
Citation: Chen, Y.; Wang, W.; Yan, S.;

Wang, Y.; Zheng, X.; Lv, C. Application

of Electroencephalography Sensors

and Artificial Intelligence in

Automated Language Teaching.

Sensors 2024, 24, 6969. https://

doi.org/10.3390/s24216969

Academic Editor: Christoph M.

Friedrich

Received: 18 August 2024

Revised: 26 October 2024

Accepted: 29 October 2024

Published: 30 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Application of Electroencephalography Sensors and Artificial
Intelligence in Automated Language Teaching
Yanlin Chen, Wuxiong Wang, Shen Yan, Yiming Wang, Xinran Zheng and Chunli Lv *

China Agricultural University , Beijing 100083, China
* Correspondence: lvcl@cau.edu.cn

Abstract: This study developed an automated language learning teaching assessment system based
on electroencephalography (EEG) and differential language large models (LLMs), aimed at enhancing
language instruction effectiveness by monitoring learners’ cognitive states in real time and personal-
izing teaching content accordingly. Through detailed experimental design, the paper validated the
system’s application in various teaching tasks. The results indicate that the system exhibited high
precision, recall, and accuracy in teaching effectiveness tests. Specifically, the method integrating
differential LLMs with the EEG fusion module achieved a precision of 0.96, recall of 0.95, accuracy of
0.96, and an F1-score of 0.95, outperforming other automated teaching models. Additionally, ablation
experiments further confirmed the critical role of the EEG fusion module in enhancing teaching
quality and accuracy, providing valuable data support and theoretical basis for future improvements
in teaching methods and system design.

Keywords: EEG sensors in education; real-time cognitive monitoring; sensor-based learning assessment;
differential adaptive learning models; deep learning

1. Introduction

In the context of contemporary globalization, language learning is recognized as an
interdisciplinary process within a multilingual, multicultural reality [1,2]. As a fundamental
discipline, the innovation of teaching and assessment methods plays a critical role in
enhancing the quality of education [3,4]. Effective evaluation of learning outcomes is
considered a crucial component of the teaching process, essential for improving student
learning outcomes and optimizing teaching practices [5]. Multidimensional assessments
are necessary, requiring a variety of tools and technologies [6]. The use of advanced
technologies to assess learning outcomes has become a focal point of research [7], especially
in language learning. This paper proposes an automated language learning teaching
assessment system based on electroencephalography (EEG) and differential language
large models (LLMs), aiming to explore new pathways combining brain signal analysis
with big data processing techniques to optimize the teaching and assessment processes of
language learning.

Traditionally, language learning has been viewed as a “black box”, focusing only on ex-
ternal inputs (such as students, teachers, resources) and expected outputs (knowledge and
skills) [8], with the responsibility for assessment lying entirely with teachers. The primary
assessment methods have relied on paper-based tests and subjective evaluations by teach-
ers [9], which, while effective, come with numerous limitations. For instance, paper-based
tests typically assess students’ language levels at specific time points, failing to comprehen-
sively reflect the ongoing language learning process or real-time progress [10]. Moreover,
traditional assessment methods are operationally cumbersome and time-consuming, po-
tentially impacting teaching efficiency and learner motivation. With the evolution of
educational technology, there is a pressing need to develop more efficient, objective tools
for language learning assessment.
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EEG technology, as a method capable of real-time monitoring of brain activity, has
been extensively applied in medical and psychological research [11]. The integration of
EEG into the educational field, particularly for assessing learning outcomes, provides
a novel research tool [12,13]. Bashir et al. [14] suggest that compared to traditional as-
sessment methods, EEG technology is less susceptible to assessor bias and can produce
quantitative data. By analyzing changes in brainwaves during the learning process, EEG
can more accurately reflect learners’ cognitive states and efficiency, yet it faces challenges
such as significant computational errors. Ramires et al. [15] developed a machine learning
tool using a Multivariate Linear Regression (MLR) model to predict the cognitive perfor-
mance of university students under different learning modalities. This study involved
collecting EEG signals using the OpenBCI (OpenBCI is an open-source brain–computer
interface platform), system, cleaning data with the automatic speech recognition algorithm,
calculating various power ratios, selecting significant features through correlation anal-
ysis, and inputting these features into the MLR model, achieving a maximum accuracy
of 85.67%. Al-Nafjan et al. [16] introduced an EEG-based brain–computer interface (BCI)
system to monitor student attention during online learning. Features were extracted using
Fast Fourier Transform, achieving 96% accuracy with the Random Forest (RF) algorithm.
Fuentes et al. [17] presented an EEG platform for real-time monitoring of student attention,
showing that the power spectral density (PSD) of the Beta band significantly correlates
with academic performance (r = 0.53, p = 0.003), outperforming traditional subjective as-
sessments by teachers. By analyzing changes in brainwaves during the learning process, a
more precise understanding of learners’ cognitive states and efficiency can be achieved,
thus providing real-time feedback and personalized guidance for teaching.

Simultaneously, LLMs, such as Generative Pre-Trained (GPT) and Bidirectional En-
coder Representations from Transformers (BERT), have demonstrated remarkable capa-
bilities in language understanding and generation tasks [18]. These models, trained on
extensive datasets, are able to capture the deep structures of language, providing power-
ful tools for language teaching. Abedi et al. [19] applied LLMs and chatbots in courses,
validating their effectiveness in answering complex questions, autonomous learning, and
providing immediate feedback. They also extended the functionality of chatbots through
integration with smart prompts and plugins like Wolfram Alpha, enhancing teaching qual-
ity. Li et al. [20] examined the capabilities of LLMs in mathematics, writing, programming,
reasoning, and knowledge questioning, noting that while traditional education relies on
teachers, online education, although cost-effective, offers limited personalized learning.
LLMs, like ChatGPT, excel in understanding, reasoning, and problem-solving, bringing
new opportunities to the education sector. Bonner et al. [21] noted that LLMs can provide
creative activities in language classes, understanding dialogues, and generating texts, offer-
ing personalized teaching materials and feedback for language learning. However, despite
the outstanding performance of these models in language tasks, integrating them effectively
to assess and enhance language learning remains a challenge. The main contributions of
this paper include the following:

1. EEG fusion module: The core of this module lies in using EEG data to monitor
changes in brain activity during the language learning process. This monitoring can
provide crucial information about learners’ cognitive load, attention distribution, and
emotional states, essential for assessing learning outcomes.

2. Differential LLMs: Traditional language models generally apply the same processing
and response mechanisms to all users, whereas differential language large models
adjust according to each learner’s specific circumstances (such as learning history,
cognitive abilities, and personal preferences). Differential LLMs, by analyzing the
interaction data between learners and the model, can learn and simulate the most
effective teaching strategies to accommodate unique learner needs. For example, the
model might employ more intuitive and repetitive teaching methods for beginners,
while adopting more complex and challenging tasks for advanced learners.
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3. Differential loss function: During the model training process, the differential loss func-
tion optimizes the learning path of the model, ensuring that it not only learns general
linguistic rules but also captures specific patterns related to individual learners.

In summary, through technological innovation, this system achieves a deep under-
standing and real-time, dynamic assessment of the language learning process, providing a
novel solution for the field of language education.

2. Related Work
2.1. EEG in Education

The introduction of EEG technology has provided a new perspective for monitoring
and assessing the learning process amid the rapid development of educational technolo-
gies [22–24]. As a non-invasive technique capable of real-time monitoring of brain activity,
EEG captures the electrical activity on the scalp, reflecting the functional state of the
brain [25]. In the field of education, the application of EEG allows researchers to directly
observe changes in brain activity during learning activities [16,26], closely linked to cog-
nitive functions and emotional states, providing valuable physiological data for a deep
understanding of the learning process.

