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Abstract: Due to the uncertainty of the subsurface environment and the complexity of parameters,
particularly in feature extraction from input data and when seeking to understand bidirectional tem-
poral information, the evaluation and prediction of the rate of penetration (ROP) in real-time drilling
operations has remained a long-standing challenge. To address these issues, this study proposes
an improved LSTM neural network model for ROP prediction (CBT-LSTM). This model integrates
the capability of a two-dimensional convolutional neural network (2D-CNN) for multi-feature ex-
traction, the advantages of bidirectional long short-term memory networks (BiLSTM) for processing
bidirectional temporal information, and the dynamic weight adjustment of the time pattern attention
mechanism (TPA) for extracting crucial information in BiLSTM, effectively capturing key features in
temporal data. Initially, data are denoised using the Savitzky-Golay filter, and five correlation coeffi-
cient methods are employed to select input features, with principal component analysis (PCA) used
to reduce model complexity. Subsequently, a sliding window approach transforms the time series into
a two-dimensional structure to capture dynamic changes, constructing the model input. Finally, the
ROP prediction model is established, and search methods are utilized to identify the optimal hyper-
parameter combinations. Compared with other neural networks, CBT-LSTM demonstrates superior
performance metrics, with MAE, MAPE, RMSE, and R? values of 0.0295, 0.0357, 9.3101%, and 0.9769,
respectively, indicating the highest predictive capability. To validate the model’s robustness, noise
was introduced into the training data, and results show stable performance. Furthermore, the model’s
predictive results for other wells achieved R? values of 0.95, confirming its strong generalization
ability. This method provides a new solution for ROP prediction in real-time drilling operations,
assisting drilling engineers in better planning their operations and reducing drilling cycles.

Keywords: ROP prediction; 2D-CNN; BiLSTM; temporal pattern attention mechanism; deep learning

1. Introduction

In the oil industry, drilling is the process of creating long and narrow boreholes using
tools such as drill bits, drill strings, and drilling fluids, and it serves as a critical step
in the exploration and development of petroleum resources [1]. Optimizing the rate of
penetration (ROP) contributes to reducing drilling cycles and costs; thus, establishing a
high-accuracy ROP prediction model is of significant importance [2]. ROP is influenced
by various factors, including controllable factors (such as drill bit type, weight on bit, and
rotation speed) and uncontrollable factors (such as formation lithology and formation
pressure) [3]. High-precision ROP prediction models help minimize downtime and drilling
costs. Therefore, establishing an effective rate of penetration (ROP) prediction model can
not only help describe changes in ROP but also significantly improve drilling efficiency.

Early prediction methods primarily relied on physical laws and empirical rules, such
as the models proposed by Galle and Woods (1963), Bingham (1965), and Bourgoyne and
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Young (1974) [4], which were established through mathematical formulas or physical exper-
iments. However, due to the complexity of drilling environments, these models struggled
to accurately capture the nonlinear relationships among multiple variables, resulting in
suboptimal predictive performance. With advancements in artificial intelligence technol-
ogy, deep learning-based models for rate of penetration (ROP) prediction have gradually
emerged. These models, particularly deep learning architectures, have demonstrated strong
generalization performance, prompting many researchers to seek improvements for their
application in ROP prediction [5]. Ashrafi et al. [6] combined particle swarm optimization
(PSO) and genetic algorithms (GA) with artificial neural networks (ANNSs), finding that
this hybrid ANN significantly outperformed traditional backpropagation-trained ANNs in
accuracy. Similarly, AI-AbdulJabbar et al. [7] integrated an adaptive differential evolution
optimization algorithm with ANNs for ROP prediction in carbonate reservoirs. Al-based
models can effectively fit the complex nonlinear relationships present in drilling data,
markedly surpassing traditional physical models. However, ANN-based ROP prediction
models typically handle static data, neglecting the temporal dynamics of drilling operations,
which impacts their effectiveness in practical applications.

As understanding of drilling time series data has deepened, researchers have begun to
incorporate time series models for ROP prediction. Recurrent neural networks (RNNs) have
been widely used in ROP prediction due to their ability to capture historical information [8].
Encinas et al. [9] combined RNNs with multilayer perceptions, significantly improving ROP
prediction accuracy by leveraging the sequential nature of drilling operations, achieving
better results compared with traditional machine learning models like random forests.
Etesami et al. [10] validated the potential of RNNs within a drilling training framework,
although their prediction accuracy reached only 0.90, indicating room for further optimiza-
tion in ROP prediction tasks. These studies highlight that, despite their effectiveness in
certain contexts, RNNs face significant limitations in capturing long-term dependencies
due to issues like vanishing and exploding gradients when processing long sequences.
This has prompted researchers to explore more advanced models, such as long short-term
memory networks (LSTMs), to enhance predictive performance.

Compared with ANNs and RNNs, LSTMs are particularly adept at handling long-term
dependency information, owing to their memory cell structure, which enables outstanding
performance in ROP prediction [11]. Safarov et al. [12] conducted a thorough comparison of
traditional machine learning and deep learning methods (such as RNNs and LSTMs) in ROP
prediction; however, their study did not delve deeply into data partitioning, a critical factor
for achieving accurate ROP predictions. Liu et al. [13] designed a model that connects
LSTM and RNN for ROP prediction, but their research focused solely on deep wells,
raising questions about the model’s generalization capability. Zhang et al. [14] proposed a
model combining generative adversarial networks (GANs) with LSTM to predict ROP in
continuous coiled tubing operations. However, LSTMs can only utilize input information
from prior time points during prediction and cannot integrate outputs from the entire
time series. This limitation of unidirectional analysis prevents traditional LSTM models
from adequately addressing the complex nonlinear relationships and temporal dynamics
among drilling parameters. While LSTMs offer improvements over other models, further
exploration and optimization are still necessary in certain aspects.

Bidirectional long short-term memory networks (BiLSTMs), as an extension of unidi-
rectional LSTM networks, can capture bidirectional information within time series, thereby
enhancing the accuracy of temporal tasks [15]. For instance, Kocoglu et al. [16] found that
BiLSTM outperformed traditional and other deep learning methods in predicting produc-
tion from multiple wells in the Marcellus formation. Liang et al. [17] proposed a hybrid
model combining BiLSTM and random forests (RF) for shale gas production forecasting,
successfully addressing complex nonlinear and non-stationary characteristics. Given the
extended time span of drilling data, the use of neural networks for prediction may result in
the neglect of bidirectional information due to long-term dependencies, ultimately affecting
prediction accuracy. BiLSTM not only effectively captures contextual information from



Sensors 2024, 24, 6966

30f23

logging curves but also enhances the model’s sensitivity to changes in nonlinear features,
thereby improving data utilization and predictive performance.

The introduction of bidirectional computation in BiLSTM effectively enhances the
accuracy of temporal tasks; however, it also increases model complexity and training
costs. To address the computational burden associated with BiLSTM, attention mechanisms
have been incorporated into ROP prediction. The attention mechanism dynamically opti-
mizes the weight allocation of input features, highlighting key components and thereby
improving the model’s efficiency and accuracy. Cheng et al. [18] combined the attention
mechanism with LSTM, resulting in a significant improvement in the model’s predictive
performance. Similarly, Song et al. [19] proposed an attention-based BiLSTM model for
forecasting wind and wave energy, demonstrating that the attention mechanism markedly
enhanced the model’s performance. Although traditional attention mechanisms excel in
optimizing model performance, they still face challenges, such as high computational
complexity and attention diffusion when dealing with long-term dependencies [20]. To
address these issues, the temporal pattern attention (TPA) mechanism was introduced [21].
By dynamically allocating weights across the time series, TPA captures key temporal in-
formation, further enhancing model prediction accuracy. In ROP prediction tasks, TPA
utilizes a time-series-based attention weight matrix to help BiLSTM more effectively cap-
ture important features within the contextual information, significantly improving both
prediction accuracy and efficiency.

