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Abstract: This paper presents significant improvements in the accuracy and computational effi-
ciency of safety helmet detection within industrial environments through the optimization of the
you only look once version 5 small (YOLOv5s) model structure and the enhancement of its loss
function. We introduce the convolutional block attention module (CBAM) to bolster the model’s
sensitivity to key features, thereby enhancing detection accuracy. To address potential performance
degradation issues associated with the complete intersection over union (CIoU) loss function in the
original model, we implement the modified penalty-decay intersection over union (MPDIoU) loss
function to achieve more stable and precise bounding box regression. Furthermore, considering
the original YOLOv5s model’s large parameter count, we adopt a lightweight design using the Mo-
bileNetV3 architecture and replace the original squeeze-and-excitation (SE) attention mechanism with
CBAM, significantly reducing computational complexity. These improvements reduce the model’s
parameters from 15.7 GFLOPs to 5.7 GFLOPs while increasing the mean average precision (mAP)
from 82.34% to 91.56%, demonstrating its superior performance and potential value in practical
industrial applications.

Keywords: YOLOv5s; CBAM attention mechanism; MPDIoU loss function; safety helmet detection

1. Introduction

The safety helmet is a crucial piece of protective equipment on construction sites,
capable of protecting workers from head injuries caused by falling objects and collisions.
Wearing a safety helmet is an important measure to ensure workers’ safety, effectively
reducing the risk of head injuries. However, despite the clear importance of safety helmets,
many workers are often reluctant to wear them during construction for various reasons.
This reluctance to wear helmets poses significant safety hazards, highlighting the urgent
need for effective monitoring of safety helmet usage on construction sites. Traditional
monitoring methods primarily rely on manual inspection, which is not only resource-
intensive but also inefficient, prone to errors, and management oversights. Given these
challenges, automated monitoring systems that incorporate sensor technology have become
an important research direction.

In the application of sensor technology, cameras, as a key sensor, can capture and
analyze site images in real-time to determine whether workers are wearing safety helmets.
Compared to traditional manual inspection methods, camera-based monitoring systems
offer advantages such as automation, high accuracy, and strong real-time capabilities. How-
ever, the large and complex data collected by cameras presents the challenge of quickly
and accurately identifying instances of workers not wearing safety helmets within the vast
amount of images, which has become a focal point of research in this field. Therefore, the
combination of advanced image recognition algorithms with computationally lightweight
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models is particularly important. This article presents an effective and streamlined ap-
proach to detecting safety helmets using a refined YOLOv5 algorithm. This approach
integrates attention mechanisms and optimizes the model to boost detection precision and
enhance processing speed, thereby providing robust support for tracking safety helmet
compliance at construction sites. These algorithms sustain high accuracy while minimiz-
ing the use of computational resources, rendering the detection system more viable and
efficient.

Recent progress in machine learning has facilitated the creation of more accurate and
efficient safety helmet detection systems, greatly diminishing the labor expenses linked to
manual monitoring. For example, the fast object detection algorithm based on a cascade
classifier, proposed by Viola and Jones, greatly improved detection speed and accuracy [1].
Dalal and Triggs’ histogram of oriented gradients (HOG) method enhances feature extrac-
tion efficiency by analyzing the distribution of gradient directions in images [2]. Moreover,
Felzenszwalb et al.’s deformable part models (DPM) added robustness to detection models
by flexibly representing object parts [3]. These foundational methods laid the groundwork
for advancements in object detection.

The emergence of deep learning, especially convolutional neural networks (CNNs),
has brought significant breakthroughs in object detection. Redmon et al. introduced
the you only look once (YOLO) algorithm, which reconceptualized object detection as
a regression problem, facilitating real-time detection [4]. Girshick et al.’s Fast R-CNN
algorithm improved detection efficiency and accuracy through region proposal networks
(RPNs) [5]. He et al. expanded the scope of detection models with the Mask R-CNN
algorithm, which adds instance segmentation capabilities [6].

Beyond traditional CNNs, recent deep learning models have excelled in processing
large-scale data and complex environments. Lin et al.’s focal loss algorithm improved the
performance of single-stage detection models by weighting difficult-to-detect samples more
heavily [7]. Tan and Le’s EfficientDet algorithm, which combines the EfficientNet backbone
with the BiFPN feature pyramid, achieved higher accuracy and speed in detection tasks [8].
These models have made substantial strides in enhancing detection efficiency and precision.