EEG signals are primarily obtained by measuring the voltage differences from the elec-
trical activity of brain neurons [27]. By placing multiple electrodes on the scalp, brainwaves
across different frequency ranges are captured, reflecting various cognitive states [28,29].
The basic processing of EEG signals includes amplification, filtering, digitization, and fea-
ture extraction and classification through various algorithms. Brainwaves are categorized
into several basic types based on frequency: δ (Delta, 1–4 Hz), θ (Theta, 4–8 Hz), α (Alpha,
8–13 Hz), β (Beta, 13–30 Hz), and γ (Gamma, above 30 Hz). Changes in α and θ waves are
commonly used to assess learners’ attention levels and cognitive load.

A key aspect of EEG signal analysis is understanding the relationship between these
waveforms and learning behaviors. For example, the amplitude of α waves is usually asso-
ciated with relaxed and quiet wakeful states, while a reduction in α waves during cognitive
tasks often indicates focused attention. Mathematically, this change can be quantified by
calculating the power spectral density of α waves in different states, represented by the
following equation:

PSD( f ) = lim
T→∞

1
T

∣∣∣∣∫ T/2

−T/2
x(t)e−i2π f tdt

∣∣∣∣2, (1)

where x(t) is the EEG signal in the time domain, and f is the frequency, with PSD repre-
senting the power spectral density.

In this study, particular attention is paid to how EEG technology combined with
differential LLMs can optimize language learning. The real-time monitoring capability of
EEG enables the capture of subtle changes in brain activity during language teaching [30],
reflecting the learner’s cognitive state and learning efficiency. By correlating EEG data with
performance in language learning tasks (such as language comprehension and application
ability tests generated through LLMs), a more accurate assessment and prediction of
learning outcomes can be achieved. Furthermore, the application of EEG in personalized
teaching also demonstrates tremendous potential [31]. By analyzing the brainwave activity
of learners during language learning tasks, personalized learning plans can be customized.
For instance, a reduction in α wave activity during a task may indicate excessive cognitive
load. Based on such information, educators can timely adjust the difficulty or method of
teaching to reduce cognitive load, thereby enhancing learning efficiency.

2.2. Large Language Models in Language Teaching

LLMs, such as GPT-3 [32] and BERT [33], have become significant representatives of
natural language processing (NLP) technologies [34]. These models’ core capabilities lie in
understanding and generating natural language, achieved through training on large-scale
datasets to learn the deep structure and semantics of language. In the realm of language
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teaching, the application of LLMs has paved new pathways for instruction and learning,
particularly in providing dynamic interactive environments and personalized learning
support [21,35,36].

LLMs are typically based on the Transformer architecture [37], which is characterized
by the self-attention mechanism. This mechanism allows the model to assign different
attention weights to different parts of the input data, thereby enhancing text comprehension
and generation. The calculation formula for self-attention is expressed as

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V, (2)

where Q, K, and V represent the query, key, and value matrices, respectively, and dk is
the dimension of the key vector. This mechanism enables LLMs to excel in handling
long-distance dependencies and complex sentence structures. Within the context of this
research, the integration of EEG and differential language large models into an automated
system for assessing language learning significantly optimizes teaching outcomes and
assessment accuracy. The real-time monitoring of learners’ brain activity, correlated with
the outputs from LLMs, facilitates more precise evaluations of cognitive states and language
learning progress.

LLMs provide learners with an interactive mode of language learning by generating
text that is fluent and closely resembles natural language [38]. This not only allows learners
to practice language skills in an environment akin to real-life dialogues but also enables
immediate error correction and deeper understanding through model feedback. The
model’s generative capability facilitates the construction of complex dialogue scenarios,
enhancing learners’ adaptability and application skills in varied social and professional
settings [39]. The basic model for generating dialogue is represented as

Generated Text = LM(context inputs). (3)

Here, LM denotes the language model, and context inputs are customized based on
the learner’s historical and real-time EEG data. Differential language large models adapt
the difficulty and type of learning content based on the specific needs of learners, offering a
truly personalized learning experience [40]. This personalization is achieved by analyzing
the learner’s progress, preferences, and cognitive load detected through EEG monitoring.
The model dynamically adjusts the content to ensure that each learner studies at the most
suitable pace and difficulty, summarized by the following formula:

Customized Content = f (EEG data, Learning History). (4)

Here, f is a mapping function that takes EEG data and the learner’s historical learning
context as inputs and outputs the most suitable teaching content for the learner’s cur-
rent cognitive state and learning needs. By analyzing the interactions between learners
and LLMs, real-time evaluations of various aspects of language proficiency [41], such
as grammatical accuracy, vocabulary richness, and fluency, are conducted [42,43]. These
evaluations provide educators with detailed feedback on learners’ progress, supporting
further instructional decisions [44]. The evaluation process is automated to analyze the
accuracy and richness of learners’ responses, with the assessment formula presented as

Language Proficiency = Evaluate(learner’s responses, model’s feedback). (5)

Through this method, combining EEG technology with the capabilities of LLMs
not only enhances the efficiency and quality of language learning but also significantly
increases the personalization and adaptability of teaching through customized learning
and assessment methods.
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3. Materials and Method
3.1. Data Collection and Preprocessing
3.1.1. Test Data Collection

Participant Consistency. This study recruited 200 participants aged between 18 and
24 years, divided into five groups, as shown in Table 1. All participants underwent audi-
tory and cognitive ability tests to ensure they met the basic requirements for participation,
thereby ensuring the validity and reliability of the experimental data. Regarding the par-
ticipants’ sociodemographic and ethnic characteristics, we collected multidimensional
information, including gender and educational background. All participants were univer-
sity students, covering various academic disciplines, including humanities, social sciences,
and engineering. This diversity enabled us to evaluate language learning differences across
different academic backgrounds. For the language studied, all participants were learning
the same new language—Spanish was chosen for this experiment. This setting ensured that
all participants started at the same baseline, making the assessment of learning outcomes
more fair and scientifically rigorous.

Table 1. Grouping method.

Group A Group B Group C Group D Group E

Number 40 40 40 40 40
Age 20.8 ± 2.2 21.1 ± 2.4 20.6 ± 2.4 20.9 ± 3.1 21.2 ± 2.7
Gender Ratio (M:F) 22:18 20:20 17:23 19:20 23:17

Collection Description. Multiple repetitions of the experiment were conducted to
ensure robustness and reliability of the results. All experiments were conducted in a
laboratory environment to control for external interference and ensure data accuracy. Each
learning session lasted 10–15 min, with an overall data collection period of six months
(January to July 2024) to ensure an adequate sample size and statistical representativeness.
All experimental data will be kept strictly confidential, and the experiment followed the
ethical guidelines provided by the ethics committee to ensure participants’ privacy.

The following five Spanish learning themes were designed:

1. Deportes (Sports): Learning vocabulary related to different sports, such as soccer,
basketball, tennis, etc., covering rules, equipment, and common conversations and
expressions used in sports contexts.

2. Viajes y turismo (Travel and Tourism): Learning vocabulary and expressions related
to travel, including how to ask for directions, book hotels, buy tickets, and apply
language in various travel scenarios.

3. Restaurantes y comida (Restaurants and Food): Learning common expressions used
when ordering food, asking about the menu, and communicating with servers, while
also familiarizing students with vocabulary related to different cuisines, ingredients,
and food culture.

4. Compras y mercado (Shopping and Market): Covering language skills used in shop-
ping scenarios, such as asking for prices, comparing products, discussing discounts,
payment methods, and common items and expressions found in markets.

5. Salud y bienestar (Health and Wellness): Learning medical and health-related expres-
sions used in hospitals, pharmacies, etc., including how to describe symptoms, ask
about medications, and engage in common conversations in medical services.