The combination of convolutional neural networks (CNN) and long short-term mem-
ory (LSTM) networks offers significant advantages in feature extraction and has been
widely applied to time series prediction tasks [22]. CNN effectively extracts features from
time series data through progressive convolution and pooling operations, while LSTM
selectively updates and outputs information from the memory cells using its gating mecha-
nism. This hybrid structure enhances the model’s ability to capture data features, thereby
improving the effectiveness of time series learning [23]. In multivariate time series data,
there is often local correlation between different variables. Compared with 1D-CNN, which
can only extract features along a single dimension, two-dimensional convolutional neu-
ral networks (2D-CNN) can perform convolution operations simultaneously across both
the time steps and variable dimensions. This advantage allows 2D-CNN to more effec-
tively capture relationships between multiple variables, making it particularly well-suited
for complex multivariate time series analysis. For instance, Jonkers et al. [24] combined
2D-CNN with conformal quantile regression (CQR) for regional wind power forecasting
and found that the model, when handling high-dimensional input data, exhibited fewer
parameters and lower computational complexity compared with transformer models. Ad-
ditionally, the 2D-CNN model embedded with Laplacian attention proposed by Tuyen
et al. [25] demonstrated the potential to analyze input sequence features from multiple
perspectives. Thus, 2D-CNN not only performs convolutions across features and time
steps but also effectively handles the complex multidimensional characteristics present in
drilling tasks. This capability significantly enhances the model’s ability to capture nonlinear
relationships, thereby improving overall predictive performance. Compared with 1D-CNN,
the feature extraction advantages of 2D-CNN affirm its suitability for complex time series
forecasting tasks.

Despite significant progress in ROP prediction using deep learning, existing studies
still face the following challenges:

(1) Excessive redundancy exists among input data related to the rate of penetration (ROP),
with varying contributions to ROP prediction deriving from different features, which
can easily lead to model overfitting.

(2) The complex nonlinear relationships between input variables have not been fully
explored, and the effectiveness of feature extraction requires improvement.

(38) As a time-series data problem, traditional methods have limitations in extracting
long-term dependencies, which negatively affects prediction accuracy. These issues
collectively reduce the predictive capability of the models.
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To address the aforementioned challenges, leveraging the complementary strengths of
2D-CNN and BiLSTM networks is crucial. BILSTM excels at capturing temporal features
from sequential data but has limited capacity in extracting nonlinear relationships between
input features, especially when dealing with complex input parameters, which can lead to
reduced prediction accuracy. In contrast, 2D-CNN offers strong nonlinear feature extraction
capabilities, yet its local sensitivity and inductive bias limit its ability to fully utilize global
information in time-series data. Therefore, combining these two models can facilitate the
efficient extraction and analysis of both global and local features within the data, leading to
improved predictive performance.

In summary, fully exploring feature correlations and bidirectional temporal infor-
mation within drilling data is critical to improving the accuracy of ROP prediction. To
address these challenges and provide more precise predictions, this study proposes an
improved hybrid prediction model—CBT-LSTM. The model is based on experimental
research conducted using data from four wells in a Chinese oilfield. Results indicate that
the CBT-LSTM model outperforms other models in most cases, demonstrating superior
predictive accuracy.

The main contributions of this paper include:

(1) Proposing a hybrid model (CBT-LSTM) that integrates 2D-CNN, BiLSTM, and the
temporal pattern attention (TPA) mechanism. In this model, 2D-CNN is used to
extract nonlinear feature relationships from the input data, BILSTM enhances the
global understanding of time-series data, and TPA further improves BiLSTM's focus
on key temporal features by reducing redundant information, thereby enhancing
prediction accuracy.

(2) Conducting comparative experiments with traditional neural network methods and
testing on wells of different depths. The CBT-LSTM model demonstrated superior
performance in metrics such as mean absolute error (MAE), mean absolute percentage
error (MAPE), root mean square error (RMSE), and R?, indicating its significant
feasibility and strong generalization capability.

(3) Validating the model’s robustness by introducing 10%, 20%, and 30% noise and
missing values into the training set. The results show that the model maintains strong
predictive performance even in high-noise environments, supporting its practical
applicability in real-world scenarios.

The remainder of this paper is structured as follows. Section 2 provides a detailed
description of the research methodology and the architecture of the CBT-LSTM model.
Section 3 outlines the general steps involved in ROP prediction, including data preprocess-
ing, the construction of the sliding window, and the model evaluation metrics. Section 4
presents the selection of hyperparameters for the CBT-LSTM model, a discussion and
analysis of the experimental results, and highlights the limitations and directions for future
research. Finally, Section 5 summarizes the paper and presents the conclusions.

2. Theory
2.1. Two-Dimensional Convolutional Neural Network (2D-CNN)

CNN s are a type of deep feedforward network commonly used for processing time
series, images, and audio data [26-29]. By reshaping the input dataset into a 2D format,
cross-variable features can be considered during the convolution operations. Traditional
time series prediction methods primarily rely on the autocorrelation of the sequence
itself, while 2D-CNNs integrate the time dimension into the input, allowing for more
comprehensive extraction of feature information from the time series.

Figure 1 shows the architecture of the 2D-CNN. A CNN consists of two main parts:
the feature extraction part (convolutional layers, pooling layers) and the learning part (fully
connected layers). The convolutional layer and activation function are the core components
of a convolutional neural network. The convolutional layer extracts local features from the
input data through convolution operations. By applying convolutional kernels (filters) to
each position in the input data, a feature map is generated through a dot product operation.
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The activation function introduces nonlinearity, thereby enhancing the model’s expressive
capability. Because the convolution operation itself is linear, the activation function helps
the model learn more complex mapping relationships. ReLU is one of the most widely
used activation functions; it transforms negative input values into 0 while keeping positive
inputs unchanged. Its advantages include simplicity of computation, mitigation of the
vanishing gradient problem, and acceleration of model convergence.
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Figure 1. A general structure of 2D-CNN.

Convolution operations are the core of CNNs, where kernels slide over the input data,
extracting local features by performing convolution operations on each window. By using
multiple kernels, the network can learn different features, thereby capturing the complex
structure of the input data. The convolutional layer can be represented as follows:

ci = f(w;-x; +b;) 1)

In the equation, x; represents the input of the i-th layer, c; is the output of the i-th layer,
w; is the weight matrix, b; is the bias vector, and f(-) denotes the activation function.

The pooling layer is used to reduce the output dimensions, decrease the number of
parameters, and retain critical information. Here, average pooling is chosen to select the
mean value from each region, as expressed in Equation (2):

12
V& pool (x;) = n Z xi&l )
k=1

where xf-il represents the activation value of the k-th neuron in one channel of the (i — 1)-th

layer and 7 is the number of elements within the pooling window.
Finally, the fully connected layer is responsible for mapping the features obtained
from convolution and pooling to the final output.

2.2. Bidirectional Long Short-Term Memory Network (BiLSTM)

LSTM is an optimized algorithm for RNN, effectively addressing the issues of memory
retention and gradient vanishing in traditional RNNs. LSTM manages the retention and
forgetting of information through the introduction of controllable gate mechanisms (forget
gate, input gate, and output gate). The basic unit of LSTM is shown in Figure 2, where &
represents the sigmoid activation function, and tanh represents the tanh activation function.
The LSTM algorithm implementation involves three steps.
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Figure 2. Logical structure diagram of the LSTM neural network.

First, the forget gate f; controls how much of the past memory c;_; is retained. The
input consists of the previous output and the current input [h;_1, x¢], with the output range
being (0, 1), as shown below:

ft = 5(Wf X [hp_1, x¢] + bf) 3)

Second, the input gate i; controls how much new data are adopted at the current
time step, creating new candidate memory c;. The input gate uses the sigmoid function to
control the amount of input, as shown in Equation (4). A new candidate value is created
using the tanh function and added to the candidate state, as shown in Equation (5).

it = 6(Wj x [hy—1, x¢] + b;) 4)

¢t = tanh(W, x [hy_1, x¢] + be) (5)

After processing through the forget gate and the input gate, the memory cell is updated
to ct, as shown below:

ot = 1@fr +ir®c (6)

Third, the output gate o; controls how much of the current memory c; is output to the
external state h;.
0y = 5(W0 X [ht_l,xt] + bo) 7)

hy = tanh(ct) X 0t (8)

Traditional LSTM networks can only utilize preceding contextual information [30].
To access distant information, Graves and Schmidhuber proposed the bidirectional LSTM
(BiLSTM) to better capture contextual dependencies in both direction [31]. The bidirec-
tional architecture simultaneously extracts contextual information from both directions
through forward and backward hidden layers, enhancing feature extraction efficiency and
performance. The structure of BILSTM is shown in Figure 3.

In Figure 3, h; and h; are the outputs of the forward and backward hidden layers, re-
spectively. The output and hidden sequences of the forward layer are iteratively calculated
from step 1 to step t, while those of the backward layer are iteratively calculated from step

f to step 1. ht and ht are obtained through standard LSTM calculations. The BiLSTM layer
produces an output vector Y, where each element is calculated according to Equation (11),
as follows:

Hy = LSTM (x1, hy_1) )
hy = LSTM (x1, hy_1) (10)

yt = f(he, he) (11)
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— —
where the function f couples the sequences h; and ;. The function f can be a sum function,
a multiplication function, a concatenation function, or an averaging function. The final
output of the BILSTM layer can be represented as the vector Y = [y1,y2,. . .,y:].

