Direct Measurement of the Ciliary Sulcus Diameter Using Optical Coherence Tomography—Inter-Rater Variability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Measurement Method
2.3. Validity
2.4. Statistical Analysis
3. Results and Discussion
3.1. Validity
3.2. Inter-Rater Repeatability
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reinstein, D.Z.; MacGregor, C.; Archer, T.J.; Gupta, R.; Potter, J.G. A review of posterior chamber phakic intraocular lenses. Curr. Opin. Ophthalmol. 2024, 35, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Thompson, V.; Cummings, A.B.; Wang, X. Implantable Collamer Lens Procedure Planning: A Review of Global Approaches. Clin. Ophthalmol. 2024, 18, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Galvis, V.; Tello, A.; Carreño, N.I.; Niño, C.A.; Berrospi, R.D. Impacts of Implantable Collamer Lens V4c Placement on Angle Measurements Made by Optical Coherence Tomography: Two-Year Follow-up. Am. J. Ophthalmol. 2018, 186, 172–173. [Google Scholar] [CrossRef]
- Nakamura, T.; Isogai, N.; Kojima, T.; Yoshida, Y.; Sugiyama, Y. Implantable Collamer Lens Sizing Method Based on Swept-Source Anterior Segment Optical Coherence Tomography. Am. J. Ophthalmol. 2018, 187, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Malyugin, B.E.; Shpak, A.A.; Pokrovskiy, D.F. Posterior chamber phakic intraocular lens sizing based on iris pigment layer measurements by anterior segment optical coherence tomography. J. Cataract. Refract. Surg. 2015, 41, 1616–1622. [Google Scholar] [CrossRef]
- Kojima, T.; Yokoyama, S.; Ito, M.; Horai, R.; Hara, S.; Nakamura, T.; Ichikawa, K. Optimization of an implantable collamer lens sizing method using high-frequency ultrasound biomicroscopy. Am. J. Ophthalmol. 2012, 153, 632–637.e1. [Google Scholar] [CrossRef]
- Igarashi, A.; Shimizu, K.; Kato, S.; Kamiya, K. Predictability of the vault after posterior chamber phakic intraocular lens implantation using anterior segment optical coherence tomography. J. Cataract. Refract. Surg. 2019, 45, 1099–1104. [Google Scholar] [CrossRef]
- Ghoreishi, M.; Abdi-Shahshahani, M.; Peyman, A.; Pourazizi, M. A model for predicting sulcus-to-sulcus diameter in posterior chamber phakic intraocular lens candidates: Correlation between ocular biometric parameters. Int. Ophthalmol. 2019, 39, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Reinstein, D.Z.; Archer, T.J.; Vida, R.S.; Piparia, V.; Potter, J.G. New Sizing Parameters and Model for Predicting Postoperative Vault for the Implantable Collamer Lens Posterior Chamber Phakic Intraocular Lens. J. Refract. Surg. 2022, 38, 272–279. [Google Scholar] [CrossRef]
- Moshirfar, M.; Han, K.D.; Jaafar, M.A.; Santos, J.M.; Theis, J.S.; Stoakes, I.M.; Hoopes, P.C. Comparative evaluation of multiple nomograms for predicting postoperative vault after implantable collamer lens surgery. J. Cataract. Refract. Surg. 2024, 50, 64–71. [Google Scholar] [CrossRef]
- Kim, T.; Kim, S.J.; Lee, B.Y.; Cho, H.J.; Sa, B.G.; Ryu, I.H.; Kim, J.K.; Lee, I.S.; Han, E.; Kim, H.; et al. Development of an implantable collamer lens sizing model: A retrospective study using ANTERION swept-source optical coherence tomography and a literature review. BMC Opthalmol. 2023, 23, 59. [Google Scholar] [CrossRef]
- Pop, M.; Payette, Y.; Mansour, M. Predicting sulcus size using ocular measurements. J. Cataract. Refract. Surg. 2001, 27, 1033–1038. [Google Scholar] [CrossRef]