To further improve model performance, object detection models have incorporated
attention mechanisms to enhance the model’s capacity for representation and extract
more relevant features. For instance, Hu et al.’s squeeze-and-excitation network (SENet)
increased the model’s feature representation capability by recalibrating inter-channel re-
lationships [9]. Woo et al. developed the convolutional block attention module (CBAM),
which integrates spatial and channel attention mechanisms to further enhance model per-
formance [10]. These attention mechanisms have found widespread application in object
detection, natural language processing, and other domains.

Although many newer versions with superior performance (such as YOLOv6, YOLOv7,
and YOLOv8) have emerged following YOLOv5, we chose YOLOv5s as the basis of our
study for several reasons. First, YOLOv5s is widely adopted in practical industrial appli-
cations, particularly performing well on resource-constrained devices such as embedded
systems and mobile devices. Second, YOLOv5s’s lightweight design and relatively low
computational cost make it more suitable for real-time detection tasks. In contrast, newer
versions, although superior in certain scenarios, often come with higher computational
demands, which may not be ideal for real-time applications in industrial environments.
Therefore, our study is based on YOLOv5s, and we further optimize its model structure
and loss function to improve detection performance, ensuring efficient object detection
even under resource-limited conditions.

This research focuses on the in-depth exploration and application of attention mech-
anisms, alongside systematic enhancements to the YOLOv5s algorithm across multiple
stages and layers. The goal of these improvements is to enable the model to extract features
more effectively and handle complex data, leading to significant advancements in detection
accuracy, stability, and generalization. The main contributions of this paper to the YOLOv5s
model are threefold:
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Incorporation of the CBAM attention mechanism: The convolutional block attention
module (CBAM) is an efficient attention mechanism designed to improve the network’s
ability to extract relevant features by concentrating on critical parts of the image. In the
context of safety helmet detection, CBAM helps the model focus on key details, such as
the positions of the head and helmet, thereby enhancing the accuracy of safety helmet
recognition.

Enhancement of the loss function with MPDIoU: The conventional CIoU loss function
may be inadequate in complex scenarios, particularly when the target objects are highly
overlapping or severely occluded. To overcome this limitation, this study introduces the
modified penalized distance intersection over union (MPDIoU) loss function, which refines
the bounding box regression strategy, thus improving the model’s stability and accuracy in
challenging situations.

Model structure optimization using MobileNetV3: Given the substantial parameter
count and computational complexity of the YOLOv5s model, this study integrates Mo-
bileNetV3 as the backbone network, substituting the original SE attention mechanism with
CBAM. These modifications considerably lower the model’s parameters and computational
demands, rendering it more apt for deployment on devices with limited resources and
broadening its practical use in industrial environments.

By thoroughly investigating and refining these technical aspects, this study not only
enhances the performance of safety helmet detection but also offers new insights and
methodologies for future research in this domain. Furthermore, the paper explores the
potential challenges these improvements may introduce and discusses future directions
for development, with the aim of providing a more efficient and precise safety helmet
detection solution for industrial, construction, and manufacturing environments. This ap-
proach is expected to better ensure employee safety and reduce the incidence of workplace
accidents. Additionally, the research aspires to stimulate further technological innovation
and application exploration, advancing progress in safety-related fields.

This paper is organized into the following three sections for detailed discussion:
Section 2 introduces the YOLOv5s algorithm and summarizes its core principles and
architecture. Section 3 outlines the proposed modifications, such as incorporating the
CBAM) to improve detection accuracy, adopting the MPDIoU loss function to resolve the
shortcomings of the CIoU, and replacing the YOLOv5s backbone with the MobileNetV3
architecture to decrease the model’s parameter size. Section 4 describes the experimental
condition, including dataset collection and model training outcomes. This section details
the experimental configuration, covering dataset preprocessing, model training parameters,
and technical aspects. A comparative analysis of the results is presented, highlighting key
improvements in detection accuracy and efficiency. Finally, Section 5 concludes the paper
by summarizing the research, reviewing major contributions and findings, and outlining
the model’s practical applications, challenges, and future research directions.