Ouput () @) @)
f ) f
Y1 V2 Ve
Forward
LSTM LSTM eoe —> LSTM
bzt V2 e
Backward
LSTM LSTM <— +oo————— [STM
“
Input () () (x0)

Figure 3. BiLSTM network architecture.
2.3. Temporal Pattern Attention (TPA)

Unlike traditional attention mechanisms, the temporal pattern attention (TPA) mecha-
nism focuses more on the influence of historical inputs on the current time step [32]. The
temporal attention module is adaptive and capable of extracting temporal dependencies
between inputs. In the channel dimension, meaningful historical information is enhanced,
and the impact of this information is further optimized through learned weight assign-
ments. This approach is particularly suitable for analyzing multivariate time series data
and helps improve the model’s predictive performance and accuracy. The structure is
shown in Figure 4.

-y - g

:@: Tanh  Softmax ::
| 1

Figure 4. TPA structure.

First, the hidden state output sequence H is obtained from the BiLSTM units, where ¢
is the number of time steps and s is the feature dimension.

H=[hy,hy, ... . (12)

When constructing the attention mechanism, it is necessary to initialize two train-
able parameters: the weight matrix W and the bias vector b. W is used for the linear
transformation of input features, and b adjusts the results of the linear transformation.
These parameters will be continuously updated during training. For the input sequence H,
the attention scores S are calculated for each time step, reflecting the importance of each
time step.

S =tanh(H ©® W + ) (13)

Next, the attention weights A are computed using the softmax function to perform
normalization over the time steps (axis = 1). This ensures that the attention weights assigned
to different time steps reasonably reflect their importance. The calculation formula is shown
in Equation (14).

A =softmax (S, axis = 1) (14)

Finally, the attention weights A are used to weight the input sequence H, resulting in
the context vector C, as follows:
C=A0OH (15)
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2.4. CBT-LSTM Model Structure Design

This paper constructs a CBT-LSTM model to predict ROP, and the model structure is
shown in Figure 5. First, the preprocessed data are input into the network with the shape
(number of samples, sliding window width, number of features). The network utilizes
2D-CNN for feature extraction, including convolution and pooling operations, with the
ReLU function employed as the activation function. After each convolution operation,
an average pooling layer follows. The network undergoes three layers of convolution
and pooling operations in total. Next, the three-dimensional data are reshaped into two-
dimensional data and fed into the BILSTM network. The BiLSTM network, designed for
handling long sequence data, includes two hidden layers in this model, each containing
64 units and using the tanh activation function. To enhance the model’s temporal modeling
capability, a TPA module is inserted between the two BiLSTM layers. This module assigns
importance to different features in the input sequence. It automatically learns and evaluates
the significance of various features, and assigns weights based on their importance. To
prevent overfitting, two dropout layers are added to the model, randomly dropping some
neurons. Finally, the output prediction is obtained through two fully connected layers that
use ReLU and linear activation functions, respectively.

CNN Layers Reshape BiLSTM-TPA Layers

— .
s s\

Output

\ BiLSTM1

10

ReLU

e

AveragePool2D

l

I
>

L -

1
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Figure 5. The structure of the CBT-LSTM model.

3. Methodology

The workflow for ROP prediction is mainly divided into three primary steps. The first
step is data preprocessing and feature selection. The second step involves model building
and training. The final step is model evaluation, as shown in Figure 6.

;
Data Collection

Drilling data:

ROP . . Stagel
WOB Deiaprooesalig age

Data Normalization

|

Model building

T Stage2
& training

[ Hyperparameters

e J — [ CBT-LSTM model J
Optimization

Result evaluation | Stage3

Figure 6. Workflow chart of ROP forecasting.
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3.1. Data Collection and Description

The dataset for this study is sourced from four vertical wells in an oilfield located
in southwestern China, all of which utilize the same bottom hole assembly (BHA) for
drilling. To achieve real-time prediction of the ROD, various real-time sensors are relied
upon to gather key drilling parameters. Pressure sensors are employed to monitor changes
in mud pressure, bottom hole pressure, and casing pressure, ensuring pressure balance
within the well and preventing dangerous situations such as blowouts. Drilling speed
sensors reflect real-time drilling progress by measuring the rate at which the drill bit
penetrates the formation. Logging while drilling (LWD) sensors are used to measure
the physical properties of the formation, such as gamma rays. Additionally, mud flow
sensors monitor the flow rate of the drilling fluid in real time, ensuring the cleanliness
of the borehole and preventing wall collapse or stuck drill bits. Through the coordinated
operation of these sensors, the safety and operational efficiency of the drilling process can
be effectively enhanced.

The dataset in this study strictly follows depth-based sequential data, with each row
measured in meters. The depth range and data entries of the wells are shown in Table 1.
The depths of the wells vary to ensure dataset diversity. Well A has the most extensive
data and a relatively wide depth range, which helps the model better learn and understand
geological features. The other wells, with different depth ranges, are used as validation sets
for assessing the model’s generalization performance under varying geological conditions.
Table 2 provides detailed information on all of the parameters present in Well A.

Table 1. Information on the wells in our datasets.

Well Name Depth Start (m) Depth End (m) Data Entries
Well A 987.2 2280.9 23,896
Well B 490.7 807.6 7802
Well C 301.2 633.3 6389
Well D 2434.5 3338.9 8820
Table 2. The details of the parameters of Well A.
Parameters Name Units Minimum Maximum Average Standard Deviation
Rate of penetration (ROP) m-h~! 1.531 56.072 29.675 13.589
Measured depth (MD) m 987.948 2280.910 1643.648 385.767
Weight on bit (WOB) Kgf 0.785 10.136 4.571 1.601
Average standpipe pressure (ASP) kPa 6479 20,139 15,715.624 3140.948
Average surface torque (AST) kN-m 2.113 26.553 10.453 2.888
Average rotary speed (ARS) rpm 0 180.542 135.550 30.710
Mud flow in (MFI) L-min~! 1581.233 4538.450 4063.844 412.429
Mud density in (MDI) g-cm 3 1.022 1.362 1.252 0.072
Average hookload (AH) Kgf 100.666 148.950 125.547 15.409
Hole depth (TVD) m 987.464 2279.373 1643.106 385.687
Gamma (G) GAPI 12.941 226.280 85.365 28.976

3.2. Data Preprocessing
3.2.1. Data Cleaning

Outliers and noisy samples in the dataset can negatively impact model performance.
Outliers refer to samples with unreasonable or illogical values. For example, in the dataset
used in this study, samples where the weight on bit (WOB) is zero while the ROP is greater
than zero; samples where the mud flow rate, mud density, or average surface torque are
below zero; and samples where the ROP exceeds 100 m/h or the average standpipe pressure
exceeds 25,000 kPa, are considered outliers that do not align with logical or expected values.
These outliers must be identified and manually removed from the dataset to ensure the
accuracy and reliability of the model.
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To reduce noise in the data, various methods can be employed, such as low-pass filters,
moving averages, wavelet transforms, and the Savitzky—Golay (SG) smoothing filter [33].
In this study, the Savitzky-Golay (SG) smoothing filter was used for denoising [34]. The SG
technique is a commonly used smoothing method in geosciences, widely applied for noise
reduction in petroleum logging data [6,35]. The SG filter effectively removes noise while
preserving the underlying data features and trends, avoiding the potential information
loss associated with simpler averaging methods. This filter smooths the data by fitting an
n-th order polynomial to the data within a specified window, reducing noise. The choice
of polynomial order and window size is crucial to the filter’s effectiveness. Therefore, the
SG filter was employed in this study as a denoising tool to enhance the model’s predictive
accuracy. After evaluation, the optimal polynomial order was determined to be 3, and
the optimal window size was 39. Figure 7 compares the raw data with the denoised data,
showing that the denoised data retains the trend of the original records while minimizing
noise impact.

‘WOB (Kgf) ASP (kPa) AST (kN.m) ARS (rpm) MFI (L/min) MDI (g/cm3) AH (Kgh G (GAPI) ROP (m/h)
0 3 6 9 12 5000 15,000 25,000 10 20 30 0 100 200 500 3500 5500 1 1.2 1.4 100 120 140 160 0 100 200 300 0 15 30 45 60
950

1100 7 .