Although these themes vary in context, the language requirements are consistent, as
they all require students to master foundational vocabulary, common expressions, and
grammar rules specific to each scenario. These themes aim to prepare students to use
language in various real-life situations, equipping them with the necessary linguistic tools
to handle diverse communication needs. After completing each theme, students will be
tested on 10 different aspects, such as vocabulary tests, pronunciation practice, short essay
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writing, listening comprehension, and dialogue exercises, as shown in Table 2. These
assessments help measure students’ language proficiency across different contexts and
provide targeted feedback for further learning.

Table 2. Test projects used in this paper.

Test Project Description

Vocabulary Identify and spell the learned words.
Sentence Translation Translate Chinese or English sentences into Spanish.
Sentence Completion Fill in the correct words or phrases in the sentences.
Verb Conjugation Correctly conjugate common verbs.
Grammar Questions Multiple choice or fill-in-the-blank questions.
Pronunciation Read aloud given words or phrases.
Accent Identification Identify the placement of accents in words.
Sentence Construction Use learned vocabulary to construct complete sentences.
Listening Comprehension Listen to Spanish conversations and answer related questions.
Basic Conversation Engage in simple conversations.

3.1.2. Learning Method Description

Subsequently, the groups were taught and tested according to different teaching
methods and various teaching sequences, as shown in Table 3.

Table 3. Testing procedure for different groups and different teaching methods.

Sports Travel Food Shopping Health

Group A Manual Teaching LLama GLM Bard Proposed Method
Group B Proposed Method Manual Teaching LLama GLM Bard
Group C Bard Proposed Method Manual Teaching LLama GLM
Group D GLM Bard Proposed Method Manual Teaching LLama
Group E LLama GLM Bard Proposed Method Manual Teaching

As shown in Table 3, three distinct large language models are employed as baseline
models: LLama [45], GLM [46], and Bard [47]. These models provide references for eval-
uating the efficacy of the proposed EEG fusion module and differential LLMs within the
automated language learning teaching assessment system. LLama is a large language
model developed by Meta (Facebook). Based on the Transformer architecture, LLama
processes natural language through multiple layers of self-attention mechanisms. Its struc-
ture is similar to OpenAI’s GPT model, using an encoder–decoder framework, which
enables the model to perform well in both understanding and generating text. LLama is
designed to improve inference efficiency, allowing high performance even with limited
computational resources. Due to its flexible architecture, LLama can adapt to various
downstream tasks. GLM, or “General Language Model”, was developed by the Knowledge
Engineering Group (KEG) at Tsinghua University, aimed at becoming a versatile model
suitable for various natural language processing tasks. GLM uses a bidirectional encoder
and autoregressive generator architecture. Unlike standard Transformer models, GLM
combines bidirectional and autoregressive structures, which enhances its ability to handle
complex language tasks involving context. This design enables GLM to generate text while
effectively understanding it. Thanks to its combined bidirectional encoding and autore-
gressive generation architecture, GLM excels in long-text generation and comprehension
tasks. Bard, developed by Google, is a dialogue-oriented language model designed to offer
a more natural interactive experience. Bard is particularly suited for tasks like dialogue
generation, information retrieval, and knowledge-based Q&A. It is built on Google’s Path-
ways framework, which dynamically adjusts computational resources to handle tasks of
varying scales, making it especially effective for dialogues and complex Q&A tasks. Bard
uses a large-scale Transformer architecture with deeper layers and a higher parameter
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count, enhancing its dialogue generation capabilities. Each of these models has strengths
across different tasks, and in a language learning evaluation system, their unique features
can be combined to enable precise content generation, knowledge supplementation, and
personalized adjustments in language comprehension.

The data for the manual teaching group come from traditional teaching methods, with
the aim of serving as a control group to compare against the automated teaching based on
large language models. This group of students is taught by experienced language teachers
who conduct face-to-face lectures and interactive sessions. The content taught is consistent
with that of the other groups using language models, covering the same five learning
themes (Sports, Travel and Tourism, Restaurants and Food, Shopping and Markets, Health
and Medical Care). The core of manual teaching lies in the teacher’s ability to instantly
adjust teaching strategies based on student feedback and learning progress, ensuring that
students fully understand the material. In practice, teachers use traditional language
teaching methods, such as the following: 1. Explanation and Demonstration: The teacher
first explains the key vocabulary and sentence structures for each theme, ensuring students
understand the meaning and usage of the words. Teachers also demonstrate correct
pronunciation and sentence structure, helping students master these through repeated
practice. 2. Questioning and Interaction: The teacher interacts with the students through
questions, ensuring that every student participates in class discussions. The teacher adjusts
the content based on student feedback, focusing on clarifying areas that students find
difficult to understand. Through these tests, every effort was made to ensure the fairness
and randomness of each teaching method during evaluation.

3.1.3. EEG Data Collection

Regarding the collection and recording of EEG data, this study employed a high-
precision EEG headset to ensure comprehensive monitoring of learners’ brain activity. The
experiment was conducted in a controlled environment to minimize external interference,
enhancing the quality and reliability of EEG data. During the experiment, participants
wore electrodes arranged according to the international 10–20 system to ensure accurate
recording of activity in various brain regions. EEG data were recorded using real-time data
acquisition and synchronized marking. First, the raw signals of brain activity were collected
through the electrodes on the headset, with a sampling frequency of 1000 Hz to capture
subtle changes in neural activity. To accurately mark learning content and corresponding
timestamps, the experimental system was synchronized with the EEG recording device,
aligning each learning activity with specific EEG signal timestamps. This synchronization
process facilitates subsequent analyses, allowing cognitive states to be correlated with
different stages of the learning process.

Finally, the participants in the learning tasks were the same group whose EEG data
were collected. All participants wore EEG headsets during the learning process to ensure
real-time monitoring and recording of their brain activity during learning activities. This
design ensured the synchronization of EEG data with learning activities, enabling each
learner’s cognitive state to be accurately matched with the specific learning content they
engaged in during the experiment.

3.1.4. EEG Data Preprocessing

To obtain an EEG dataset for assessing language learning abilities, the experiment
meticulously divided the learning process of the participants into two main stages: learning
and testing. During the learning phase, participants learned the basics of a new language
through large language models. In the testing phase, participants underwent a language
proficiency test. The test results were then analyzed in conjunction with the EEG data
recorded during the learning process. Each learning phase lasted 10–15 min, with con-
tinuous EEG data recording and precise marking of learning content and timestamps.
The combination of EEG data from both the learning and testing phases, along with test
results, was used to dynamically adjust the large language model’s teaching content and
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pace to better match each participant’s learning rhythm and abilities. Table 4 shows the
technical specifications of the EEG equipment used in the experiment, with a sampling rate
(accuracy) of 24-bit:

Table 4. EEG Cap parameters.

Technical Indicators Neuroelectric EEG Cap

Sampling technology 24 bits
Sampling rate 1000
Output format European Data Format (.edf), raw EEG data, ASCII
Input impedance l GΩ
LSB resolution 0.05 µV (24-bit)
Observation noise <1 µV RMS

These EEG data included several key parameters, such as the power spectral density
(PSD) within different brainwave frequency ranges, the intensity variations in different
brain regions, and the dynamic changes in specific brainwaves (e.g., α waves, β waves, and
θ waves). These parameters are closely related to the learner’s attention level, memory
encoding ability, and cognitive load, providing critical insights into the neurophysiolog-
ical activities during the language learning process. During data preprocessing, the raw
EEG data were first downsampled from 1000 Hz to 250 Hz, and a 0.5 Hz high-pass and
50Hz low-pass filter were applied to remove low-frequency drift and high-frequency noise.
Subsequently, the EEGLAB signal processing tool was used to identify and remove ar-
tifact activities (such as eye movement artifacts and electromyographic artifacts), and
interpolation was applied to repair bad channels, as shown in Figure 1.