2. YOLOv5s Algorithm

YOLOv5 was developed by the Ultralytics team. Although it is not an official con-
tinuation of the original YOLO by its creators, its excellent performance and ease of use
have made it widely adopted in the field of object detection [11]. YOLOv5 provides vari-
ous model variants, enabling it to meet the demands of different computational resource
conditions while maintaining real-time detection performance [12].

The network structure of YOLOv5 consists of three main components: the backbone
network (backbone), the neck (neck), and the head (head). The backbone network uses
CSPNet (cross-stage partial network), a structure that enhances the feature representa-
tion capability and computational efficiency of the network through cross-stage partial
connections [13]. The neck structure employs PANet (path aggregation network) to fuse
multi-scale features, thereby improving detection accuracy [14]. The head is responsible for
the final bounding box regression and class prediction.
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As illustrated in Figure 1, the backbone network of YOLOv5 extracts deep image
features through multi-level convolution and pooling operations. The PANet structure
in the neck aggregates features from different scales to capture detailed information on
objects of various sizes. The head then produces the final detection outputs, including
object classes and locations.
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Figure 1. YOLOv5 network structure. 
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YOLOv5 provides several model variants to cater to different computational resource
and accuracy needs, including YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. These
variants vary in terms of model parameters and computational complexity [15]:

YOLOv5s: The smallest variant, ideal for resource-limited devices, offering high
processing speed but lower accuracy.

YOLOv5m: A mid-sized variant, balancing parameters, computation, and accuracy.
YOLOv5l: A larger variant, suited for applications requiring higher accuracy.
YOLOv5x: The largest variant, providing the highest accuracy, but with the greatest

computational demand.
YOLOv5 Loss Function
The YOLOv5 loss function is composed of three main components: Localization loss,

confidence loss, and class loss. In the localization loss component, YOLOv5 employs the
CIoU loss function. CIoU not only considers the overlap area between bounding boxes but
also integrates the distance between their center points and aspect ratio, resulting in more
accurate bounding box regression [16].

LCIoU = 1 − IoU +
ρ2
(

b, bgt
)

c2 + αv (1)

In this formula, IoU represent Intersection over Union, ρ2
(

b, bgt
)

is the Euclidean
distance between the center points of the ground truth box and the predicted box, c
represents the diagonal length of the smallest enclosing box that includes both the predicted
and ground truth boxes, α is a weighting factor for aspect ratio consistency, and v assesses
the consistency of aspect ratios between the predicted boxes and the ground truth.

Additionally, the confidence loss evaluates how well the predicted box overlaps with
the ground truth box, while the class loss assesses the accuracy of object classification. The
overall loss function for YOLOv5 is expressed as:

L = LCIoU + Lcon f + Lcls (2)

where LCIoU denotes the CIoU loss, Lcon f represents the confidence loss, and Lcls indicates
the class loss.
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Formulas (1) and (2) are the standard loss function expressions in YOLOv5, which
include three parts: CIoU loss, confidence loss, and category loss. Although these formulas
are not new, they are key components of the YOLOv5 algorithm. In our work, we use these
basic loss functions and optimize them. For example, to address the problem of inaccurate
positioning of CIoU when dealing with overlapping objects, we introduced the modified
penalty-decay IoU (MPDIoU) loss function to further improve the positioning accuracy. In
addition, we improved the network structure by integrating the lightweight MobileNetV3
architecture and the CBAM attention mechanism, effectively reducing the computational
complexity while maintaining high-precision detection.

Thanks to its efficient architecture, diverse model variants, and integrated loss function
design, YOLOv5 excels in object detection tasks. Its ability to fuse multi-scale features
and extract them efficiently ensures high accuracy and performance even in challenging
scenarios.

3. Improved YOLOv5s Algorithm

While YOLOv5 is a highly efficient algorithm in object detection, excelling in both
speed and accuracy, it has certain limitations. For instance, in complex scenes, its detection
accuracy can diminish, especially when handling small or densely packed objects. More-
over, the CIoU loss function used in YOLOv5 may not always yield the optimal bounding
box regression, potentially compromising detection performance.