1150

1200

Depth(m)

1250 4

1300

1350

1400

Figure 7. Graph comparing measured data (black lines) with denoised data (blue lines) for well A.

3.2.2. Feature Extraction

Traditional methods for predicting ROP often lack systematic parameter selection,
and the impact of different parameters on ROP is inconsistent. The interrelationships
among data can affect both the training speed and effectiveness of the model; therefore,
reasonable selection of input features is necessary before training. Over the past few
decades, significant factors influencing ROP have been identified through theoretical
analysis, laboratory experiments, and field observations, leading to the development of
various physics-based ROP models. Among these factors, weight on bit and rotary speed
are the most critical influences and must be considered as feature variables [36]. Based on
the understanding of these key influencing factors, conducting a correlation analysis will
help quantify the relationship between each feature and ROP.

First, the Pearson correlation coefficient [37] was used to assess the linear correlations
between various features and the rate of penetration (ROP). The range of the Pearson
correlation coefficient 7 is [~1, 1], where a positive r indicates a positive correlation and
a negative r indicates a negative correlation. According to the results shown in Figure 8,
parameters such as AST, ARS, MFI, and MDI exhibit strong correlations with ROP, and
are thus selected as input features. However, though MD, WOB, ASP, AH, TVD, and
G have lower correlation coefficients, this does not imply that their influence on ROP is
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insignificant. They may affect ROP indirectly or through interactions with other factors,
making it necessary to further analyze their nonlinear relationships.
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Figure 8. Pearson correlation coefficient heat map.

To evaluate the nonlinear relationships between these variables and the rate of pene-
tration (ROP), the Spearman correlation coefficient [38], Kendall correlation coefficient [39],
distance correlation coefficient [40], and maximum information coefficient [41] were uti-
lized. The Spearman correlation coefficient (Sc) and Kendall correlation coefficient (Kc)
measure the monotonic nonlinear relationships between two variables, both ranging from
[—1, 1], where 1 indicates perfect monotonic positive correlation, —1 indicates perfect
monotonic negative correlation, and 0 indicates no monotonic relationship. The distance
correlation coefficient (Dc) and maximum information coefficient (Mc) capture any depen-
dency relationship between variables, including both linear and nonlinear relationships,
with a range of [0, 1], where 0 indicates complete independence and 1 indicates complete
correlation. Table 3 presents the nonlinear correlation coefficients between MD, WOB, ASP,
AH, TVD, G, and ROP. Considering these results collectively, these six variables can also be
included as input features for the model. Based on the above analysis, this study ultimately
selects AST, ARS, MFI, MDI, MD, WOB, ASP, AH, TVD, and G as the feature variables for
the model.

Table 3. Correlation coefficients between the ROP and the features.

Features Sc Kc Dc Mc

MD 0.053 0.035 0.257 0.893
WOB —0.110 —0.094 0.320 0.483
ASP 0.146 0.096 0.302 0417
AH 0.285 0.184 0.326 0.492
TVD 0.053 0.035 0.257 0.893
G 0.150 0.098 0.187 0.303

According to the analysis in Figure 8, there is a high correlation between MD and WOB,
as well as between ASP. Similarly, there is a strong correlation between AST and ARS. These
highly correlated features may negatively impact the model’s generalization ability and
potentially lead to overfitting. Therefore, it is necessary to evaluate and select which features
to retain. To reduce redundant features in the model while preserving essential information,
principal component analysis (PCA) was employed for dimensionality reduction [42]. PCA
simplifies the model while improving its stability and generalization ability by transforming
multiple correlated variables into a smaller set of uncorrelated principal components,
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retaining the most critical information from the data. The core idea of PCA is to identify
new orthogonal directions (called principal components, PCs) such that the projected
data along these directions have the largest variance, thereby preserving the maximum
amount of information. Specifically, the principal components are linear combinations of
the original variables and are mutually independent. By calculating the eigenvalues and
eigenvectors of the covariance matrix, PCA selects the eigenvectors corresponding to the
largest eigenvalues as the principal components, effectively retaining the primary structure
and features of the data.

As shown in Figure 9, the first six principal components (PC1 to PC6) account for
98.68% of the total variance in the dataset. In contrast, the remaining four PCs account
for only 1.32%. Therefore, the original 10-dimensional dataset (with 10 variables) can be
reduced to a 6-dimensional dataset without significant information loss.
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Figure 9. Contribution rates and cumulative contribution rates of the principal components in Well
A. (a) Variation of different PCs across 10 features. (b) Cumulative contribution rates of the principal
components for the 10 features.

3.2.3. Normalization

Data normalization is crucial for model training. Drilling log data have a wide range
of values that need to be scaled to the same range to speed up the learning process.
Additionally, normalization can accelerate the convergence process when using gradient-
based optimization algorithms (such as Adam), helping the model find the optimal solution
more quickly [43]. Therefore, the min—-max scaling method is used to scale the input
sequence to a range of 0-1, where x; is the original data and y; is the normalized data, as
shown in the following formula:

(xnfzf — f) - (16)

Yi=

3.3. Sliding Window Technique for Drilling Data Processing

In this study, the sliding window technique is employed to process drilling data,
preserving the temporal characteristics of the data and fitting the input layer of the 2D con-
volutional neural network (CNN). The size of the sliding window determines the number
of data points at each time step, enabling the model to capture the relationships between
preceding and subsequent data points in the sequence, thus improving the accuracy of time
series prediction. As illustrated in Figure 10, the sliding window moves over both feature
variables and target variables.

The size of the sliding window significantly impacts the processed dataset. As the
window size increases, the number of input features rises, which affects the feature extrac-
tion performance of the CNN model. Consequently, this impacts the overall prediction
accuracy and computation time [44]. Therefore, the window width is set to 20, with a stride
of 1. The dataset partitioned in this manner is then subjected to ten-fold cross-validation to
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maximize data utilization, reduce overfitting, and ensure the stability and generalization
ability of the model.
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Figure 10. Sliding window strategy for data partitioning and concatenation.

3.4. Evaluation Metrics

The CBT-LSTM model is compared with other predictive models using the same
dataset. The effectiveness of the proposed method is evaluated using metrics such as the
coefficient of determination (R?), mean absolute error (MAE), mean absolute percentage
error (MAPE), and root mean square error (RMSE). An R? value closer to 1 indicates a
better fit of the model to the data, while smaller values of MAE, MAPE, and RMSE indicate
better model performance. The formulas for these evaluation metrics are as follows:

R2 —1— Z?=](yi _9i)2

— (17)
i1 (Vi —3/)2
1 n
MAE = 0} lyi = 9il (18)
i=1
n 1.
MAPE = 100% x 12 Vi~ ¥i (19)
sl Yi
12 T
RMSE = ;Z(}/i — i) (20)

where 1 represents the total number of samples, y; denotes the actual values, §; denotes the
predicted values, and ¥ represents the mean of the actual values across the n samples.

4. Experiments, Results, and Discussion
4.1. The Impact of Different Convolution Kernel Combinations on 2D-CNN Modeling

When constructing deep learning models, the configuration of neuron parameters is
crucial, as different settings can significantly affect the overall performance of the model.
In 2D-CNN, multiple convolution kernels are used to learn various features, effectively
addressing the multivariate correlation issues in drilling data. Therefore, the size and
number of convolution kernels play a key role in the performance of the CNN model. To
determine the optimal convolution kernel configuration, experiments were conducted to
compare the model’s performance under different settings. Specifically, the number of
layers in the 2D-CNN was fixed at three, with traditional 3 x 3 convolution kernels, as well
as 2 x 1 and 3 x 1 kernels, being selected to reduce computational cost, as per [45]. To
simplify the network design, the stride was set to the default value of 1, and zero padding
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was applied. Additionally, the number of convolution kernels was kept consistent across
the three convolutional layers. As shown in Table 4, when the convolution kernel size was
2 x 1 and the number of kernels was 64, the model achieved the highest R? value of 0.9624,
indicating the best predictive performance.

Table 4. The impact of different convolution kernel combinations on 2D-CNN model performance.