Scalp electrodes mounted on 
head-worn collection 

equipment

Biosignal amplifier

Signal filter

Analog-to-digital converter

Collection Equipment

Digitized brain 
signals

Wired or wireless 
data transmission

Digitized format of 
brain signals

Preprocessing

Feature extraction

Classification

Computer acting as an interface

Figure 1. Preprocessing flowchart.

After ensuring data integrity, the EEG data were segmented according to the time
periods of the learning and testing phases, with each segment lasting 2 s. This ensured that
each participant had at least 30 s of artifact-free valid signals in each phase. The processed
data were then synchronized with the timestamps of the learning content, generating a
unified dataset available for further analysis, as shown in Figure 2.
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Figure 2. The EEG signals (processed) collected from the test participants in the experiment, with
units in µV.

3.2. Proposed Method
3.2.1. Overall

This study proposes an automated language learning teaching assessment system
based on EEG and differential LLMs. The system aims to optimize the teaching and
assessment processes of language learning by integrating advanced neuroscientific tools
and the latest natural language processing technologies. The core idea is to use EEG data
to monitor learners’ cognitive states during the language learning process and to apply
differential LLMs to personalize learning content, thereby enhancing the specificity and
effectiveness of teaching, as shown in Figure 3.

User input
texts

Obtain
denoised
results

Local Encoder Module

⋯
⋯

𝒙𝟏
𝒙𝟐
𝒙𝟑

𝒙𝒌

𝒙𝒗

⋯
⋯

𝒚𝟏
𝒚𝟐
𝒚𝟑

𝒚𝒋

𝒚𝒗

⋯
⋯𝒉𝟏

𝒉𝟐

𝒉𝒊

𝒉𝒗
𝑾𝒗×𝑵 𝑾𝑵×𝒗

’

Initial Embedding

Denoise Module

Send privatized
embedding

Output noised
results

Differential 
Language 

Large 
Model

Figure 3. This figure depicts the structure and data flow of the overall model, demonstrating
the process from user text input to the differential LLMs, including the local encoding module,
denoising module, and the output of results, comprehensively showing the detailed steps of system
information processing.

The EEG fusion module is a key component of this system, responsible for collecting
and analyzing the brain activity data of learners during the learning process. This module
captures the brain’s electrical activity through multiple electrodes mounted on a headgear,
monitoring the learner’s cognitive state in real time, including attention focus, information
processing, and memory encoding. In implementation, the EEG fusion module first prepro-
cesses the raw EEG signals, including filtering, denoising, and amplification, to improve the
quality and usability of the signals. Subsequently, the module employs multidimensional
position encoding techniques to encode spatial and temporal information in the EEG data,
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which helps capture complex patterns in brain activity. After data processing, the EEG
fusion module uses machine learning algorithms to extract features from the processed data.
These features are then used to train deep learning models to predict learners’ cognitive
states and learning effectiveness. Combined with the output from the differential LLM, this
module provides real-time feedback on learners’ learning status to teachers, aiding them in
adjusting teaching strategies and content.

The differential LLM is another core component that personalizes the adjustment of
language learning data based on the specific needs of each learner. Unlike traditional lan-
guage models, the differential LLM achieves this by designing a unique layer of differential
processing. It first analyzes the learning content to identify key knowledge points and
challenges for the learner. Then, the model personalizes the teaching content based on the
learner’s educational history, cognitive abilities, and personal preferences. For example,
for learners with weak language foundations, the model might recommend more basic
language exercises and detailed grammar explanations; for advanced learners, it may
provide more language application exercises and complex language structure analyses.

The differential loss function is key to optimizing the training process of the differen-
tial LLM. Traditional loss functions typically consider only the error between the model’s
output and the actual labels, whereas the differential loss function additionally considers
the individual differences of each learner, optimizing the model to suit the specific needs of
each individual. This loss function focuses not only on the overall educational effectiveness
but also strives to reduce the prediction error for individual learners, making the teaching
content more aligned with personal learning progress and style. The design of the differen-
tial loss function is based on the philosophy that teaching should not be a “one-size-fits-all”
approach, but should be flexibly adjusted according to the actual situation of each learner.
By continuously analyzing learners’ feedback and progress, combined with the accuracy of
model predictions, the differential loss function adjusts model parameters continuously,
optimizing teaching strategies to achieve the best educational outcomes.

3.2.2. Differential Language Large Model

The differential LLM is one of the core technologies in this study, integrating the deep
learning Transformer architecture with a specific differential design to meet the person-
alized learning needs of different learners. The structural design details and parameter
settings of this model are key to achieving efficient language learning processing. The
differential LLM employs a multi-layer Transformer structure, as shown in Figure 4.

Denoised output embedding

Output layer 𝐄𝐋 . . . . . . . . . . . .

N transformer
layers

𝐄𝟏 . . . . . . . . . . . .

Input layer 𝐄𝟎 . . . . . . . . . . . .

Noisy output embedding Raw token embedding Noise matrix

Figure 4. This figure displays the detailed architecture of the differential LLM.
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Specifically, the model includes the following main components:

1. Input layer: Responsible for processing raw token embeddings and noise matrices.
Token embeddings convert textual data into a format that the model can process, while
the noise matrix is key to introducing differential design, enhancing the model’s adapt-
ability to different users’ data by increasing randomness during the training process.

2. Transformer layers: The model includes N Transformer layers, each performing self-
attention and feed-forward operations. In this study, a stack of 12 Transformer layers
is chosen, with each layer having 12 heads to ensure sufficient model complexity and
processing capability.

3. Output layer: The final layer is a linear output layer that converts the output of the
last Transformer layer into the final language representation, which will be used for
downstream language learning tasks.

The network parameters of this model are set as follows:

• Token embedding dimension: The dimension of each token vector is set to 768, a
common setting in current deep learning models, to balance computational complexity
and performance.

• Feed-forward network dimension: The width of the feed-forward network within
each Transformer layer is set to 3072, ensuring that each layer can learn sufficient
features and perform effective non-linear transformations.

• Number of attention heads: The multi-head attention mechanism in each layer is
divided into 12 heads, allowing the model to capture different features in multiple
subspaces simultaneously, enhancing the model’s learning capabilities.

• Position encoding: A combination of sine and cosine functions is used to add posi-
tional information to the input token embeddings, with the dimension of the position
encoding matching that of the token embeddings.

This design allows the model to dynamically adjust focus within a given context,
effectively extracting and utilizing language information. The design of the differential
LLM aims to enhance personalized learning outcomes. Through differential design, the
model not only learns universal language rules but also captures specific learning patterns
related to individual users, often overlooked in traditional language models. For instance,
by analyzing the noise matrix and user feedback, the model can adjust its parameters
to better suit specific user needs, thereby providing more precise personalized learning
materials and suggestions. Additionally, the multi-layer Transformer structure provides
the differential LLM with greater flexibility and accuracy in handling complex language
structures. Each layer’s self-attention mechanism can process different parts of the input
data in parallel, significantly increasing processing speed and efficiency. The inclusion
of feed-forward networks further enhances the model’s capability to handle non-linear
relationships, enabling it to effectively undertake not just basic language understanding
tasks but also more complex language generation and reasoning tasks.

3.2.3. EEG Fusion Module

The EEG fusion module is one of the core components of this automated language
learning teaching assessment system, designed to monitor and analyze learners’ brain elec-
trical activity in real time, providing deep insights into their cognitive states. This module
integrates advanced signal processing technologies and machine learning algorithms to
optimize teaching strategies and content during the language learning process, as shown
in Figure 5. The EEG fusion module consists of the following main parts:

1. Input layer: It first receives raw EEG signal data, which are collected in real time
through a multi-channel EEG cap worn on the head. The number of input channels
usually corresponds to the number of electrodes on the EEG cap.

