprehensive Disease Detection. Acc. Chem. Res. 2014, 47, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.N.; Wang, X.F.; Zhang, G.Z.; Liang, H.J.; Li, T.; Zhao, Y.H.; Zhang, T.; Tan, Z.Q.; Song, X.Z. Metal-Organic Framework-Derived Porous NiFe2O4 Nanoboxes for Ethyl Acetate Gas Sensors. ACS Appl. Nano Mater. 2022, 5, 14320–14327. [Google Scholar] [CrossRef]
- Khatoon, Z.; Fouad, H.; Seo, H.K.; Alothman, O.Y.; Ansari, Z.A.; Ansari, S.G. Ethyl Acetate Chemical Sensor as Lung Cancer Biomarker Detection Based on Doped Nano-SnO2 Synthesized by Sol-Gel Process. IEEE Sens. J. 2020, 20, 12504–12511. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Zuo, J.C.; Lan, J.S.; Jiang, Z.L.; Xiao, C.; Wang, X.H.; Zuo, Y. A novel electrochemical sensor with NiSx@MoS2 composite for efficient NO2− sensing. Food Chem. 2025, 462, 140947. [Google Scholar] [CrossRef]
- Shi, G.L.; Hu, G.P.; Gu, L.C.; Rao, Y.; Zhang, Y.X.; Ali, F. Cataluminescence sensor based on LaCO3OH microspheres for volatile organic compounds detection and pattern recognition. Sens. Actuators B-Chem. 2024, 403, 135177. [Google Scholar] [CrossRef]
- Shi, G.L.; Shen, X.Y.; He, Y.G.; Ren, H. Passive Wireless Detection for Ammonia Based on 2.4 GHz Square Carbon Nanotube-Loaded Chipless RFID-Inspired Tag. IEEE Trans. Instrum. Meas. 2023, 72, 9510812. [Google Scholar] [CrossRef]
- Ling, W.; Zhu, D.; Pu, Y.; Li, H. The ppb-level formaldehyde detection with UV excitation for yolk-shell MOF-derived ZnO at room temperature. Sens. Actuators B-Chem. 2022, 355, 131294. [Google Scholar] [CrossRef]
- Xia, W.; Zhu, J.H.; Guo, W.H.; An, L.; Xia, D.G.; Zou, R.Q. Well-defined carbon polyhedrons prepared from nano metal-organic frameworks for oxygen reduction. J. Mater. Chem. A 2014, 2, 11606–11613. [Google Scholar] [CrossRef]
- Li, H.Y.; Zhao, S.N.; Zang, S.Q.; Li, J. Functional metal-organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 2020, 49, 6364–6401. [Google Scholar] [CrossRef]
- Pentyala, V.; Davydovskaya, P.; Ade, M.; Pohle, R.; Urban, G. Metal-organic frameworks for alcohol gas sensor. Sens. Actuators B-Chem. 2016, 222, 904–909. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Wang, S.; Zhai, X.; Shao, L.; Bai, X.J.; Liu, Y.L.; Wang, T.Q.; Li, Y.N.; Zhang, L.Y.; Fan, F.Q.; et al. Construction of Zn/Ni Bimetallic Organic Framework Derived ZnO/NiO Heterostructure with Superior N-Propanol Sensing Performance. ACS Appl. Mater. Interfaces 2021, 13, 9206–9215. [Google Scholar] [CrossRef] [PubMed]
- Doan, T.L.H.; Kim, J.Y.; Lee, J.H.; Nguyen, L.H.T.; Nguyen, H.T.T.; Pham, A.T.T.; Le, T.B.N.; Mirzaei, A.; Phan, T.B.; Kim, S.S. Facile synthesis of metal-organic framework-derived ZnO/CuO nanocomposites for highly sensitive and selective H2S gas sensing. Sens. Actuators B-Chem. 2021, 349, 130741. [Google Scholar] [CrossRef]