Kernel Number Kernels MAE (m/h) RMSE (m/h) MAPE (%) R?
{32, 32, 32} 0.0442 0.0580 11.8018 0.9542
2x1 {64, 64, 64} 0.0325 0.0488 10.8124 0.9624
{128, 128, 128} 0.0497 0.0672 12.7291 0.9428
{32, 32, 32} 0.0385 0.0530 11.3076 0.9573
3x1 {64, 64, 64} 0.0353 0.0518 11.0714 0.9596
{128, 128, 128} 0.0461 0.0595 12.3825 0.9499
{32, 32, 32} 0.0396 0.0545 11.5324 0.9563
3x3 {64, 64, 64} 0.0417 0.0573 11.7311 0.9555
{128, 128, 128} 0.0469 0.0625 12.4218 0.9446

4.2. Hyperparameter Optimization

All experiments were conducted on a Windows system with an Intel i5-12400 CPU
(Manufacture: Intel, Santa Clara, CA, USA), 32 GB of RAM (Manufacture: KINGBANK,
Shenzhen, China), and an NVIDIA GeForce RTX 3060 12 GB GPU (Manufacture: NVIDA,
Santa Clara, CA, USA). The development was performed using Python 3.9 and Tensor-
Flow 2.10.

To find the optimal combination of model hyperparameters, grid search, random
search, and particle swarm optimization (PSO) were used for hyperparameter tuning. Grid
search systematically evaluates each combination of hyperparameters within a predefined
range by exhaustively searching the entire space. This approach ensures that the best
configuration is found, but can be computationally expensive, especially for large search
spaces. Random search selects hyperparameter combinations randomly within the defined
parameter space. Compared with grid search, random search is more efficient at exploring
large-scale search spaces, as it can potentially locate near-optimal configurations with less
computational effort. Particle swarm optimization (PSO) is an optimization algorithm
that simulates the foraging behavior of bird flocks. It leverages swarm intelligence to
dynamically adjust particle positions in the search space, allowing for efficient exploration
and identification of the optimal solution. PSO is particularly advantageous in complex and
multi-dimensional search spaces, offering a balance between exploration and exploitation.

In this study, the selected hyperparameters for optimization are batch size, learning
rate, dropout rate of the first dropout layer, and dropout rate of the second dropout
layer. The approximate range of these hyperparameters was determined based on relevant
literature, with the specific search ranges provided in Table 5. The number of iterations was
set to 100 to ensure sufficient optimization space. When applying PSO, the particle count
was set to 40, with an inertia weight of 0.7, an individual learning factor of 0.5, a social
learning factor of 2.5, and a maximum of 100 iterations, as per [2]. These settings aim to
strike a balance between convergence speed and exploration of the search space, ensuring
the model reaches optimal hyperparameter configurations effectively.

Table 5. Search scope of hyperparameter.

Hyperparameter Value

Batch size [2%,25,26,27 28]

Learning rate [1071,1072, 5 x 1073,1 x 1073,5 x 107¢]
Dropoutl [0.1,0.2,0.3, 0.4, 0.5]

Dropout2 [0.1,0.2,0.3,04, 0.5]
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The hyperparameter tuning results obtained from the three search methods are shown
in Table 6. From the perspective of model accuracy, comparing R? and MAE values, the PSO
method performed the best, while random search and grid search yielded similar results.
This indicates that PSO more effectively enhances the neural network model’s accuracy
and is recommended over the other two methods. In the hyperparameter combination
derived from PSO, the batch size was 64, the learning rate was 0.005, dropoutl was 0.2,
and dropout2 was 0.2. Under this hyperparameter configuration, the model achieved the
highest R? value of 0.9684, indicating optimal predictive performance. Therefore, in all
subsequent experiments, the model’s hyperparameters were fixed to these optimal values.

Table 6. Best hyperparameters identified by different search methods.

Search Methods R? MAE (m/h)  Batch Size Learning Rate Dropoutl Dropout2

Grid search 0.9630 0.0327 64 0.001 0.2 0.4
Random search 0.9652 0.0316 64 0.005 0.3 0.2
PSO 0.9684 0.0301 64 0.005 0.2 0.2

4.3. Cross-Validation Method and Performance Analysis

During model development, cross-validation is commonly used as it allows for more
efficient utilization of data samples, increasing the frequency of both training and validation.
This generates more predictive results, helping to identify the optimal model parameters
and reducing the risk of overfitting. Among these methods, K-fold cross-validation divides
the dataset D into K approximately equal and mutually exclusive subsets, which is partic-
ularly suitable for large datasets as it reduces the possibility of overfitting. This method
is considered an incomplete cross-validation approach. Leave-P-out cross-validation is a
more exhaustive cross-validation method. It involves removing P samples from the entire
dataset to create all possible training and testing sets. For a dataset with n samples, this
method generates C}; sets of training—testing pairs. In this study, 5-fold cross-validation,
10-fold cross-validation, and leave-P-out cross-validation methods were used for model
comparison. The results are shown in Table 7:

Table 7. Performance comparison of different cross-validation methods.

Cross-Validation Methods MAE (m/h) RMSE (m/h) MAPE (%) R?

5-fold 0.0325 0.0392 9.7690 0.9712
10-fold 0.0295 0.0357 9.3101 0.9769
Leave-P-out 0.0316 0.0368 9.4710 0.9756

The results indicate that the 10-fold cross-validation method performed the best
across all evaluation metrics, with the lowest MAE, RMSE, and MAPE values, and the
highest R? value, reaching 0.9769. This suggests that 10-fold cross-validation not only
improves the model’s accuracy but also enhances its generalization ability on unseen
data. In comparison, while the 5-fold cross-validation method is relatively simple, it falls
slightly short in terms of predictive accuracy. The leave-P-out cross-validation method
demonstrated performance similar to the 10-fold method but, due to its computational
complexity, may be less efficient for practical applications. Therefore, it is recommended
to prioritize 10-fold cross-validation during model evaluation to achieve more reliable
predictive results and better model performance assessment.

4.4. Ablation Experiments

To validate the effectiveness of the improvements proposed in this paper, three sets of
ablation experiments were designed to evaluate the roles of BILSTM and TPA. Four models
participated in the ablation study: CBT-LSTM, 2D-CNN-LSTM-TPA, 2D-CNN-BiLSTM-
SelfAttention, and 2D-CNN-BiLSTM. All other parameters of these models were kept
consistent. Figure 11 shows the changes in loss values during the training process for the



Sensors 2024, 24, 6966 16 of 23

four models. As seen in the figure, the training loss of the CBT-LSTM model continuously
decreases throughout the training process and exhibits lower loss values compared with
the other models. The comparison results are shown in Figure 12.
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Figure 11. Training loss of the four models.
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Figure 12. Comparison results of ablation experiments.

Table 8 shows the comparison of evaluation metrics for ablation experiments on the
test set. The figure and table show that the proposed model achieves the highest prediction
accuracy. Replacing BiLSTM with a standard LSTM results in decreased prediction accu-
racy. This is likely because, while LSTM effectively handles time series data, it lacks the
bidirectional capability necessary to fully capture complex dependencies. Additionally, the
model’s prediction accuracy declines in the absence of an attention mechanism. Replacing
TPA with self-attention also leads to a reduction in prediction accuracy. Although the self-
attention mechanism is effective, TPA is better at capturing complex temporal variations and
key patterns, significantly enhancing the model’s predictive performance. These ablation
experiments demonstrate that the inclusion of BILSTM and TPA plays a crucial role in im-
proving the model’s predictive performance, fully validating the proposed enhancements.
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Table 8. Error comparison of prediction results in ablation experiments.

Model MAE (m/h) RMSE (m/h) MAPE (%) R?

CBT-LSTM 0.0295 0.0357 9.3101 0.9769
2D-CNN-LSTM-TPA 0.0350 0.0442 10.5011 0.9649
2D-CNN-BiLSTM-SelfAttention 0.0368 0.0532 10.8816 0.9596
2D-CNN-BiLSTM 0.0364 0.0579 11.0015 0.9589

4.5. Contrast Experiments

To verify the significant advantages of the proposed ROP prediction model over other
commonly used ROP prediction models, comparisons were made with 1D-CNN-LSTM,
LSTM-Attention, BiLSTM, and ANN algorithms. Figure 13 shows the comparison between
the actual ROP values and the predicted ROP values of different models. From the graph,
it is evident that the predicted ROP curve obtained by the proposed model aligns more
closely with the actual data curve compared with the ROP predictions from other models.
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Figure 13. Comparison of the predicted ROPs and the measured ROPs.

Figure 14 illustrates the linear relationship between the predicted and measured ROP
values for five different models. The CBT-LSTM model shows the closest correlation
between the predicted and measured ROP, indicating its superior performance. The pre-
diction results of different models are shown in Table 9. After comparing the performance
metrics of these five models, the CBT-LSTM model demonstrated the best performance in
key evaluation metrics such as R2, MAE, MAPE, and RMSE.

