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Abstract: Inappropriate kitchen cooking height may lead to uncomfortable and muscle fatigue. This
study aims to compare the effects of kitchen cooking height on upper limb muscle activation, posture,
and perceived discomfort among different age groups. Fifteen older women and fifteen young Chinese
women each completed three consecutive 20 s simulated cooking tasks at five different heights. Surface
electromyography, motion capture, and Borg CR10 scale were used to measure muscle loading. Results
showed that the main power muscles of the cooking task were the anterior deltoid, brachioradialis,
and biceps brachii. The higher muscle contribution rate of biceps brachii and triceps brachii was found
in the younger group compared to the older group (p < 0.05). Muscle activation of the anterior deltoid
(different in 1.28–2.87%), pectoralis major (different in 1.43–1.69%), and erector spinae (different in
0.6–1.21%), as well as right shoulder abduction (different in 5.91◦–7.96◦), were significantly higher
in older group than in young group (p < 0.05). Muscle activation of the anterior deltoid and right
shoulder abduction decreased significantly with decreasing height (p < 0.05). A height of 200–250 mm
below the elbow was considered a more comfortable cooking height for both age groups. This provides
data to support the design of cabinet sizes.

Keywords: kitchen cooking height; age difference; muscle activation; posture analysis; rating of
perceived discomfort; comfort

1. Introduction

The trend of population aging has become an important issue that China and most
countries in the world need to face. Musculoskeletal disorders (MSDs) exhibit an age-
dependent prevalence, with women being disproportionately affected [1,2]. It has been
reported that physical work capacity declines by an average of 20% between the ages of 40
and 60 due to decreases in aerobic and musculoskeletal capacity [3]. These declines can
lead to a reduced ability to work and, consequently, increased work-related injuries and
illnesses. The kitchen, as a central activity area in the home, plays a vital role in the daily
routines of older adults [4]. Most Chinese older adults prefer to continue to live at home
or receive community-based older adult care services [5]. Studies have demonstrated that
older adults in the kitchen are prone to problems with reaching, bending, flexibility, and
vision [6]. The primary risk factors associated with MSDs in kitchen workers include lifting
heavy weights, repetitive upper limb movements, prolonged standing, and forward trunk
flexion [7–9]. Therefore, ergonomic kitchen design for older adults is essential to facilitate
independent living and operation in their later lives. Several studies have explored factors
influencing these risks, such as knife design [10,11], workstation ergonomics [12], and the
use of exoskeletons or collaborative robots [13].

One key aspect of ergonomic design is ensuring appropriate dimensions for the kitchen
environment, such as the height of the cooking surface and countertop. Excessively high
kitchen countertops can lead to shoulder issues for shorter users, caused by prolonged
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upper limb lifting. Some studies have employed anthropometric measurements [14] and
subjective evaluations [15] to determine optimal heights for kitchen sinks, work surfaces,
and stoves. In Ward’s study [16], muscle activation in lower limb muscles—such as the
quadriceps, gastrocnemius, biceps femoris, and erector spinae—was objectively measured
using surface electromyography (sEMG) to assess suitable countertop heights for adult
women in the United Kingdom. To our knowledge, no study has yet quantified how
the height of kitchen cooking surfaces affects musculoskeletal loading in older adults,
particularly regarding differences between older and young adults in kitchen tasks. Older
adults often experience significant differences in joint mobility due to arthritis and other
musculoskeletal disorders, making the impact of kitchen work surfaces on their comfort
and posture especially pertinent [17].

Numerous studies have quantitatively assessed muscle loading by measuring changes
in muscle activation using surface electromyography (sEMG), a technique that measures
the electrical activation associated with muscle contraction and relaxation [18], particularly
in studies involving older adults. However, most research on muscle activation changes
in this population has primarily focused on the lower limbs [19–22], emphasizing fall
prevention, while upper limb studies have been less prevalent. Nonetheless, a few articles
have explored upper limb muscle characteristics in older adults, such as examining the
relationship between the height of hanging operating [23], the height and distance of
armchairs during sit-to-stand transitions [24], and upper limb muscle activation, which has
significantly inspired our research. In kitchen cooking activities, discomfort is primarily
reported in the neck, shoulders, and lower back [25–27]. The upper limb muscles, including
the trapezius, deltoids, biceps, and triceps, are essential power muscles during kitchen
tasks and play a crucial role in operational comfort [28,29].

Furthermore, there is a strong connection between body posture and muscle loading.
Motion capture technology effectively assesses user comfort by capturing data on body
posture and has been widely employed in evaluating working postures in various settings,
including offices [30,31], industrial environments [32], and even in robotic applications [33].
Some researchers have integrated myoelectric and kinetic tracking techniques to study
comfort. For example, Zhou examined the effects of different loads and retrieval postures
on muscle activation and joint range of motion when older adults retrieve objects from high
locations [34]. Similarly, Komisar investigated how handrail height influences the timing
and speed of reach-to-grasp balance reactions during slope descent in both young and
older adults [35]. Jakob analyzed the effects of working height and manipulated weights
on body posture and muscular activation among milking parlor operatives [36].