- Lebaillif, S.; Roussel, B.; Cochener, B. Assessment of the Quantel Medical 20-Mhz Ultrasound Cinescan in intraocular measurements. J. Francais Ophthalmol. 2006, 29, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Reinstein, D.Z.; Archer, T.J.; Silverman, R.H.; Rondeau, M.J.; Coleman, D.J. Correlation of anterior chamber angle and ciliary sulcus diameters with white-to-white corneal diameter in high myopes using artemis VHF digital ultrasound. J. Refract. Surg. 2009, 25, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Li, D.j.; Wang, N.L.; Chen, S.; Li, S.N.; Mu, D.P.; Wang, T. Accuracy and repeatability of direct ciliary sulcus diameter measurements by full-scale 50-megahertz ultrasound biomicroscopy. Chin. Med. J. 2009, 122, 955–959. [Google Scholar] [PubMed]
- Kim, K.H.; Shin, H.H.; Kim, H.M.; Song, J.S. Correlation between ciliary sulcus diameter measured by 35 MHz ultrasound biomicroscopy and other ocular measurements. J. Cataract. Refract. Surg. 2008, 34, 632–637. [Google Scholar] [CrossRef]
- Hashemian, S.J.; Mohebbi, M.; Yaseri, M.; Jafari, M.E.; Nabili, S.; Hashemian, S.M.; Hashemian, M.S. Adjustment formulae to improve the correlation of white-to-white measurement with direct measurement of the ciliary sulcus diameter by ultrasound biomicroscopy. J. Curr. Ophthalmol. 2018, 30, 217–222. [Google Scholar] [CrossRef]
- Biermann, J.; Bredow, L.; Boehringer, D.; Reinhard, T. Evaluation of ciliary sulcus diameter using ultrasound biomicroscopy in emmetropic eyes and myopic eyes. J. Cataract. Refract. Surg. 2011, 37, 1686–1693. [Google Scholar] [CrossRef]
- Yokoyama, S.; Kojima, T.; Horai, R.; Ito, M.; Nakamura, T.; Ichikawa, K. Repeatability of the ciliary sulcus-to-sulcus diameter measurement using wide-scanning-field ultrasound biomicroscopy. J. Cataract. Refract. Surg. 2011, 37, 1251–1256. [Google Scholar] [CrossRef]
- Petermeier, K.; Suesskind, D.; Altpeter, E.; Schatz, A.; Messias, A.; Gekeler, F.; Szurman, P. Sulcus anatomy and diameter in pseudophakic eyes and correlation with biometric data: Evaluation with a 50 MHz ultrasound biomicroscope. J. Cataract. Refract. Surg. 2012, 38, 986–991. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, B.; Du, W.; Sun, Z.; Fan, Q.; Pang, C. The optimization of the vault-predicting formula based on the anterior segment measurements from artemis insight 100. Sci. Rep. 2024, 14, 13296. [Google Scholar] [CrossRef] [PubMed]
- Yiming, Y.; Xi, C.; Huan, Y.; Liming, C.; Na, Y.; Pei, C.; Ying, Y.; Yan, L.; Keming, Y. Evaluation of ciliary body morphology and position of the implantable collamer lens in low-vault eyes using ultrasound biomicroscopy. J. Cataract. Refract. Surg. 2023, 49, 1133–1139. [Google Scholar] [CrossRef]
- Li, P.; Johnstone, M.; Wang, R.K. Full anterior segment biometry with extended imaging range spectral domain optical coherence tomography at 1340 nm. J. BioMmed Opt. 2014, 19, 046013. [Google Scholar] [CrossRef] [PubMed]
- Eppig, T.; Mäurer, S.; Daas, L.; Seitz, B.; Langenbucher, A. Imaging the Cornea, Anterior Chamber, and Lens in Corneal and Refractive Surgery. In OCT—Applications in Ophthalmology; Lanza, M., Ed.; InTech: London, UK, 2018. [Google Scholar] [CrossRef]
- Piñero, D.P.; Puche, A.B.P.; Alió, J.L. Ciliary sulcus diameter and two anterior chamber parameters measured by optical coherence tomography and VHF ultrasound. J. Refract. Surg. 2009, 25, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Yao, J.; Chang, S.; Kanclerz, P.; Khoramnia, R.; Wang, X. Evaluation of Ocular Diameter Parameters Using Swept-Source Optical Coherence Tomography. Medicina 2023, 59, 899. [Google Scholar] [CrossRef]
- Zhang, X.F.; Li, M.; Shi, Y.; Wan, X.H.; Wang, H.Z. Repeatability and agreement of two anterior segment OCT in myopic patients before implantable collamer lenses implantation. Int. J. Ophthalmol. 2020, 13, 625–631. [Google Scholar] [CrossRef]
- Naujokaitis, T.; Auffarth, G.U.; Łabuz, G.; Kessler, L.J.; Khoramnia, R. Diagnostic Techniques to Increase the Safety of Phakic Intraocular Lenses. Diagnostics 2023, 13, 2503. [Google Scholar] [CrossRef]