Table 9. Comparison of performance evaluation metrics of five models.

Model MAE (m/h) RMSE (m/h) MAPE (%) R?

CBT-LSTM 0.0295 0.0357 9.3101 0.9769
1D-CNN-LSTM 0.0415 0.0542 13.0366 0.9468
LSTM-Attention 0.0459 0.0601 14.6316 0.9346
BiLSTM 0.0453 0.0569 13.7240 0.9413

ANN 0.0552 0.0782 18.1144 0.8892
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Figure 14. Relationships between the predicted ROPs and the measured ROPs of five models:
(a) CBT-LSTM; (b) 1D-CNN-LSTM; (c) LSTM-Attention; (d) BILSTM; (e) ANN.

The superior performance of the CBT-LSTM model can be attributed in part to its use
of a sliding window, which transforms the time-series data into a 2D structure, enabling the
2D-CNN to capture temporal-spatial relationships more effectively than other models. This
model achieved the lowest MAE, RMSE, and MAPE, and the highest R?, indicating its ability
to accurately predict ROP with significantly improved accuracy compared with other neural
networks. Considering the evaluation of all results, the CBT-LSTM model demonstrates
superior performance across all evaluation metrics, further proving its practicality in
ROP prediction.

4.6. Model Robustness Validation

During the drilling data collection and transmission process, factors such as sensor
inaccuracies, unstable communication lines, and electromagnetic interference can lead
to measurement errors and data loss, which in turn cause data quality issues. To assess
the robustness of the model, noise is typically introduced into the training samples. By
comparing the changes in the model’s performance metrics before and after the introduction
of noise, the model’s sensitivity to varying levels of noise can be measured. This approach
helps evaluate how well the model can handle noisy and incomplete data, which is crucial
for ensuring reliable performance in real-world drilling applications.

In the study of the Well A dataset, outliers and missing values in the dataset were
already removed and denoised. To further validate the robustness of the model, this
research introduced 10%, 20%, and 30% noise and missing values into the original training
set. Specifically, the total number of elements to be processed was calculated based on
the specified percentages, and random indices were selected for those elements. For each
selected index, there was a 50% probability of adding noise and a 50% probability of setting
it to a missing value. The noise added was drawn from a normal distribution with a mean
of 0 and a standard deviation of 0.1. All hyperparameters were set to their default values.
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1.20

No denoising was applied to the introduced noise. However, as PCA dimensionality
reduction cannot handle NaN values, the missing information in the features was filled
using polynomial interpolation.

Figure 15 shows the comparison between the predicted values and the actual values
for the Well A dataset after the addition of noise. Table 10 lists the performance metrics of
the model using the original data versus the data with added noise.
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Figure 15. Comparison of predicted values and true values in Well A dataset (after adding different
proportions of noise and null values). (a) 10% noise and null values added. (b) 20% noise and null
values added. (c) 30% noise and null values added.

Table 10. Comparison of performance indicators between the original data and the model with
added noise.

Model MAE (m/h) RMSE (m/h) MAPE (%) R?

CBT-LSTM 0.0295 0.0357 9.3101 0.9769
10% 0.0404 0.0479 13.9782 0.9583
20% 0.0665 0.0764 22.2350 0.8943
30% 0.0899 0.1035 31.6087 0.8061

From the results presented in the figures and table, it can be observed that adding
10% noise has a minimal impact on the model’s performance. However, as the noise level
increases to 30%, the model’s R? value decreases significantly, though it remains at 0.8061.
This demonstrates that the model retains strong robustness, even with a higher noise level.
These findings provide strong support for the model’s application in complex drilling
environments, where data quality may be compromised due to various external factors.

4.7. Model Generalization Verification

To validate the generalization capability of the CBT-LSTM model, it was applied to
three other wells (Wells B, C, and D) in the same region for training and testing. The predic-
tion results for these wells are shown in Figures 16-18. Figures 16a, 17a and 18a display the
fit between the actual ROP and the predicted ROP for the three wells, demonstrating that
the two curves generally remain consistent. Figures 16b, 17b and 18b show scatter plots
of the actual ROP versus the predicted ROP, with most blue points distributed near the
orange line, indicating a strong correlation between the actual and predicted ROP values.
Figures 16¢, 17c and 18c illustrate the relative error between the actual and predicted val-
ues. The errors are relatively small for Well B, and although there are fluctuations for Wells
C and D, the errors remain within an acceptable range.

The evaluation metric results are presented in Table 11. The model generally performs
well in most cases, especially on the datasets for Wells B and D. The performance is slightly
inferior on the Well C dataset, possibly due to the model’s insufficient learning capability
for shallower well depths. Overall, the model accurately captures the complex nonlinear
relationship between the actual ROP and its features, demonstrating good generalization
performance across different wells.
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Figure 16. The predictive performance of CBT-LSTM on Well B. (a) Comparison between real ROP
and predicted ROP. (b) Cross-plot of real ROP and predicted ROP. (c) Relative error between real
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Figure 17. The predictive performance of CBT-LSTM on Well C. (a) Comparison between real ROP
and predicted ROP. (b) Cross-plot of real ROP and predicted ROP. (c) Relative error between real
ROP and predicted ROP.
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Figure 18. The predictive performance of CBT-LSTM on Well D. (a) Comparison between real ROP
and predicted ROP. (b) Cross-plot of real ROP and predicted ROP. (c) Relative error between real
ROP and predicted ROP.

Table 11. Evaluation results of the model on three wells.

Well Name MAE (m/h) RMSE (m/h) MAPE (%) R?

Well B 0.0089 0.0130 2.1395 0.9865
Well C 0.0214 0.0581 3.4097 0.9534
Well D 0.0175 0.0230 8.6426 0.9813

4.8. Limitations and Future Directions

Despite achieving high accuracy and generalization capability in ROP prediction
through neural networks, the main limitation of this study lies in the scope of the data.
First, the various parameters in the drilling process may differ, as different regions and
formations involve distinct bit designs, operations, and geological parameters. A mismatch
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between the model’s training conditions and the actual application environment could
lead to a decrease in predictive accuracy. Moreover, the complexity and uncertainty of
subsurface geological conditions across different global regions mean that this model has
not yet been fully validated in diverse real-world settings, particularly in wells outside the
original test area. This constitutes a major limitation of the current research.

In future work, it is necessary to evaluate the model using more generalized datasets,
such as data from different oil and gas wells and varied operational scenarios, especially
when wells have a high inclination. Additionally, there will be an exploration of integrat-
ing cutting-edge deep learning techniques, such as reinforcement learning and transfer
learning, to deeply mine the intrinsic patterns in the data and further enhance the model’s
predictive accuracy and robustness. Finally, the improved model will be integrated into
real-time monitoring systems, enabling real-time safety prediction and monitoring during
the drilling process.

5. Conclusions

To address the issues of low ROP prediction accuracy and insufficient utilization of
data features, this paper proposes a novel ROP prediction model called CBT-LSTM, which
integrates 2D-CNN, BiLSTM, and temporal pattern attention (TPA). In this model, 2D-CNN
is responsible for extracting complex feature relationships from the processed data, BILSTM
captures bidirectional information within the data, and TPA dynamically assigns feature
weights to enhance the network’s ability to extract critical information.

The experiments were conducted using data from four vertical wells in a Chinese
oilfield. First, noise was reduced using an SG filter, and features were selected using
five different correlation coefficient methods. Principal component analysis (PCA) was
then applied for dimensionality reduction, and a sliding window approach was used to
convert one-dimensional sequential data into two-dimensional spatial sequence data. By
comparing various hyperparameter optimization algorithms and cross-validation methods,
the optimal combination was identified. Additionally, ablation experiments were conducted
to validate the importance of BILSTM and TPA in improving the model’s performance.

To validate the effectiveness and potential advantages of the proposed model, a
comprehensive comparison was conducted with benchmark models including 1D-CNN-
LSTM, LSTM-Attention, BILSTM, and ANN. The CBT-LSTM model achieved MAE, MAPE,
RMSE, and R? values of 0.0295, 0.0357, 9.3101%, and 0.9769, respectively, demonstrating
higher prediction accuracy than the other models. Additionally, to test the robustness of
the model, noise and missing values were introduced into the training data from Well A.
When the proportion of outliers was 10%, 20%, and 30%, the model’s R? values were 0.9583,
0.8943, and 0.8061, respectively. Although the model’s accuracy declined with increasing
noise, it remained above 0.80, indicating strong resilience in handling anomalies, further
validating its robustness. Finally, in generalization experiments on the other three wells,
the model achieved R? values exceeding 0.95, confirming its strong generalization ability
across different wells and operational conditions.