Therefore, this study aimed to comprehensively characterize the effect of kitchen
cooking height on musculoskeletal loads across different age groups by combining sEMG
and motion capture techniques to determine the optimal countertop height. Muscle acti-
vation was measured by sEMG, body joint angles were assessed through motion capture,
and overall and localized perceived discomfort was evaluated using the Borg CR10 scale.
The relationship between kitchen cooking height and these indicators was then analyzed,
focusing on differences between older and young adults. Ultimately, the findings were
used to propose optimal cooking heights for both age groups. The study hypothesized that
changes in kitchen cooking height would affect these physiological indices in participants
and anticipated variability in the changes between older and young adults.

2. Materials and Methods
2.1. Subjects

The subjects were divided into an older group (OG) and a young group (YG). 15 older
Chinese women and 15 young Chinese women volunteered to participate in this study
(Table 1). Subjects were limited to females to exclude the influence of the gender factor
on the results of the experiment. All participants had kitchen cooking experience. The
project was reviewed by the Human Study Ethics Committee of Beijing Forestry University
(BJFUPSY-2024-035). Each subject signed a consent form and completed a written screening
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survey to ensure that they had no significant musculoskeletal disorders and were right-
handed, and none had engaged in strenuous exercise the week before this experiment.

Table 1. Anthropometric characteristics of participants.

OG (n = 15) YG (n = 15)

Average Range Average Range

Age 66.4 ± 4.16 60–73 23.9 ± 3.6 20–31
Height (cm) 158.7 ± 6.2 151–170, P10–P99 167.6 ± 4.5 161–175, P50–P99

Elbow height (cm) 98.7 ± 5.2 92.5–109 104.8 ± 3 101–111
Weight (kg) 61.13 ± 9.36 47–80 58.17 ± 7.53 48–75

Note: the percentile of the height range cited from GB/T 10000-2023 [37].

2.2. Experimental Measurements
2.2.1. sEMG

sEMG signals were used to quantify muscle activation in participants. An 8-channel
sEMG signal measurement and acquisition system was used in the experiment (Kingfar
Technology Inc., Beijing, China). The sEMG signals were sampled at a frequency of 1000 Hz
with a band-pass filter tuned at 10–500 Hz. The wearable sEMG sensors were used for
the sEMG signal acquisition, and the ErgoLAB human–machine synchronous physiology
cloud platform was used to record, process, and output the sEMG signal data.

Seven muscles of the right upper limb and trunk related to the manipulation move-
ments were selected for testing because the test movements were mainly the right side of
the body firing and the height change mainly affected the muscle activation of the upper
body. The muscles measured in this experiment were the upper trapezius (UT), pectoralis
major (PM), anterior deltoid (AD), biceps brachii (BB), triceps brachii (TB), brachioradialis
(BR), and erector spinae (ES) (Figure 1d). The electrode placement locations followed
recommendations from the SENIAM Project [38].

Disposable electrode pads were used to connect the sEMG sensors, where the center-to-
center distance of the electrode pads was approximately 20–30 mm parallel to the direction
of the muscle fibers [39]. Before attaching the electrodes, the skin should be wiped with
alcohol to reduce the impedance [40].

In addition, the maximal volitional contraction (MVC) of the muscle was measured to
normalize the EMG amplitude (%MVC). Participants were required to perform three 5 s
maximal efforts in different arm and body positions [41]. The muscle contribution rate of
each muscle was calculated from the iEMG values in the sEMG signals, which were used
to determine the main power muscles under each set of tasks [42]. Normalized RMS values
(%MVC) were chosen to characterize the muscle activation, with higher values indicating a
greater tendency to fatigue the more forceful the muscle is [43,44].

The equations for iEMG (1), RMS (2), and muscle contribution rate (3) are as follows:

iEMG =
∫ N1

N2
X(t)dt (1)

RMS =

√
1
N

∫ N

i=1
EMG(i)2 (2)

η = (In/(I1 + I2 + I3 + · · · + In)) × 100% (n = 1, 2, 3, 4, 5, 6, 7) (3)
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Figure 1. Overview of the experimental setup. (a) Laboratory environment. (b) Demonstration of 
the kitchen cooking task. b1. Stand with arms down. b2. Hold the handle of the pan with the left 
hand and the frying spoon with the right hand. b3. Stir fry the cucumber slices. b4. Stop operation 
and stand with arms down. (c) Experimental setup. (d) Positions of sEMG sensors. (e) Positions of 
motion capture sensors. 
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Figure 1. Overview of the experimental setup. (a) Laboratory environment. (b) Demonstration of
the kitchen cooking task. b1. Stand with arms down. b2. Hold the handle of the pan with the left
hand and the frying spoon with the right hand. b3. Stir fry the cucumber slices. b4. Stop operation
and stand with arms down. (c) Experimental setup. (d) Positions of sEMG sensors. (e) Positions of
motion capture sensors.