2. Preprocessing layer: Raw EEG signals contain a lot of noise and irrelevant information.
The purpose of the preprocessing layer is to enhance the signal quality through
filtering, artifact removal, and normalization. For example, a bandpass filter may be
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used to remove signals outside typical brainwave frequencies (such as below 0.5 Hz
and above 50 Hz).

3. Feature extraction layer: The signals processed by the preprocessing layer are then
fed into the feature extraction layer, which utilizes various algorithms such as Fast
Fourier Transform (FFT) and wavelet transform to extract frequency and time domain
features. Additionally, statistical methods can be applied to extract other relevant
features, such as the mean, variance, and peak values of the signals.

4. Classification and decoding layer: This layer is the core of the module, utilizing deep
learning models like Convolutional Neural Networks (CNNs) or Recurrent Neural
Networks (RNNs) to parse the extracted features and map them to the learners’
cognitive states. For instance, a CNN with five hidden layers, each containing a
different number of convolutional kernels (e.g., 32 in the first layer, 64 in the second),
can be designed to progressively extract and compress the feature space.

5. Output layer: Finally, the model’s output is interpreted as the learner’s cognitive state,
such as focused attention, active information processing, and memory encoding. This
state information is directly used to adjust the teaching content and strategies.

MLP
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Figure 5. This figure illustrates the detailed architecture of the EEG fusion module, from encoding
to decoding the signal, showing how EEG signals are transformed into a unified representation for
downstream tasks through multidimensional positional encoding and regional node processing.

In the EEG fusion module, key mathematical models include signal processing and
machine learning algorithms. The preprocessing of the signal can be represented by the
following formula:

Xfiltered = Bandpass(Xraw, low = 0.5 Hz, high = 50 Hz). (6)

The feature extraction layer might use the FFT formula as follows:

Xfft(k) =
N−1

∑
n=0

x(n) · e−i2πkn/N , (7)

where x(n) is the nth sample in the time domain, N is the total number of samples, and k
is the index of the frequency domain samples. The design advantage of the EEG fusion
module lies in its ability to integrate a variety of signal processing and machine learning
technologies to achieve high-precision monitoring and analysis of learners’ brain activity.
This highly integrated and automated analysis not only improves the efficiency of data
processing but also enhances the accuracy of teaching assessments. In the task of automated
language learning teaching assessment, by monitoring learners’ cognitive states in real time,
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teachers can receive immediate feedback on the learners’ attention and memory states and
adjust teaching strategies accordingly. For instance, when learner distraction is detected,
the system can automatically prompt the teacher to slow down the teaching pace or modify
the content, ensuring that teaching activities are better adapted to the learners’ actual needs.

3.2.4. Loss Function

In traditional Transformer models, the loss function typically used is the cross-entropy
loss, which is mainly utilized to calculate the discrepancy between the model’s output and
the true labels. This type of loss function is suitable for many classification and prediction
tasks and effectively promotes the model to learn the correct classification or prediction
of labels. However, this method has limitations in personalized learning applications
as it primarily focuses on overall optimization while neglecting to adapt to individual
differences, which might not be precise enough when dealing with diverse learner data. The
design of the differential loss function aims to address this issue by not only considering
the differences between the model output and the true labels but also taking into account
the adaptability of the output to individual learner characteristics, as shown in Figure 6.

Loss

Signal Embeddings

similarity

Text Embeddings

EEG Signal

Encoder

Text

Encoder

Figure 6. This figure presents the workflow of the loss function module, from the input of specific em-
bedded layers, through the processing by the loss function, to the output of final results, reflecting how
the module optimizes differential loss during the learning process to adapt to individual differences.

This design better fits the needs of personalized education, allowing for more precise
responses to the unique needs of each learner. The differential loss function combines
traditional cross-entropy loss with individual adjustment terms, and its mathematical
expression can be represented as

L = −
N

∑
i=1

[
yi log(ŷi) + λ

M

∑
j=1

αj| f j(ŷi)− tij|
]

, (8)

where N is the number of samples, M is the number of differential adjustment terms, yi
is the true label of the ith sample, ŷi is the model’s prediction output for the ith sample,
λ is a hyperparameter that adjusts the weight of the two parts, αj is the weight of the
jth differential adjustment term, f j is the personalized adjustment function for the model
output for the jth term, and tij is the target value for the ith sample in the jth adjustment
item. The differential loss function introduces personalized adjustment items to optimize
the specific needs of learners, enabling the model to better adapt to the personalized
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characteristics of different learners. The key here lies in the adjustment function f j and the
target value tij, which respectively represent the method for personalizing the model output
and the specific goals of individual learners. Adjustment functions f j are typically designed
based on learners’ behaviors or feedback, such as progress in learning or frequency of
error types, while the target values tij are set based on educational objectives and learner
characteristics. By optimizing these adjustment items, the differential loss function not only
drives the model to learn the correct output but also encourages the model output to align
more closely with the actual needs of individual learners.

In the application to this paper’s task—automated language learning teaching as-
sessment—the design of the differential loss function allows the model to consider each
learner’s specific performance and needs during the language learning process in greater
detail. For instance, for learners with weak language foundations, adjustment items can
enhance the learning of basic grammar and vocabulary, while for advanced learners, more
complex dialogues and writing exercises can be added. Additionally, the differential
loss function also helps improve the relevance and targeting of teaching content. By
continuously optimizing the model output, the teaching content becomes more aligned
with the actual level and needs of learners, thereby enhancing teaching effectiveness and
learner satisfaction.

3.3. Experiment Settings
3.3.1. Evaluation Metrics

In the evaluation experiment, the calculation methods for accuracy, precision, recall,
and F1-score are as follows:

Precision =
True Positives

True Positives + False Positives
(9)

Recall =
True Positives

True Positives + False Negatives
(10)

This metric reflects whether the model has missed any knowledge points that need to
be learned or have not been mastered.

Accuracy =
True Positives + True Negatives

Total Samples
(11)

This metric directly reflects the model’s overall performance across all test data.

F1 = 2 × Precision × Recall
Precision + Recall

(12)

In this experiment, True Positives refer to knowledge points that the model or manual
teaching method correctly predicted as mastered and that are indeed mastered. For example,
if the system predicts that a learner has mastered a particular vocabulary or sentence struc-
ture, and the learner indeed shows mastery in the test, this case is considered a True Positive.
For large language model-based teaching, the learner’s mastery is determined by model
prediction scores (e.g., correctness in language generation, comprehension scores) and com-
pared against actual test performance. In manual teaching, mastery is determined by the
teacher’s assessment and the student’s performance in the test, ensuring that knowledge
points are indeed mastered. True Negatives are instances where the system or teaching
method predicts a knowledge point as not mastered, and the learner indeed shows no
mastery in the test. In large language model teaching, this involves analyzing the model’s
predictions of unmastered knowledge points; if the test results also indicate a lack of
mastery, it is counted as a True Negative. In manual teaching, unmastered knowledge
points are determined by the teacher’s observation and the student’s test performance;
if predictions match actual results, they are classified as True Negatives. False Positives
are instances where the model or manual teaching method predicts a knowledge point
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as mastered, but the test reveals that the learner has not mastered it. In large language
model teaching, some knowledge points may be predicted as mastered based on model
outputs, but a low test score indicates the learner’s lack of mastery. Similarly, in manual
teaching teaching, if the teacher judges a knowledge point as mastered but the test score
does not meet the standard, it is considered a False Positive. False Negatives are instances
where the system or teaching method predicts a knowledge point as not mastered, but the
test reveals that the learner has indeed mastered it. In large language model teaching, if
the model predicts some knowledge points as unmastered, but test scores indicate correct
answers, these are recorded as False Negatives. In manual teaching, if the teacher deems a
knowledge point as unmastered, but the student performs well in the test, it is considered
a False Negative.