By combining theoretical knowledge with practical implementation, this study con-
ducted extensive experiments to validate the effectiveness of the proposed model. The
experimental results clearly demonstrate the superiority of the CBT-LSTM model. This
research not only provides an effective approach by which to improving ROP predic-
tion accuracy but also offers crucial technical support for the optimization of real-time
drilling operations.

Author Contributions: Conceptualization, K.B.; methodology, K.B., S.J. and S.D.; software, Z.Z;
validation, S.J.; formal analysis, K.B.; investigation, S.J.; resources, K.B.; data curation, S.J. and Z.Z,;
writing—original draft, S.J.; writing—review and editing, K.B., Z.Z. and S.D.; visualization, S.J. and
S.D.; supervision, K.B.; project administration, K.B.; funding acquisition, K.B. All authors have read
and agreed to the published version of the manuscript.



Sensors 2024, 24, 6966 22 of 23

Funding: This research was funded by the Open Fund of the Hubei Key Laboratory of Drilling and
Production Engineering for Oil and Gas, Yangtze University, grant number YQZC202205.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used in this study is not publicly available. Researchers
with requests should contact the corresponding author. We will provide support and additional
information within reasonable boundaries.

Acknowledgments: The authors sincerely acknowledge Ce Zhan for his invaluable contributions
to the manuscript and his valuable advice and assistance in the project preparation and execution,
which significantly enriched our research findings.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ma, T; Chen, P; Zhao, ]. Overview on Vertical and Directional Drilling Technologies for the Exploration and Exploitation of Deep
Petroleum Resources. Geomech. Geophys. Geo-Energy Geo-Resour. 2016, 2, 365-395. [CrossRef]

2. Mehrad, M,; Bajolvand, M.; Ramezanzadeh, A.; Neycharan, ].G. Developing a New Rigorous Drilling Rate Prediction Model
Using a Machine Learning Technique. J. Pet. Sci. Eng. 2020, 192, 107338. [CrossRef]

3.  Alsaihati, A.; Elkatatny, S.; Gamal, H. Rate of Penetration Prediction While Drilling Vertical Complex Lithology Using an
Ensemble Learning Model. |. Pet. Sci. Eng. 2022, 208, 109335. [CrossRef]

4. Khalilidermani, M.; Knez, D. A Survey of Application of Mechanical Specific Energy in Petroleum and Space Drilling. Energies
2022, 15, 3162. [CrossRef]

5. Zheng, Q.; Zhao, P; Zhang, D.; Wang, H. MR-DCAE: Manifold Regularization-Based Deep Convolutional Autoencoder for
Unauthorized Broadcasting Identification. Int. J. Intell. Syst. 2021, 36, 7204-7238. [CrossRef]

6.  Ashrafi, S.B.; Anemangely, M.; Sabah, M.; Ameri, M.]. Application of Hybrid Artificial Neural Networks for Predicting Rate of
Penetration (ROP): A Case Study from Marun Oil Field. J. Pet. Sci. Eng. 2019, 175, 604-623. [CrossRef]

7. Al-AbdulJabbar, A.; Elkatatny, S.; Abdulhamid Mahmoud, A.; Moussa, T.; Al-Shehri, D.; Abughaban, M.; Al-Yami, A. Prediction
of the Rate of Penetration While Drilling Horizontal Carbonate Reservoirs Using the Self-Adaptive Artificial Neural Networks
Technique. Sustainability 2020, 12, 1376. [CrossRef]

8.  Huang, R.; Wei, C.; Wang, B.; Yang, J.; Xu, X.; Wu, S.; Huang, S. Well Performance Prediction Based on Long Short-Term Memory
(LSTM) Neural Network. J. Pet. Sci. Eng. 2022, 208, 109686. [CrossRef]

9.  Encinas, M.A.; Tunkiel, A.T,; Sui, D. Downhole Data Correction for Data-Driven Rate of Penetration Prediction Modeling. J. Pet.
Sci. Eng. 2022, 210, 109904. [CrossRef]

10. Etesami, D.; Shirangi, M.G.; Zhang, W. A Semiempirical Model for Rate of Penetration with Application to an Offshore Gas Field.
SPE Drill. Complet. 2021, 36, 29—46. [CrossRef]

11.  Tu, B,; Bai, K; Zhan, C.; Zhang, W. Real-Time Prediction of ROP Based on GRU-Informer. Sci. Rep. 2024, 14, 2133. [CrossRef]
[PubMed]

12.  Safarov, A.; Iskandarov, V.; Solomonov, D. Application of Machine Learning Techniques for Rate of Penetration Prediction. In
Proceedings of the SPE Annual Caspian Technical Conference, Nur-Sultan, Kazakhstan, 15-17 November 2022; SPE: Richardson,
TX, USA, 2022; p. D021S013R002. [CrossRef]

13. Liu, H; Jin, Y;; Song, X.; Pei, Z. Rate of Penetration Prediction Method for Ultra-Deep Wells Based on LSTM-FNN. Appl. Sci. 2022,
12,7731. [CrossRef]

14. Zhang, W.; Bai, K.; Zhan, C.; Tu, B. Parameter Prediction of Coiled Tubing Drilling Based on GAN-LSTM. Sci. Rep. 2023, 13, 10875.
[CrossRef] [PubMed]

15.  Yin, Q.; Zhou, Y.; Rao, J. An Intelligent Prediction Method for Surface Settlement of Shield Tunnel Construction Based on
CNN-BiLSTM-SA. KSCE J. Civ. Eng. 2024, 100061. [CrossRef]

16. Kocogluy, Y.; Gorell, S.; McElroy, P. Application of Bayesian Optimized Deep Bi-LSTM Neural Networks for Production Forecasting
of Gas Wells in Unconventional Shale Gas Reservoirs. In Proceedings of the Unconventional Resources Technology Conference,
Houston, TX, USA, 26-28 July 2021; pp. 2176-2196. [CrossRef]

17. Liang, B, Liu, J.; Kang, L.-X,; Jiang, K; You, J.-Y.; Jeong, H.; Meng, Z. A Novel Framework for Predicting Non-Stationary
Production Time Series of Shale Gas Based on BiLSTM-RF-MPA Deep Fusion Model. Pet. Sci. 2024. [CrossRef]

18. Cheng, Z.; Zhang, F; Zhang, L.; Yang, S.; Wu, J.; Li, T,; Liu, Y. A Sequential Feature-Based Rate of Penetration Representation
Prediction Method by Attention Long Short-Term Memory Network. SPE ]. 2024, 29, 681-699. [CrossRef]

19. Song, D.; Yu, M.; Wang, Z.; Wang, X. Wind and Wave Energy Prediction Using an AT-BiLSTM Model. Ocean. Eng. 2023,
281, 115008. [CrossRef]

20. Zhang, X.; He, C.; Lu, Y,; Chen, B.; Zhu, L.; Zhang, L. Fault Diagnosis for Small Samples Based on Attention Mechanism.

Measurement 2022, 187, 110242. [CrossRef]


https://doi.org/10.1007/s40948-016-0038-y
https://doi.org/10.1016/j.petrol.2020.107338
https://doi.org/10.1016/j.petrol.2021.109335
https://doi.org/10.3390/en15093162
https://doi.org/10.1002/int.22586
https://doi.org/10.1016/j.petrol.2018.12.013
https://doi.org/10.3390/su12041376
https://doi.org/10.1016/j.petrol.2021.109686
https://doi.org/10.1016/j.petrol.2021.109904
https://doi.org/10.2118/202481-PA
https://doi.org/10.1038/s41598-024-52261-7
https://www.ncbi.nlm.nih.gov/pubmed/38272964
https://doi.org/10.2118/212088-MS
https://doi.org/10.3390/app12157731
https://doi.org/10.1038/s41598-023-37960-x
https://www.ncbi.nlm.nih.gov/pubmed/37407667
https://doi.org/10.1016/j.kscej.2024.100061
https://doi.org/10.15530/urtec-2021-5418
https://doi.org/10.1016/j.petsci.2024.05.012
https://doi.org/10.2118/217994-PA
https://doi.org/10.1016/j.oceaneng.2023.115008
https://doi.org/10.1016/j.measurement.2021.110242