- Moshirfar, M.; Webster, C.R.; Ronquillo, Y.C. Phakic intraocular lenses: An update and review for the treatment of myopia and myopic astigmatism in the United States. Curr. Opin. Ophthalmol. 2022, 33, 453–463. [Google Scholar] [CrossRef]
- Simonov, A.N.; Vdovin, G.; Rombach, M.C. Cubic optical elements for an accommodative intraocular lens. Opt. Express 2006, 14, 7757–7775. [Google Scholar] [CrossRef]
- Alvarez, L.W. Two-Element Variable-Power Spherical Lens. US3305294A, 21 February 1967. [Google Scholar]
- Alió, J.L.; Simonov, A.N.; Romero, D.; Angelov, A.; Angelov, Y.; van Lawick, W.; Rombach, M.C. Analysis of Accommodative Performance of a New Accommodative Intraocular Lens. J. Refract. Surg. 2018, 34, 78–83. [Google Scholar] [CrossRef]
- Wagner, S.; Zrenner, E.; Strasser, T. Ciliary muscle thickness profiles derived from optical coherence tomography images. BioMed Opt. Express 2018, 9, 5100–5114. [Google Scholar] [CrossRef] [PubMed]
- Patyal, S.; Yadav, A.K.; Anthony, H.; Ansari, F. Iridociliary measurements using the Anterion swept-source optical coherence tomography. Indian J. Ophthalmol. 2022, 71, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.G.; Bland, J.M. Measurement in Medicine: The Analysis of Method Comparison Studies. Statistician 1983, 32, 307. [Google Scholar] [CrossRef]
- Lovisolo, C.F.; Reinstein, D.Z. Phakic intraocular lenses. Surv. Ophthalmol. 2005, 50, 549–587. [Google Scholar] [CrossRef]
- Deshpande, K.; Shroff, R.; Biswas, P.; Kapur, K.; Shetty, N.; Koshy, A.S.; Khamar, P. Phakic intraocular lens: Getting the right size. Indian J. Ophthalmol. 2020, 68, 2880–2887. [Google Scholar] [CrossRef]
Setting | Value |
---|---|
Scan Method | 2D Single |
Focus | Anterior Segment |
B-Scan Range | 16 mm |
A/B Scan | 2000 |
Slice Repeat | 64 |
Scan Duration | 2.69 s |
Parameter | Unit | Mean ± SD [Range] | p Value * |
---|---|---|---|
Mean K (IOLMaster) | D | 43.60 ± 2.15 [38.375–47.475] | p < 0.001 |
Mean K (CASIA2) | 43.72 ± 2.12 [38.79–47.60] | ||
Keratometric astigmatism (IOLMaster) | 0.75 ± 0.65 [0–4.25] | p < 0.553 | |
Keratometric astigmatism (CASIA2) | 0.70 ± 0.49 [0.04–2.90] | ||
ACD (IOLMaster) | mm | 3.24 ± 0.38 [2.26–4.07] | p < 0.001 |
ACD (CASIA2) | 3.36 ± 0.35 [3.29–4.20] | ||
AL | 23.72 ± 1.03 [20.65–26.06] | -/- | |
WTW | 11.98 ± 0.47 [11.0–13.4] | -/- |
Value | Reader 1 | Reader 2 | R2/p-Value |
---|---|---|---|
STS | 11.63 ± 0.54 [10.66–12.83] | 11.64 ± 0.52 [10.70–12.89] | R2 = 0.986, p = 0.0167 |
SPD | 4.17 ± 0.28 [3.75–4.97] | 4.16 ± 0.28 [3.73–5.0] | R2 = 0.965, p = 0.337 |
ACW | 11.72 ± 0.44 [10.76–12.74] | -/- | |
ATA | 11.56 ± 0.40 [10.69–12.47] | -/- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eppig, T.; Seer, M.; Martinez-Abad, A.; Galvis, V.; Schütz, S.; Tello, A.; Rombach, M.C.; Alió, J.L. Direct Measurement of the Ciliary Sulcus Diameter Using Optical Coherence Tomography—Inter-Rater Variability. Sensors 2024, 24, 6950. https://doi.org/10.3390/s24216950
Eppig T, Seer M, Martinez-Abad A, Galvis V, Schütz S, Tello A, Rombach MC, Alió JL. Direct Measurement of the Ciliary Sulcus Diameter Using Optical Coherence Tomography—Inter-Rater Variability. Sensors. 2024; 24(21):6950. https://doi.org/10.3390/s24216950
Chicago/Turabian StyleEppig, Timo, Manuel Seer, Antonio Martinez-Abad, Virgilio Galvis, Saskia Schütz, Alejandro Tello, Michiel C. Rombach, and Jorge L. Alió. 2024. "Direct Measurement of the Ciliary Sulcus Diameter Using Optical Coherence Tomography—Inter-Rater Variability" Sensors 24, no. 21: 6950. https://doi.org/10.3390/s24216950
APA StyleEppig, T., Seer, M., Martinez-Abad, A., Galvis, V., Schütz, S., Tello, A., Rombach, M. C., & Alió, J. L. (2024). Direct Measurement of the Ciliary Sulcus Diameter Using Optical Coherence Tomography—Inter-Rater Variability. Sensors, 24(21), 6950. https://doi.org/10.3390/s24216950