Data Acquisition Methods. Large Language Model Teaching: Each large language
model predicts the learner’s mastery of knowledge points based on the learning content.
These predictions are compared with subsequent test scores. The test includes vocabulary,
grammar, and reading comprehension; scores above the threshold indicate mastery, while
scores below the threshold indicate a lack of mastery. The comparison of predictions and
test results is used to calculate TPs, TNs, FPs, and FNs. Manual Teaching: In manual
teaching, teachers make an initial assessment of the learner’s mastery based on classroom
performance, followed by testing. The test includes standardized questions set by the
teacher; scores above a certain level are considered mastery, while lower scores indicate a
lack of mastery. The comparison between classroom assessments and test results is used to
obtain TPs, TNs, FPs, and FNs.

This approach to defining and obtaining True Positives, True Negatives, False Positives,
and False Negatives allows for fair and accurate comparisons between the model-based
and manual teaching methods.

3.3.2. Test Platform

Regarding hardware configuration, all experiments were conducted on servers equipped
with high-performance GPUs (NVIDIA Tesla V100, City of Santa Clara) to ensure computa-
tional efficiency. The servers were configured with 128 GB of RAM and 2 TB of SSD storage
to support large-scale data processing and model training. Additionally, high-quality EEG
data were collected using a BioSemi ActiveTwo v8.14 brain–electrical system , capable of
accurately recording brain electrical signals at a high sampling rate of 2048 Hz, ensuring
the precision and reliability of the data.

On the software side, all data preprocessing, model training, and testing were con-
ducted in a Python 3.10 environment, primarily relying on the PyTorch 1.8 deep learning
framework. Furthermore, EEG data were processed using EEGLAB v2019 and MATLAB
2024a, which facilitated various signal processing and analysis functions, such as filtering,
artifact removal, and feature extraction.

In terms of model training strategies, both the differential LLM and the EEG fusion
module were trained using supervised learning methods. The differential LLM was trained
on labeled language learning tasks comprising tens of thousands of samples, each including
textual data and their corresponding language learning performance scores. The models
underwent hyperparameter tuning to achieve optimal learning outcomes, with specific
settings including a learning rate of 0.001, a batch size of 32, and the use of the Adam
optimizer to minimize the cross-entropy loss function. Additionally, early stopping was
employed to prevent overfitting, and halting training if there was no improvement in
performance on the validation set over ten consecutive training epochs.

To comprehensively assess the performance of the models, k-fold cross-validation was
utilized, with k set to 5. This method maximized the use of limited data resources and
provided a more accurate estimation of model performance on unseen data. In each cross-
validation run, the dataset was evenly split into five subsets, with each subset sequentially
used as the test set while the remaining four subsets served as the training set. This not only
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enhanced the reliability of model assessments but also helped to understand the model’s
performance across different data distributions.

4. Results and Discussion
4.1. Learning Effect Test Results

The primary objective of this experiment is to evaluate and compare the effects of
different teaching methods in language learning, particularly between automated teaching
models and traditional manual teaching. The data in Table 5 are calculated from the
averages of 200 participants to ensure sample representativeness and data robustness. The
specific averaging method is as follows: taking this study’s method as an example, as
referenced in Table 3, we sum the test scores from Group A under the “Sports” theme,
Group B under the “Travel” theme, Group C under the “Food” theme, Group D under
the “Shopping” theme, and Group E under the “Health” theme, and then divide by 200 to
obtain the average score.

Table 5. Learning Effect Test Results.

Model Precision Recall Accuracy F1-Score Test Score

Manual Teaching (control group) 0.91 0.88 0.89 0.90 92.75

LLama 0.92 0.88 0.89 0.91 91.25
GLM 0.85 0.82 0.83 0.84 85.75
Bard 0.87 0.84 0.85 0.86 87.05
Proposed Method 0.95 0.92 0.93 0.94 92.90

Initially, traditional manual teaching methods demonstrated high efficacy in the
experiment, achieving a precision of 0.91, recall of 0.88, accuracy of 0.89, an F1-score of
0.90, and a test score of 92.75. The manual teaching data are provided for comparison with
the performance of our proposed automated language learning and teaching evaluation
system, which is based on EEG and differential language models (LLMs). These manual
teaching data were collected through a controlled experiment specifically designed for
this purpose, aiming to capture the performance of traditional teaching methods under
the same experimental conditions. We selected a group of learners with the same number
and demographic characteristics as those participating in the automated teaching system
test, ensuring consistency in terms of age, learning background, cognitive abilities, and
other basic features. This setup allows us to make a direct comparison between the two
teaching methods on the same level, thereby fairly evaluating the differences in performance
between the automated system and traditional methods. In the controlled experiment,
the manual teaching was conducted by experienced language teachers using traditional
classroom teaching methods, including face-to-face lectures, paper-based tests, and oral
communication. The teachers were instructed to follow a set syllabus, but they could
adjust specific teaching strategies and pacing according to the actual teaching situation,
simulating real classroom environments. The control group learners received instruction
over the same time period as those in the automated teaching experiment, with consistent
learning content and assessment methods to ensure data comparability. After the learning
sessions, all participants were required to complete the same set of language proficiency
tests, designed to assess their abilities across various aspects of language learning, including
listening, reading, writing, and speaking.

This outcome reflects the professional capabilities of experienced teachers in language
teaching and their flexibility in responding to student feedback, which are often difficult
for machine learning models to fully replicate.

For automated teaching models, the LLama model exhibited performance close to
manual teaching, with a precision of 0.92 and recall of 0.88, the same accuracy and F1-score
as manual teaching, but a slightly lower test score of 91.25. The performance of the LLama
model may benefit from its complex deep learning architecture and extensive data training,
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which allow it to achieve high accuracy and adaptability in language understanding and
generation. However, compared to personalized teaching by human teachers, it might
still lack in handling some details. The performance of the GLM and Bard models was
slightly lower than that of LLama and manual teaching. The GLM model had a precision of
0.85, recall of 0.82, accuracy of 0.83, an F1-score of 0.84, and a test score of 85.75. The Bard
model performed slightly better, with a precision of 0.87, recall of 0.84, accuracy of 0.85,
an F1-score of 0.86, and a test score of 87.05. These two models might not fully capture
the complexity and diversity of language learning due to limitations in model structure or
training data. The method proposed in this study, which combines the differential LLM
with the EEG fusion module, showed the best results among all methods, achieving a
precision of 0.95, recall of 0.92, accuracy of 0.93, an F1-score of 0.94, and a test score of 92.90.
This excellent performance is attributable to the personalized learning adjustments of the
differential LLM and the real-time cognitive state monitoring of the EEG fusion module,
which allow teaching content to be adjusted in real time to match learners’ cognitive and
learning needs. This approach enhances the personalization and targeting of teaching,
significantly improving learning outcomes.

From the mathematical characteristics of the models, the differential LLM improves
the handling of individual differences by incorporating a differential loss function, better
adapting to the personalized needs of different learners. The inclusion of the EEG fusion
module, by monitoring brainwave activity in real time, precisely adjusts teaching strategies
to enhance learning efficiency and effectiveness. This combination of highly personalized
teaching methods and advanced technological approaches displays unique advantages
in automated language learning teaching assessment. Overall, these experimental results
not only validate the effectiveness of various teaching methods but also demonstrate the
potential of the differential LLM combined with the EEG fusion module in enhancing
language learning outcomes.