Sensors 2024, 24, 6966 23 of 23

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Shih, S.-Y.; Sun, E-K.; Lee, H. Temporal Pattern Attention for Multivariate Time Series Forecasting. Mach. Learn. 2019, 108,
1421-1441. [CrossRef]

Wu, Q.; Guan, E; Lv, C.,; Huang, Y. Ultra-Short-Term Multi-Step Wind Power Forecasting Based on CNN-LSTM. IET Renew. Power
Gener. 2021, 15, 1019-1029. [CrossRef]

Rosas, M.A.T.; Pérez, M.R.; Pérez, E.R.M. Itineraries for Charging and Discharging a BESS Using Energy Predictions Based on a
CNN-LSTM Neural Network Model in BCS, Mexico. Renew. Energy 2022, 188, 1141-1165. [CrossRef]

Jonkers, ].; Avendano, D.N.; Van Wallendael, G.; Van Hoecke, S. A Novel Day-Ahead Regional and Probabilistic Wind Power
Forecasting Framework Using Deep CNNs and Conformalized Regression Forests. Appl. Energy 2024, 361, 122900. [CrossRef]
Nguyen-Duc, T.; Do-Dinh, H.; Fujita, G.; Tran-Thanh, S. Multi 2D-CNN-Based Model for Short-Term PV Power Forecast
Embedded with Laplacian Attention. Energy Rep. 2024, 12, 2086-2096. [CrossRef]

Han, L.; Yu, C.; Xiao, K.; Zhao, X. A New Method of Mixed Gas Identification Based on a Convolutional Neural Network for
Time Series Classification. Sensors 2019, 19, 1960. [CrossRef]

Moskolai, W.R.; Abdou, W.; Dipanda, A.; Kolyang. Application of Deep Learning Architectures for Satellite Image Time Series
Prediction: A Review. Remote Sens. 2021, 13, 4822. [CrossRef]

Khamees, A.A.; Hejazi, H.D.; Alshurideh, M.; Salloum, S.A. Classifying Audio Music Genres Using CNN and RNN. In Proceedings
of the International Conference on Advanced Machine Learning Technologies and Applications, Cairo, Egypt, 20-22 March 2021;
Springer: Cham, Switzerland, 2021; pp. 315-323. [CrossRef]

Zhan, C.; Bai, K.; Tu, B.; Zhang, W. Offshore Oil Spill Detection Based on CNN, DBSCAN, and Hyperspectral Imaging. Sensors
2024, 24, 411. [CrossRef]

Mekruksavanich, S.; Jitpattanakul, A. Lstm Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in
Smart Homes. Sensors 2021, 21, 1636. [CrossRef] [PubMed]

Ghasemlounia, R.; Gharehbaghi, A.; Ahmadi, F.; Saadatnejadgharahassanlou, H. Developing a Novel Framework for Forecasting
Groundwater Level Fluctuations Using Bi-Directional Long Short-Term Memory (BiLSTM) Deep Neural Network. Comput.
Electron. Agric. 2021, 191, 106568. [CrossRef]

de Santana Correia, A.; Colombini, E.L. Attention, Please! A Survey of Neural Attention Models in Deep Learning. Artif. Intell.
Rev. 2022, 55, 6037-6124. [CrossRef]

Ebadi, L.; Shafri, H.Z.; Mansor, S.B.; Ashurov, R. A Review of Applying Second-Generation Wavelets for Noise Removal from
Remote Sensing Data. Environ. Earth Sci. 2013, 70, 2679-2690. [CrossRef]

John, A.; Sadasivan, J.; Seelamantula, C.S. Adaptive Savitzky-Golay Filtering in Non-Gaussian Noise. IEEE Trans. Signal Process.
2021, 69, 5021-5036. [CrossRef]

Sharifinasab, M.H.; Niri, M.E.; Masroor, M. Developing GAN-Boosted Artificial Neural Networks to Model the Rate of Drilling
Bit Penetration. Appl. Soft Comput. 2023, 136, 110067. [CrossRef]

Zhang, C.; Song, X.; Su, Y.; Li, G. Real-Time Prediction of Rate of Penetration by Combining Attention-Based Gated Recurrent
Unit Network and Fully Connected Neural Networks. J. Pet. Sci. Eng. 2022, 213, 110396. [CrossRef]

Baak, M.; Koopman, R.; Snoek, H.; Klous, S. A New Correlation Coefficient between Categorical, Ordinal and Interval Variables
with Pearson Characteristics. Comput. Stat. Data Anal. 2020, 152, 107043. [CrossRef]

Jia, K,; Yang, Z.; Zheng, L.; Zhu, Z.; Bi, T. Spearman Correlation-Based Pilot Protection for Transmission Line Connected to
PMSGs and DFIGs. IEEE Trans. Ind. Inform. 2020, 17, 4532-4544. [CrossRef]

Deng, J.; Deng, Y.; Cheong, K.H. Combining Conflicting Evidence Based on Pearson Correlation Coefficient and Weighted Graph.
Int. ]. Intell. Syst. 2021, 36, 7443-7460. [CrossRef]

Bhattacharjee, A. Distance Correlation Coefficient: An Application with Bayesian Approach in Clinical Data Analysis. J. Mod.
Appl. Stat. Methods 2014, 13, 354-366. [CrossRef]

Reshef, D.; Reshef, Y.; Mitzenmacher, M.; Sabeti, P. Equitability Analysis of the Maximal Information Coefficient, with Compar-
isons. arXiv 2013, arXiv:1301.6314. [CrossRef]

Hasan, B.M.S.; Abdulazeez, A.M. A Review of Principal Component Analysis Algorithm for Dimensionality Reduction. J. Soft
Comput. Data Min. 2021, 2, 20-30.

Xie, X.; Zhou, P; Li, H.; Lin, Z.; Yan, S. Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models.
IEEE Trans. Pattern Anal. Mach. Intell. 2024. [CrossRef]

Skydt, M.R.; Bang, M.; Shaker, H.R. A Probabilistic Sequence Classification Approach for Early Fault Prediction in Distribution
Grids Using Long Short-Term Memory Neural Networks. Measurement 2021, 170, 108691. [CrossRef]

Zhen, Y.; Zhang, A.; Zhao, X.; Ge, J.; Zhao, Z.; Yang, C. Prediction of Deep Low Permeability Sandstone Seismic Reservoir Based
on CBAM-CNN. Geoenergy Sci. Eng. 2024, 242, 213241. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1007/s10994-019-05815-0
https://doi.org/10.1049/rpg2.12085
https://doi.org/10.1016/j.renene.2022.02.047
https://doi.org/10.1016/j.apenergy.2024.122900
https://doi.org/10.1016/j.egyr.2024.08.020
https://doi.org/10.3390/s19091960
https://doi.org/10.3390/rs13234822
https://doi.org/10.1007/978-3-030-69717-4_31
https://doi.org/10.3390/s24020411
https://doi.org/10.3390/s21051636
https://www.ncbi.nlm.nih.gov/pubmed/33652697
https://doi.org/10.1016/j.compag.2021.106568
https://doi.org/10.1007/s10462-022-10148-x
https://doi.org/10.1007/s12665-013-2325-z
https://doi.org/10.1109/TSP.2021.3106450
https://doi.org/10.1016/j.asoc.2023.110067
https://doi.org/10.1016/j.petrol.2022.110396
https://doi.org/10.1016/j.csda.2020.107043
https://doi.org/10.1109/TII.2020.3018499
https://doi.org/10.1002/int.22593
https://doi.org/10.22237/jmasm/1398918120
https://doi.org/10.48550/arXiv.1301.6314
https://doi.org/10.1109/TPAMI.2024.3423382
https://doi.org/10.1016/j.measurement.2020.108691
https://doi.org/10.1016/j.geoen.2024.213241

	Introduction 
	Theory 
	Two-Dimensional Convolutional Neural Network (2D-CNN) 
	Bidirectional Long Short-Term Memory Network (BiLSTM) 
	Temporal Pattern Attention (TPA) 
	CBT-LSTM Model Structure Design 

	Methodology 
	Data Collection and Description 
	Data Preprocessing 
	Data Cleaning 
	Feature Extraction 
	Normalization 

	Sliding Window Technique for Drilling Data Processing 
	Evaluation Metrics 

	Experiments, Results, and Discussion 
	The Impact of Different Convolution Kernel Combinations on 2D-CNN Modeling 
	Hyperparameter Optimization 
	Cross-Validation Method and Performance Analysis 
	Ablation Experiments 
	Contrast Experiments 
	Model Robustness Validation 
	Model Generalization Verification 
	Limitations and Future Directions 

	Conclusions 
	References