2.2.2. Motion Capture

The experiment used a motion capture system to acquire data on participants’ body
postures (Xsens Technologies B.V., Enschede, The Netherlands). The system adopts inertial
sensing technology to acquire body posture data such as joint angles under different
postures of the subject in real time. The sensors were attached to the corresponding
positions on the body in the form of Velcro. This experiment focused on upper limb
postural characteristics. Sensors were worn at 11 upper body points, including forehead,
breast, left back, right back, left upper arm, right upper arm, left wrist, right wrist, left
hand, right hand, and hip (Figure 1). Calibration of the equipment was necessary before
conducting the formal experiments.

Joint angles acquired using the motion capture system are used for posture analysis.
Some methods provided a risk assessment regarding biomechanical postural load such as
ISO11226-2000 [45] and Rapid Upper Limb Assessment (RULA) [46]. They were applied to
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evaluate posture data in the study. It was primarily analyzed for upper limb joint angles,
including head, trunk, and right arm joint angles (Appendix A).

2.2.3. Borg CR10 Scale

The rating of perceived discomfort (RPD) was scored on the Borg CR10 scale ranging
from 0 (nothing at all) to 10 (very, very strong). This scale includes assessments of overall
discomfort as well as specific body parts, including the neck, shoulders, upper arms,
forearms, wrists, and lower back [47].

2.3. Experimental Procedures

This study was conducted in a laboratory setting (Figure 1). Kitchen cooking surfaces
at different heights were simulated by adjusting the height of the table. sEMG signals and
body posture data were acquired in different settings. The test height was based on the
subject’s elbow height, which is considered to be a key reference for determining work
scales [48,49]. Following pre-experimental testing, the final test heights were established at
five different levels (Table 2).

Table 2. Height settings for the cooking task.

H1 H2 H3 H4 H5

H-100 mm H-150 mm H-200 mm H-250 mm H-300 mm
Note: H indicates the elbow height of the subject.

The experimental task was designed to simulate a stir-frying action, commonly seen
in Chinese cooking. Participants performed the stir-frying task using cucumber slices. Each
subject repeated the cooking task three times for 20 s at each height, with the cooking
process standardized (Figure 1b). The task consisted of the following phases: (1) 0–5 s is the
starting phase, where subjects stand with their hands hanging naturally; (2) 5–10 s is the
ready phase, during which the subject holds the wok handle with their left hand and the
spatula with their right hand; (3) 10–30 s is the cooking task phase, where subjects tossed
the cucumbers in the pan according to their habits. This process was repeated three times
for each height.

The experimental protocol included the following sections: (1) anthropometric mea-
surements, (2) device wear and calibration, (3) kitchen cooking task, (4) evaluation of RPD,
and (5) MVC measurements. Participants completed the cooking task at five different
heights. After each height test, they filled out the RPD scale, followed by a 5 min break.
The total duration of the test for each subject was less than one hour.

2.4. Statistical Analysis

Statistical analysis of muscle activation, joint angles, and RPD was performed using
SPSS v.27.0 (IBM Corp., Armonk, NY, USA). Descriptive statistics were expressed as mean,
standard deviation, and median. sEMG signals and body posture data were recorded
from participants. Data from 2 to 18 s of a sustained 20 s movement were intercepted and
analyzed, and the mean of the three repetitions at each height was calculated. Muscle
activities, joint angles, and RPD were analyzed in this study.

The Shapiro–Wilk test was used to determine the normality of the data before selecting
the appropriate method of analysis. Spearman’s test was used to test the correlation
between muscle activities, joint angles, and table height. The effect of table height on
muscle activation and joint angles under different tasks was assessed using repeated
measures analysis of variance (ANOVA). Significant differences between the OG and YG at
different heights were determined by simple effect analysis.

The Friedman M test was used to test for significant differences in RPD at different
heights. Bonferroni correction was used to adjust the level of significance to explain the
two-by-two comparison of the OG and YG. Mann–Whitney U test was used to test for
between-group differences between the OG and YG at different heights.
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3. Results
3.1. Muscle Activation Analysis
3.1.1. Muscle Contribution Rate

The muscle contribution rates can respond to subjects’ primary power muscles and
force-generating patterns while performing the cooking task. As shown in Figure 2, the
main power muscles involved in both groups were the AD, BR, and BB, which were used as
the main focus for analyzing muscle activation. However, the YG exhibited a significantly
higher contribution rate from the BB and TB compared to the OG (p < 0.05).
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Figure 2. Muscle contribution rates and main power muscles in the OG and YG. (a) Muscle contribu-
tion in the OG. (b) Muscle contribution in the YG. (c) Muscle position. Note: The dash line indicates
muscle contribution rate equal to 15%.