4.2. Test Result Analysis

In order to investigate the minimal differences in results among the various models
presented in Table 5, a more detailed statistical analysis was conducted to further explore
this phenomenon. Initially, while the performance differences between the models in terms
of precision, recall, accuracy, and F1-score might appear slight, these differences are statisti-
cally significant. To verify the statistical significance of these differences, t-tests, a common
statistical method for comparing the mean differences between two data groups, were
implemented. The experiment compared the performance differences between manual
teaching methods and our proposed automated language learning teaching assessment
system based on EEG and differential LLM, as well as differences within the system models
themselves. This approach allowed us to not only test whether the performances of various
models were statistically significant but also to verify if our system could achieve the
expected enhancement in teaching outcomes when applied in practice. Specifically, we cal-
culated the average performance metrics of each model across different test sets, as shown
in Table 2, and conducted paired t-tests, as shown in Tables 6 and 7 and Figures 7 and 8.
Each group in Tables 6 and 7 has only 10 rows of data because the test for all participants
included ten items, as shown in Table 2.

The results indicated that although the differences between some models are minor,
the method combining differential LLMs with the EEG fusion module demonstrated
statistically significant advantages over other models, particularly in terms of precision and
F1-score. Moreover, we explored the potential causes for these differences. We believe that
the differential LLM can adapt the teaching content based on each learner’s specific learning
history and cognitive state, while the EEG fusion module provides real-time feedback on the
cognitive state. The combination of these two features allows our system to more precisely
adapt to learners’ needs, thus achieving better results in actual teaching applications.
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Table 6. Test result details.

Test Project Sports Travel Food Shopping Health

Group A Vocabulary 91.00 90.75 84.73 89.13 90.48
Sentence Translation 92.30 89.25 87.08 86.50 95.18
Sentence Completion 94.18 88.70 87.48 88.60 95.85
Verb Conjugation 91.70 90.40 85.48 87.28 95.90
Grammar Questions 90.73 91.85 83.83 88.40 95.75
Pronunciation 92.08 89.13 86.15 86.00 93.38
Accent Identification 93.05 90.85 86.78 85.55 91.50
Sentence Construction 96.20 88.53 87.73 90.28 96.95
Listening Comprehension 91.00 87.65 85.68 86.43 94.58
Basic Conversation 94.55 88.08 83.13 86.45 93.25

Group B Vocabulary 94.20 92.43 90.10 84.78 86.40
Sentence Translation 93.10 91.13 90.13 84.40 89.13
Sentence Completion 93.88 91.50 91.08 85.38 86.33
Verb Conjugation 93.15 91.18 90.08 83.65 88.00
Grammar Questions 94.23 90.15 89.68 86.43 88.08
Pronunciation 92.73 92.80 89.55 84.53 86.10
Accent Identification 94.28 92.48 90.80 85.40 88.13
Sentence Construction 93.50 92.55 90.50 85.30 85.75
Listening Comprehension 92.40 93.95 90.50 88.55 86.13
Basic Conversation 92.73 91.95 92.38 85.50 85.93

Group C Vocabulary 85.78 92.05 92.48 90.33 84.83
Sentence Translation 88.05 94.75 92.15 88.58 85.33
Sentence Completion 87.15 92.80 90.00 91.08 86.83
Verb Conjugation 86.08 93.50 91.20 89.25 84.85
Grammar Questions 87.65 93.10 91.45 90.73 84.45
Pronunciation 87.18 93.28 91.85 91.30 83.88
Accent Identification 87.45 94.18 90.40 89.90 84.70
Sentence Construction 87.05 92.90 93.00 90.68 86.58
Listening Comprehension 87.53 93.68 94.63 90.30 87.88
Basic Conversation 86.80 92.53 90.65 92.38 85.23

Group D Vocabulary 82.70 86.95 94.18 92.35 89.55
Sentence Translation 85.28 87.80 94.65 91.43 90.18
Sentence Completion 86.88 86.95 92.68 90.50 90.30
Verb Conjugation 85.08 87.00 92.50 92.45 90.20
Grammar Questions 85.05 87.08 93.33 91.98 88.93
Pronunciation 84.25 86.08 94.00 91.05 91.18
Accent Identification 86.30 86.88 95.38 91.03 89.85
Sentence Construction 84.83 86.10 92.80 91.63 90.88
Listening Comprehension 89.35 85.48 92.50 93.58 90.15
Basic Conversation 82.83 86.60 92.95 92.13 91.78

Group E Vocabulary 89.68 83.23 85.30 93.80 92.83
Sentence Translation 90.70 85.80 87.63 92.80 92.80
Sentence Completion 91.63 85.90 86.63 94.15 91.03
Verb Conjugation 88.18 83.90 86.20 93.90 91.90
Grammar Questions 88.48 86.73 88.18 94.13 92.18
Pronunciation 89.20 84.70 84.85 92.53 93.60
Accent Identification 89.78 86.45 85.98 94.80 90.43
Sentence Construction 88.80 85.30 86.33 92.75 91.95
Listening Comprehension 90.68 88.93 87.25 94.90 92.45
Basic Conversation 91.13 83.73 88.10 91.53 91.28
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Table 7. Test average results.

Manual Teaching LLama GLM Bard Proposed Method

Vocabulary 92.218 90.082 84.054 86.712 92.942
Sentence Translation 91.962 89.768 85.578 87.822 94.096
Sentence Completion 91.442 90.558 86.494 87.132 93.872
Verb Conjugation 91.686 89.622 84.592 86.912 93.79
Grammar Questions 91.298 89.934 85.298 87.878 94.108
Pronunciation 92.276 90.072 84.702 86.042 93.184
Accent Identification 91.478 90.236 85.926 86.798 94.028
Sentence Construction 93.066 89.878 85.948 87.102 93.78
Listening Comprehension 93.122 89.856 88.078 86.564 93.612
Basic Conversation 92.112 91.15 84.084 86.776 92.598

Figure 7. t-test on test results in Table 5. Each data point in the figure represents a test item,
specifically one of the following: “Vocabulary”, “Sentence Translation”, “Sentence Completion”,
“Verb Conjugation”, “Grammar Questions”, “Pronunciation”, “Accent Identification”, “Sentence
Construction”, “Listening Comprehension”, or “Basic Conversation”.

Figure 8. t-test on F1-score results in Table 5. Each data point in the figure represents a test item,
specifically one of the following: “Vocabulary”, “Sentence Translation”, “Sentence Completion”,
“Verb Conjugation”, “Grammar Questions”, “Pronunciation”, “Accent Identification”, “Sentence
Construction”, “Listening Comprehension”, or “Basic Conversation”.
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4.3. Learning Effect Prediction Results

The primary objective of this experiment is to assess and compare the performance
of different models in predicting learning outcomes, especially analyzing the fit between
these models’ predictions and the actual exam scores. Through quantitative analysis of
precision, recall, accuracy, and F1-score, the experiment aims to explore the accuracy and
adaptability of different automated teaching models in predicting learning outcomes. The
data shown in Table 8 and Figure 9 reflect the performance and advantages of each model
in the task of predicting language learning, providing a crucial basis for further optimizing
teaching strategies and content.

Table 8. Learning effect prediction results.

Model Precision Recall Accuracy F1-Score

LLama 0.93 0.92 0.94 0.92
GLM 0.93 0.90 0.91 0.91
Bard 0.91 0.88 0.89 0.90
Proposed Method 0.96 0.95 0.96 0.95

Figure 9. Learning effect prediction curves.