- Li, G.N.; Li, L. Highly efficient formaldehyde elimination over meso-structured M/CeO2 (M = Pd, Pt, Au and Ag) catalyst under ambient conditions. RSC Adv. 2015, 5, 36428–36433. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, J.; Zhu, M.; Ju, D.X.; Xu, H.Y.; Cao, B.Q. High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sens. Actuators B-Chem. 2014, 199, 339–345. [Google Scholar] [CrossRef]
- Xue, Z.G.; Yan, M.Y.; Yu, X.; Tong, Y.J.; Zhou, H.; Zhao, Y.F.; Wang, Z.Y.; Zhang, Y.S.; Xiong, C.; Yang, J.; et al. One-Dimensional Segregated Single Au Sites on Step-Rich ZnO Ladder for Ultrasensitive NO2 Sensors. Chem 2020, 6, 3364–3373. [Google Scholar] [CrossRef]
- Zhou, L.P.; Dai, S.Q.; Xu, S.; She, Y.Q.; Li, Y.L.; Leveneur, S.; Qin, Y.L. Piezoelectric effect synergistically enhances the performance of Ti32-oxo-cluster/BaTiO3/CuS p-n heterojunction photocatalytic degradation of pollutants. Appl. Catal. B-Environ. Energy 2021, 291, 120019. [Google Scholar] [CrossRef]
- Flytzani-Stephanopoulos, M. Gold Atoms Stabilized on Various Supports Catalyze the Water-Gas Shift Reaction. Acc. Chem. Res. 2014, 47, 783–792. [Google Scholar] [CrossRef]
- Lee, J.; Jung, Y.; Sung, S.H.; Lee, G.; Kim, J.; Seong, J.; Shim, Y.S.; Jun, S.C.; Jeon, S. High-performance gas sensor array for indoor air quality monitoring: The role of Au nanoparticles on WO3, SnO2, and NiO-based gas sensors. J. Mater. Chem. A 2021, 9, 1159–1167. [Google Scholar] [CrossRef]
- Du, B.S.; Yan, F.F.; Lin, X.H.; Liang, C.Y.; Guo, X.Z.; Tan, Y.L.; Zhen, H.; Zhao, C.J.; Shi, Y.J.; Kibet, E.; et al. A bottom-up sonication-assisted synthesis of Zn-BTC MOF nanosheets and the ppb-level acetone detection of their derived ZnO nanosheets. Sens. Actuators B-Chem. 2023, 375, 132854. [Google Scholar] [CrossRef]
- Wang, J.; Fan, S.Y.; Xia, Y.; Yang, C.; Komarneni, S. Room-temperature gas sensors based on ZnO nanorod/Au hybrids: Visible-light-modulated dual selectivity to NO2 and NH3. J. Hazard. Mater. 2020, 381, 120919. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, T.; Sivaperuman, K. Fabrication of bare and cobalt-doped ZnFe2O4 thin film as NH3 gas sensor with enhanced response through UV-light illumination. Mater. Today Chem. 2024, 38, 102049. [Google Scholar] [CrossRef]
- Huang, J.Y.; Liang, H.; Ye, J.X.; Jiang, D.T.; Sun, Y.L.; Li, X.J.; Geng, Y.F.; Wang, J.Q.; Qian, Z.F.; Du, Y. Ultrasensitive formaldehyde gas sensor based on Au-loaded ZnO nanorod arrays at low temperature. Sens. Actuators B-Chem. 2021, 346, 130568. [Google Scholar] [CrossRef]