3.1. Introduction of the CBAM Attention Mechanism

Attention modules have recently been widely adopted to improve object detection per-
formance [17–20]. The core concept of attention mechanisms is to increase model accuracy
by directing focus to key features within images and understanding their interrelation-
ships. Initially applied in natural language processing, attention mechanisms have been
increasingly utilized in computer vision tasks due to their notable effectiveness in image
processing.

The CBAM integrates both channel and spatial attention mechanisms, significantly
boosting the effectiveness of CNN [21]. CBAM consists of two essential parts: channel
attention and spatial attention. The channel attention mechanism employs fully connected
layers, pooling layers, and the sigmoid activation function to determine the importance
weights for each channel. First, the input feature map undergoes global average pooling
and global max pooling to capture global contextual information. The pooled outputs pro-
ceed through shared, fully connected layers and activation functions to produce attention
weights for individual channels. These weights are then applied to the input feature map
through element-wise multiplication, accentuating the most relevant channels. CBAM
module structure shown as Figure 2.
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Mathematically, the channel attention mechanism can be represented as:

Mc(F) = σ
(
W1

(
W0

(
Favg

))
+ W1(W0(Fmax))

)
(3)

Here, Favg and Fmax represent the results of global average pooling and global max
pooling, respectively, W0 and W1 are the shared fully connected layers, and σ is the sigmoid
activation function.

Mathematically, the spatial attention mechanism can be expressed as:

Ms(F) = σ
(

f 7×7([Favg; Fmax
]))

(4)

Here, Favg and Fmax represent the results of average pooling and max pooling across
the channel dimension, f 7×7 denotes the 7 × 7 convolution operation, and σ is the sigmoid
activation function.

3.2. MPDIoU Loss

To enhance helmet detection accuracy, this study introduces MPDIoU, a precise bound-
ing box regression (BBR) loss function that measures similarity using the minimum point
distance intersection over union [22]. It extends the traditional IoU concept, refining how
the overlapping region between predicted and actual boxes is determined. This approach
particularly resolves the limitations of GIoU when there is significant overlap between the
two boxes. IoU measures the proportion of the intersection area to the union area of the
predicted and actual boxes, as described by the following formula:

IoU =
A ∩ B
A ∪ B

(5)

In object detection tasks, we define the ground truth box as A and the predicted box as
B. A ∩ B denotes the area of the intersection between the two boxes, while A ∪ B represents
the area of their union. First, we obtain the coordinates of the top-left corner

(
xpre

1 , ypre
1

)
and the bottom-right corner

(
xpre

2 , ypre
2

)
of the predicted box, along with the corresponding

coordinates
(

xgt
1 , ygt

1

)
and

(
xgt

2 , ygt
2

)
of the ground truth box. These coordinates, together

with the feature map’s width w and height h, are used. The diagram shown Figure 3.
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The improved MPDIoU can be calculated as follows, combining the concepts of IoU
and point distance to enhance the precision of box localization.

d2
1 =

(
xpre

1 − xgt
1

)2
+

(
ypre

1 − ygt
1

)2
(6)

d2
2 =

(
xpre

2 − xgt
2

)2
+

(
ypre

2 − ygt
2

)2
(7)

MPDIoU =
A ∩ B
A ∪ B

−
d2

1
w2 + h2 −

d2
2

w2 + h2 (8)

LMPDIoU = 1 − MPDIoU (9)

where d2
1 is the square of the vertex distance between the predicted box and the upper left

corner of the real box, d2
2 is the square of the distance to the lower right vertex.

3.3. Improved MobileNetV3 as the Backbone Network

MobileNetV3, optimized using neural architecture search (NAS), builds on Mo-
bileNetV1 and MobileNetV2 by retaining depthwise separable convolutions and linear
bottleneck residuals [23]. Besides these elements, MobileNetV3 incorporates the squeeze-
and-excitation (SE) module, improving the model’s capacity to highlight important features.
To reduce the computational cost of the Swish activation function, h-swish is employed as
an efficient approximation, ensuring the model remains suitable for resource-constrained
platforms like mobile devices while maintaining accuracy.

By applying a nonlinear transformation to the product of the input x and the sigmoid
function, the model enhances positive values while suppressing negative ones. The inclu-
sion of SE helps the model concentrate on critical information when processing complex
visual tasks, thereby boosting overall performance and efficiency.