From the data in the table, it is evident that different models exhibit varied per-
formances in predicting learning outcomes. The LLama model shows high predictive
performance, with a precision of 0.93, recall of 0.92, accuracy of 0.94, and an F1-score of 0.92.
This performance can likely be attributed to the LLama model’s complex deep learning
architecture and extensive data training, which enable it to achieve high adaptability and
accuracy in language understanding and generation. The GLM model performs slightly
lower, with precision and recall at 0.93 and 0.90, respectively, accuracy at 0.91, and an
F1-score of 0.91. Despite the GLM model’s good overall performance, it may not fully
capture the complexity and diversity of the learning process in specific language learning
tasks due to limitations in model structure or training data. The Bard model performs
relatively lower, with a precision of 0.91, recall of 0.88, accuracy of 0.89, and an F1-score
of 0.90. This might be related to its specific advantages in generating literary and creative
texts, which may limit its ability to precisely predict standardized test scores. The proposed
method—integrating the differential LLM with the EEG fusion module—displays the best
performance among all models, with a precision of 0.96, recall of 0.95, accuracy of 0.96,
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and an F1-score of 0.95. This excellent performance is due to the personalized learning
adjustments of the differential LLM and the real-time cognitive state monitoring by the EEG
fusion module. The differential LLM enhances the model’s adaptability to each learner’s
unique learning path through its differential design, thereby improving the accuracy of
predictions. The real-time monitoring by the EEG fusion module provides instant feedback
on the learners’ cognitive states, allowing for real-time adjustments in teaching content and
assessments to match the actual performance and needs of the learners.

Analyzing the mathematical characteristics of the models, the differential LLM can
more precisely handle individual learning differences and better predict individual learning
outcomes through its differential loss function. At the same time, the EEG fusion module
provides deep insights into learners’ cognitive activities through brainwave analysis, which
are translated by the model into accurate predictions of learning outcomes. This integration
of advanced artificial intelligence technologies with brain science techniques demonstrates
unique advantages in automated language learning teaching assessment. It not only
enhances the accuracy of teaching and assessments but also boosts the relevance and
specificity of the teaching content, thereby significantly improving teaching outcomes and
learner satisfaction. Overall, these experimental results not only prove the effectiveness of
various teaching models but also reveal the potential of combining the differential LLM
and EEG fusion module in enhancing the prediction of learning outcomes. Through this
highly personalized teaching strategy, it is possible to more precisely match the specific
needs of each learner, thus greatly improving the overall effectiveness of language learning.

4.4. EEG Fusion Module Ablation Results

The primary objective of this experiment was to investigate the specific impact of
the EEG fusion module on the language learning teaching assessment system through an
ablation study. By comparing the performance of models with and without the EEG fusion
module, the experiment analyzed the role and effectiveness of this module in different
teaching tasks.

As seen in the data from Table 9, models exhibited different results in the presence
or absence of the EEG fusion module during test tasks and prediction tasks. In the test
task, with the EEG fusion module, the model’s precision was 0.93, recall was 0.90, accuracy
was 0.91, F1-score was 0.92, and the score was 90.55. In contrast, without the EEG fusion
module, the model performed slightly better with a precision of 0.95, recall of 0.92, accuracy
of 0.93, F1-score of 0.94, and a score of 92.90. In the prediction task, with the EEG fusion
module, the precision was 0.94, recall was 0.93, accuracy was 0.94, and F1-score was 0.93;
without the module, the precision, recall, accuracy, and F1-score were 0.96, 0.95, 0.96, and
0.95, respectively. These data indicate that model performance on various assessment
metrics slightly improved upon the removal of the EEG fusion module.

Table 9. EEG fusion module ablation results.

Model Precision Recall Accuracy F1-Score Score

EEG Fusion Module (Test Task) 0.93 0.90 0.91 0.92 90.55
No EEG Fusion Module 0.95 0.92 0.93 0.94 92.90

EEG Fusion Module (Prediction Task) 0.94 0.93 0.94 0.93 -
No EEG Fusion Module 0.96 0.95 0.96 0.95 -

From a theoretical perspective, the EEG fusion module is designed to monitor and
analyze learners’ brain activity in real time, providing instant feedback about their cog-
nitive states to the teaching system. Theoretically, this module should enhance teaching
content and strategies by accurately monitoring brain activity, thereby increasing the per-
sonalization and targeting of instruction. However, the experimental results showed a
slight improvement in model performance after the removal of this module. This may be
attributed to the fact that although the EEG fusion module can provide in-depth cognitive
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feedback, its data processing and feature extraction complexity might increase the compu-
tational burden on the model, impacting the ultimate teaching effectiveness. Additionally,
the noise and uncertainty in EEG data might cause fluctuations in model performance in
practical applications.

4.5. Limits and Future Works

The automated language learning teaching assessment system proposed in this article,
which is based on EEG and differential LLM, has shown significant promise in both
theory and practice. However, there are still some limitations that provide directions for
future research efforts. First, although the differential LLM combined with the EEG fusion
module has demonstrated excellent teaching and predictive performance in experiments,
such performance relies heavily on high-quality data inputs and complex algorithmic
processing. In practical applications, the complexity and cost of data collection remain
significant issues. For instance, the collection of EEG data requires specialized equipment
and environments, and participants in experiments must wear electrode caps, which may
affect the learners’ experience and comfort. Additionally, EEG data themselves have a high
level of noise and require complex preprocessing and analysis to derive effective cognitive
state information, demanding considerable computational resources. Therefore, future
work needs to focus on simplifying the data collection process, reducing the invasiveness
of experimental equipment, and optimizing data processing algorithms to lessen the
computational burden. Secondly, although the differential LLM can adjust teaching content
based on the characteristics of each learner to achieve personalized learning, its performance
largely depends on the quality of model training and the comprehensiveness of the data.
Model training currently often requires a large amount of annotated data, which may
be difficult to obtain, especially for specific language learning scenarios and particular
languages. Finally, the generalizability of the model also needs to be validated across a
broader range of language learning tasks and diverse learner populations. Thus, effectively
training models with limited or unannotated data to enhance the model’s generalizability
and adaptability is a challenge that needs to be addressed in future research.

5. Conclusions

This paper aims to explore the application possibilities of an automated language
learning teaching assessment system based on EEG and differential LLMs, integrating
advanced neuroscience technology and artificial intelligence to offer a new methodology
for language teaching and learning effect assessment. This system not only breaks through
the limitations of traditional teaching assessment methods but also provides a more precise
and personalized teaching support method by real-time monitoring and analysis of the
cognitive states of learners.

The innovation of this research is mainly reflected in the following aspects: First, the
introduction of differential LLMs provides a new method for the automated teaching system
to adjust teaching content based on individual learner differences, which is uncommon
in traditional automated teaching models. Secondly, the application of the EEG fusion
module enables the teaching system to monitor learners’ brain activities in real time,
thereby dynamically adjusting teaching strategies based on learners’ cognitive states,
a feature that has also been rare in previous research. Moreover, by combining these
two technologies, the system proposed in this paper can provide personalized learning
support while offering real-time feedback on learning effects, significantly enhancing the
specificity and effectiveness of teaching. Through detailed experimental design, this study
has verified the application effects of the EEG fusion module and differential LLM in the
automated teaching system. The experimental results show that the method combining
differential LLMs and the EEG fusion module exhibits superior performance across various
performance indicators. Specifically, in the teaching effect test, this method not only
surpasses other automated teaching models in precision, recall, and accuracy but also
demonstrates significant advantages in F1-score and test scores. These results adequately
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demonstrate the potential of integrating EEG technology and differential language models
in enhancing teaching quality and learning outcomes.

In conclusion, this research not only provides a new framework for language learning
teaching assessment combining EEG technology and artificial intelligence theoretically but
also empirically validates the practical application value of this framework. Although there
are some limitations and issues that require further exploration in the future, the findings
of this research clearly indicate a feasible path to improve teaching methods and enhance
teaching effects using the latest technologies, offering significant implications for the future
development of the field of language education.
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