- He, W.W.; Kim, H.K.; Warner, W.G.; Melka, D.; Callahan, J.H.; Yin, J.J. Photogenerated Charge Carriers and Reactive Oxygen Species in ZnO/Au Hybrid Nanostructures with Enhanced Photocatalytic and Antibacterial Activity. J. Am. Chem. Soc. 2014, 136, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Liu, Y.L. Enhanced acetone sensing characteristics by decorating Au nanoparticles on ZnO flower-like structures. Appl. Phys. A-Mater. Sci. Process. 2013, 111, 1151–1157. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Q.L.; Fan, Y.Z.; Sun, D.; Guan, H.; Chen, Y.; Ruan, S.P. MOF-derived ZnO nanocage decorated with Nd2O3 nanorods for high-performance triethylamine sensing. Sens. Actuators B-Chem. 2023, 389, 133877. [Google Scholar] [CrossRef]
- Chai, C.X.; Gao, J.; Zhao, G.Q.; Li, L.L.; Tang, Y.; Wu, C.; Wan, C.D. In-situ synthesis of ultrasmall Au nanoparticles on bimetallic metal-organic framework with enhanced electrochemical activity for estrone sensing. Anal. Chim. Acta 2021, 1152, 338242. [Google Scholar] [CrossRef]
- Yang, M.J.; Zhang, S.D.; Qu, F.D.; Gong, S.; Wang, C.H.; Qiu, L.; Yang, M.H.; Cheng, W.L. High performance acetone sensor based on ZnO nanorods modified by Au nanoparticles. J. Alloys Compd. 2019, 797, 246–252. [Google Scholar] [CrossRef]
- Yin, Y.Y.; Zhang, N.; Han, J.; Liu, C.X.; Adimi, S.; Wen, S.P.; Li, X.; Ruan, S.P. Metal-organic framework derived core-shell PrFeO3-functionalized α-Fe2O3 nano-octahedrons as high performance ethyl acetate sensors. Sens. Actuators B-Chem. 2019, 297, 126738. [Google Scholar] [CrossRef]
- Fan, Y.Z.; Wang, W.; Zhang, J.F.; Lu, Y.; Liu, C.X.; Adimi, S.; Zhou, J.R.; Ruan, S.P.; Chen, Y. Construction of p-n heterojunctions by modifying MOF-derived α-Fe2O3 with partially covered cobalt tungstate for high-performance ethyl acetate detection. Sens. Actuators B-Chem. 2021, 344, 130129. [Google Scholar] [CrossRef]
- Meng, F.L.; Shi, X.; Yuan, Z.Y.; Ji, H.Y.; Qin, W.B.; Shen, Y.B.; Xing, C.Y. Detection of four alcohol homologue gases by ZnO gas sensor in dynamic interval temperature modulation mode. Sens. Actuators B-Chem. 2022, 350, 130867. [Google Scholar] [CrossRef]
- Kampara, R.K.; Deenadhayalan, B.; Gopalakrishnan, J.B. Tunneling Electron Transport in ZnO Nanograins Prepared by Electrospinning Method: An Ethyl Acetate Vapour Sensor by Chemiresistive Method. J. Porous Mater. 2022, 29, 729–743. [Google Scholar] [CrossRef]
- Nakate, U.T.; Bulakhe, R.N.; Lokhande, C.D.; Kale, S.N. Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties. Appl. Surf. Sci. 2016, 371, 224–230. [Google Scholar] [CrossRef]
- Murugesan, T.; Kumar, R.R.; Ranjan, A.; Lu, M.Y.; Lin, H.N. Fabrication of large-area Au nanoparticle decorated ZnO@ZIF-8 core-shell heterostructure nanorods for ppb-level NO2 gas sensing at room temperature. Sens. Actuators B-Chem. 2024, 402, 135106. [Google Scholar] [CrossRef]
- Cao, P.J.; Cai, Y.Z.; Pawar, D.; Han, S.; Xu, W.Y.; Fang, M.; Liu, X.K.; Zeng, Y.X.; Liu, W.J.; Lu, Y.M.; et al. Au@ZnO/rGO nanocomposite-based ultra-low detection limit highly sensitive and selective NO2 gas sensor. J. Mater. Chem. C 2022, 10, 4295–4305. [Google Scholar] [CrossRef]