Swish x = x·δ(x) (10)

h − wish x = x·[ReLU(6(x + 3))
6

] (11)

By applying a nonlinear transformation to the product of the input x and the sig-
moid function, the model enhances the amplification of positive values while suppressing
negative ones. The introduction of SE allows the model to concentrate more on critical
information when processing complex visual tasks, thereby improving overall performance
and efficiency. The structure shown as Figure 4.
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Figure 4. Improved MobileNetV3 network structure.

When integrating MobileNetV3 as the feature extraction framework for YOLOv5, we
observed that although using MobileNetV3 instead of the traditional Darknet53 signifi-
cantly reduces model complexity, it has a tendency to miss pedestrians who are either far
away or small in size. This issue mainly stems from the original squeeze-and-excitation
(SE) module, which emphasizes inter-channel correlations but overlooks the significance
of spatial features. Research indicates that spatial attention modules are more effective
at identifying distant and small-scale objects. Consequently, we introduced the CBAM
module to replace the SE module within MobileNetV3.
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By incorporating the improved MobileNetV3 into YOLOv5, our model has signifi-
cantly enhanced its capability to detect targets of varying sizes and distances in complex
environments, all while maintaining low complexity. This improvement is particularly
evident in urban traffic scenarios and densely populated areas. This advancement not only
increases the model’s practicality but also opens up possibilities for real-time applications
in resource-constrained settings.

4. Experiments and Analysis
4.1. Experimental Environment and Dataset

The Experimental environment shown as Table 1.

Table 1. Experimental environment.

Component Model/Specifications

CPU 13th Intel Core i7-13700KF

RAM 32G

GPU NVIDA GeForce RTX 4070 12 GB

Programing language Python 3.8

Deep learning framework PyTorch 2.3.1

CUDA 11.8

This study tests the effectiveness of the helmet detection algorithm using the open-
source “Safety Helmet Wearing Dataset” (SHWD). SHWD consists of 7581 images, cap-
turing various environments, lighting conditions, viewing angles, personal postures, and
occlusion levels. The dataset comprises 9044 positive samples (helmet wearing) and
111,514 negative samples (non-helmet). It is partitioned into training and validation sets
with a ratio of 80:20, using 6064 images for training and 1517 for validation. Figure 4
presents sample images from the training set. The example training samples shown as
Figure 5.
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Training of the model occurred in two stages: frozen and unfrozen training. The
process was carried out over 100 epochs in total. During the first 50 epochs, frozen training
was performed, keeping the backbone network parameters fixed. In the next 50 epochs,
unfrozen training allowed the backbone parameters to be updated. The image resolution
was set to 640 × 640, with a batch size of 32, an initial learning rate of 0.001, and an IoU
threshold of 0.5. Model parameters were optimized using the Adam optimizer.

4.2. Evaluation Metrics

In this study, two evaluation metrics were used: mean average precision (mAP)
and FLOPs.
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The effectiveness of the helmet detection model is assessed by how accurately it
identifies helmet usage. Correct detections indicate successful identification of individuals
wearing helmets, while incorrect detections occur when the model mistakenly identifies
someone as wearing a helmet.

True negatives indicate when the model correctly identifies individuals not wearing
helmets, and false negatives are instances where the model misses detecting a helmet on
someone who is actually wearing one.

A critical metric for evaluating the model is average precision (AP), which measures
the average accuracy of the model across all possible recall rates, reflecting the model’s
capability to recognize specific categories. The formula for calculating AP is:

AP =
TP + TN

TP + TN + FP
(12)

The mean average precision (mAP) provides a more comprehensive assessment, as it
averages the AP values across all categories, making it a common metric for evaluating
detection accuracy in object detection tasks. It is calculated by summing the AP values of
all target classes and dividing the result by the total number of classes. The formula is as
follows:

mAP =
∑ AP

N
(13)

Here, N represents the number of target categories.
These metrics allow us to quantify the model’s performance in detecting whether a

helmet is being worn, enabling us to optimize model parameters and enhance detection
accuracy.

Floating point operations (FLOPs) measure a model’s computational complexity,
showing the number of operations needed for one forward pass. It helps assess the resource
usage and computational load, especially in resource-limited environments. The formula
for calculating FLOPs is provided below:

FLOPs = 2 × H × W × (Cin × K × K)× Cout (14)

In this formula, H and W represent the height and width of the input to the convolution
operation, Cin is input channels, K is the size of the convolution kernel, and Cout is output
channels. The formula illustrates the number of multiply–accumulate operations required
for each convolution, where the “2” accounts for the fact that each convolution involves
one multiplication and one addition.

By calculating a model’s FLOPs, we can quantify its computational load during task
execution, allowing us to assess its efficiency and suitability. This is especially important
when designing models that need to be both efficient and practical.

4.3. Results and Analysis

A series of ablation experiments were conducted to verify the feasibility and effec-
tiveness of the proposed improvements. These included: 1⃝ YOLOV5s, 2⃝ YOLOV5s+SE,
3⃝YOLOV5s+CBAM, 4⃝YOLOV5s+CBAM+MPDIoU, 5⃝YOLOV5s+MobileNetV3+MPDIoU,

and 6⃝ improved YOLOV5s (YOLOV5s+MobileNetV3+CBAM+MPDIoU). The detailed
experimental results are presented in Table 2:

The results indicate that precision and recall are critical metrics for evaluating model
performance. The improved YOLOv5s achieved the highest precision (93.81%) and recall
(86.33%), demonstrating its superior performance in target localization and identification.
In contrast, the baseline model (Model 1) showed lower precision and recall, at 89.56% and
75.41%, respectively. This substantial improvement suggests that integrating MobileNetV3
with CBAM and MPDIoU effectively enhances the model’s recognition capabilities.
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Table 2. Ablation experiment results comparison.

Model Precision/% Recall/% mAP@0.5/% FLOPs/G

ST-CenterNet [23] 94.19 71.88 89.06 -

YOLOv8s_ASPP_NWD [24] 91.8 86.6 92.0 -

1⃝ 89.56 75.41 82.34 15.8

2⃝ 90.47 81.51 85.12 15.8

3⃝ 91.24 82.38 86.23 15.8

4⃝ 92.44 84.30 87.70 15.8

5⃝ 89.90 75.24 82.06 5.7

6⃝ 93.81 86.33 91.56 5.7

mAP@0.5 is another vital performance metric used to assess the detector’s performance
across various confidence thresholds. On this metric, improved YOLOv5s also excels,
achieving 91.56%, indicating stable detection accuracy across diverse scenarios. Model 4
(YOLOv5s+CBAM+MPDIoU) also demonstrated a high mAP@0.5 of 87.70%, showing that
the inclusion of CBAM and MPDIoU significantly boosts detection performance.

Regarding computational cost, the FLOPs for Model 5 and improved YOLOv5s were
significantly reduced to 5.7G, compared to 15.8G for other models. This substantial re-
duction highlights that incorporating MobileNetV3 effectively lowers the computational
burden, which is crucial for deployment in resource-limited environments.

The PR curves illustrating the models’ performance are plotted as Figure 6:
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Figure 6. PR curve.

The provided PR curve illustrates notable performance differences among the models.
The improved YOLOv5s demonstrates the best performance, with its PR curve consistently
positioned at the top, indicating superior precision across the entire recall range. This
suggests that integrating MobileNetV3, CBAM, and MPDIoU technologies effectively
enhances the accuracy and robustness of object detection in the improved YOLOv5s.
Other models, such as YOLOv5s+CBAM and YOLOv5s+CBAM+MPDIoU, also show high
precision, especially in the mid-to-high recall range, indicating that their improvement
strategies significantly bolster their ability to handle complex scenarios.

The mAP@0.5 curve throughout the model’s training process is shown Figure 7:
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Figure 7. mAP@0.5 curve.