- Sun, M.Q.; Wang, M.Y.; Ge, C.X.; Huang, J.R.; Li, Y.F.; Yan, P.J.; Lei, S.Y.; Wang, M.S.; Bai, L.; Qiao, G.J. Au-doped ZnO@ZIF-7 core-shell nanorod arrays for highly sensitive and selective NO2 detection. Sens. Actuators B-Chem. 2023, 384, 133632. [Google Scholar] [CrossRef]
- Tang, J.F.; Fang, C.C.; Hsu, C.L. Enhanced organic gas sensor based on Cerium- and Au-doped ZnO nanowires via low temperature one-pot synthesis. Appl. Surf. Sci. 2023, 613, 156094. [Google Scholar] [CrossRef]
- Wu, C.; Zhu, X.Y.; Wang, Z.; Yang, J.; Li, Y.S.; Gu, J.L. Specific Recovery and In Situ Reduction of Precious Metals from Waste To Create MOF Composites with Immobilized Nanoclusters. Ind. Eng. Chem. Res. 2017, 56, 13975–13982. [Google Scholar] [CrossRef]
- Lee, J.S.; Katoch, A.; Kim, J.H.; Kim, S.S. Effect of Au nanoparticle size on the gas-sensing performance of p-CuO nanowires. Sens. Actuators B-Chem. 2016, 222, 307–314. [Google Scholar] [CrossRef]
- Do, V.H.; Prabhu, P.; Jose, V.; Yoshida, T.; Zhou, Y.T.; Miwa, H.; Kaneko, T.; Uruga, T.; Iwasawa, Y.; Lee, J.M. Pd-PdO Nanodomains on Amorphous Ru Metallene Oxide for High-Performance Multifunctional Electrocatalysis. Adv. Mater. 2023, 35, 2208860. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Wang, Z.H.; Fu, H.F.; Han, D.M.; Gu, F.B. Insights into the effect of Au particle size on triethylamine sensing properties based on a Au-ZnO nanoflower sensor. J. Mater. Chem. C 2022, 10, 3318–3328. [Google Scholar] [CrossRef]
Sample | Oxygen Species | Binding Energy (eV) | Relative Percentage (%) |
---|---|---|---|
ZnO | OC (chemisorbed) | 532.2 | 15.72% |
OV (vacancy) | 531.5 | 24.19% | |
OL (lattice) | 530.3 | 60.08% | |
ZnAu-200 | OC (chemisorbed) | 532.5 | 19.42% |
OV (vacancy) | 531.4 | 42.56% | |
OL (lattice) | 530.6 | 38.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Wang, W.; Fan, Y.; Fang, J.; Chen, Y.; Ruan, S. Functionalization of ZnO Nanorods with Au Nanodots via In Situ Reduction for High-Performance Detection of Ethyl Acetate. Sensors 2024, 24, 6931. https://doi.org/10.3390/s24216931
Wang Q, Wang W, Fan Y, Fang J, Chen Y, Ruan S. Functionalization of ZnO Nanorods with Au Nanodots via In Situ Reduction for High-Performance Detection of Ethyl Acetate. Sensors. 2024; 24(21):6931. https://doi.org/10.3390/s24216931
Chicago/Turabian StyleWang, Qilin, Wei Wang, Yizhuo Fan, Jian Fang, Yu Chen, and Shengping Ruan. 2024. "Functionalization of ZnO Nanorods with Au Nanodots via In Situ Reduction for High-Performance Detection of Ethyl Acetate" Sensors 24, no. 21: 6931. https://doi.org/10.3390/s24216931
APA StyleWang, Q., Wang, W., Fan, Y., Fang, J., Chen, Y., & Ruan, S. (2024). Functionalization of ZnO Nanorods with Au Nanodots via In Situ Reduction for High-Performance Detection of Ethyl Acetate. Sensors, 24(21), 6931. https://doi.org/10.3390/s24216931