The improved YOLOv5s shows the most stable and highest mAP@0.5 values, con-
sistently staying above 0.9 throughout the training process, demonstrating its superior
detection accuracy and model stability. Other models, such as YOLOv5s+CBAM+MPDIoU
and YOLOv5s+MobileNetV3+MPDIoU, also perform well, but their mAP is slightly lower
than that of improved YOLOv5s. This may be due to the more effective feature extraction
and optimization techniques used in improved YOLOv5s. The baseline YOLOv5s model
shows rapid performance gains during the early stages of training, but its growth plateaus
and eventually stabilizes at a lower mAP level, suggesting that the basic model may have
limitations in handling complex or diverse scenarios. YOLOv5s+SE and YOLOv5s+CBAM
show steady performance improvements, reflecting the contributions of SE and CBAM
attention mechanisms in enhancing the model’s overall recognition ability, though they
still do not reach the level of improved YOLOv5s.

Figure 8 shows an example of an actual image. For the basic YOLOV5s and improved
YOLOV5s algorithms, we can see from the results that although the basic YOLOV5s
algorithm can locate the position of the helmet for the most part, the overall recognition
confidence is low, and there is even a misjudgment of identifying a person as a hat. The
improved YOLOV5s algorithm can also locate the position of the helmet, and the confidence
is generally high, and there is no misjudgment.
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Figure 8. Comparison of basic YOLOV5s and improved YOLOV5s examples. (Left) Basic YOLOV5s;
(right) improved YOLOV5s.

In order to verify that this method can also detect good results on other datasets, we
contacted China Construction Second Engineering Bureau Co., Ltd. (Beijing, China) to
collect some pictures of the construction site. These pictures are all captured by cameras
on the construction site, so the pixel proportion of workers in the camera is very small.
Therefore, it can be considered that this dataset can be used as a small target detection
dataset. The dataset picture is shown in Figure 9:
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Figure 9. Images of the self-made small target dataset.

The model was trained using the method mentioned in this article, and the experimen-
tal results are as Figure 10:
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Figure 10. Self-made dataset training results.

From the above results, it is evident that different models exhibit a gradual improve-
ment trend in precision, recall, and mAP@0.5 metrics. In particular, the improved model
6⃝ achieved optimal performance across all three metrics, with a precision of 83.52%, a

recall of 75.79%, and an mAP@0.5 of 80.21%. In contrast, the performance of model 1⃝ was
relatively weaker, indicating that without improvements, YOLOv5s is less effective in
detecting small objects.

It is particularly noteworthy that the recall metric exhibits notable fluctuations, es-
pecially in small object detection, where recall is significantly lower than precision. This
suggests that the model faces challenges in localizing small objects, resulting in the failure
to detect some of them. This is due to the fact that in the non-optimized model, small object
information is easily lost during feature extraction, impacting the final detection accuracy.

To resolve this issue, a small object detection layer was added to the improved algo-
rithm, enhancing its ability to detect small objects. To visually demonstrate the differences
in performance before and after the improvements, two comparative images will be shown:
one illustrating the non-improved algorithm’s performance, and the other showing the im-
proved algorithm under the same conditions. These images clearly highlight the enhanced
effectiveness of the improved algorithm in detecting small objects. The result shown as
Figure 11.
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Figure 11. Small object detection images. (upper) Basic YOLOV5s; (down) improved YOLOV5s.

5. Conclusions

Based on the experimental analysis conducted in this study, the following key conclu-
sions were drawn:

Improvement in Model Performance:
The improved YOLOv5s model, by integrating MobileNetV3, the CBAM attention

mechanism, and the MPDIoU strategy, demonstrated excellent performance in both preci-
sion (93.81%) and recall (86.33%). This represents a significant improvement compared to
the baseline model, which had a precision of 89.56% and a recall of 75.41%.

Optimization of Computational Efficiency:
By incorporating the lightweight MobileNetV3 structure, the FLOPs of the improved

model were significantly reduced to 5.7G, indicating that the model effectively reduces the
consumption of computing resources while maintaining high accuracy, making it suitable
for resource-constrained real-world applications.

Reliability in Practical Applications:
The improved YOLOv5s model exhibited higher confidence and lower false positive

rates in actual detection tasks. Especially in complex scenarios, it was able to more accu-
rately identify and locate the position of safety helmets, demonstrating its stability and
reliability in practical applications.

Advantages of Algorithm Integration:
The integration of various advanced algorithms (such as CBAM and MPDIoU) in this

study significantly enhanced the robustness and adaptability of the object detection model,
providing valuable practical experience for building efficient object detection systems.
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