3.1.2. Muscle Activation

Muscle activation was characterized using normalized RMS values (%MVC). The
correlation coefficients between the RMS values and the test heights are shown in Table 3.
Significant correlations were found for the RMS values of UT, AD, and ES in both groups
(p < 0.05). In the OG, the RMS values of the UT, AD, and BB were positively correlated
with height (p < 0.05), and the RMS values of the ES were negatively correlated with height
(p < 0.05). In the YG, the RMS values of the UT, AD, and BR showed a positive correlation
with height (p < 0.05), whereas the RMS values of the PM and ES exhibited a negative
correlation with height (p < 0.05).

Table 3. The Spearman correlation of Normalized RMS values and test heights.

UT PM AD BB TB BR ES

OG 1.000 ** −0.700 1.000 ** 0.900 * −0.200 −0.200 −0.900 *
YG 1.000 ** −1.000 ** 1.000 ** 0.400 −0.400 1.000 ** −0.900 *

Note: ** indicates a significant correlation at the 0.01 level (two-tailed). * indicates a significant correlation at the
0.05 level (two-tailed).

The ANOVA analysis of RMS values indicated a statistically significant effect of height
on RMS values (p < 0.05) (Table 4). As shown in Figure 3, for the OG, the RMS values of the
AD and BB decreased with decreasing height. However, the muscle activation of the AD
and BB from H3 onwards was not significantly different from other heights in the OG. For
BR, there were no significant differences between heights in the OG. In the YG, the RMS
values of the AD also decreased with decreasing height, and similar to the OG, there was
no significant difference in the muscle activation of the AD from H3 onwards. The RMS
values of the BB and BR showed no significant differences between each height in the YG.
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Table 4. Mean, standard deviation, and data range of normalized RMS values (%MVC) at different test heights, with repeated measures ANOVA results.

Muscle H1 H2 H3 H4 H5 F p

UT
OG 8.00 ± 3.31 bcde 2.68–14.70 7.38 ± 3.31 a 2.36–15.17 7.15 ± 3.42 a 2.38–14.54 6.95 ± 3.58 a 2.46–13.80 6.74 ± 3.78 a 2.41–13.89 6.128 <0.001 **
YG 6.51 ± 3.29 cde 2.00–14.92 6.17 ± 3.10 e 1.87–14.72 5.92 ± 3.19 a 2.05–15.46 5.62 ± 2.79 a 2.01–12.25 5.26 ± 2.61 abc 1.65–12.11 4.176 0.004 **

O-Y p 0.041 * 0.089 0.091 0.06 0.037 *

PM
OG 5.34 ± 2.87 2.67–13.23 5.18 ± 2.83 2.51–12.52 5.22 ± 3.03 2.01–12.95 5.37 ± 3.38 2.01–14.04 5.55 ± 3.62 2.32–14.93 1.765 0.143
YG 3.65 ± 1.16 2.09–6.74 3.71 ± 1.24 2.24–6.92 3.79 ± 1.40 2.22–7.94 3.80 ± 1.13 2.32–6.95 3.86 ± 1.35 2.20–7.62 0.258 0.904

O-Y p <0.001 ** 0.002 ** 0.005 ** 0.004 ** 0.004 **

AD
OG 12.36 ± 4.92 bcde 6.43–26.81 10.89 ± 4.12 acde 5.08–22.91 9.97 ± 3.73 abe 4.79–24.12 9.69 ± 3.84 abe 4.84–23.64 8.95 ± 3.21 abcd 4.42–17.91 23.373 <0.001 **
YG 9.49 ± 3.52 cde 5.24–19.98 8.91 ± 3.24 cde 4.83–16.39 8.26 ± 3.02 abe 5.25–14.84 7.76 ± 2.64 ab 4.72–12.07 7.67 ± 2.60 abc 4.66–13.19 8.086 <0.001 **

O-Y p 0.002 ** 0.013 * 0.020 * 0.007 ** 0.040 *

BB
OG 9.27 ± 5.09 bcde 4.32–5.22 8.62 ± 4.32 acde 4.78–23.94 8.03 ± 4.08 ab 4.54–22.77 8.14 ± 4.48 ab 4.23–23.46 7.83 ± 4.25 ab 4.23–23.22 11.697 <0.001 **
YG 8.69 ± 3.68 4.54–19.74 8.53 ± 3.55 4.81–18.60 8.30 ± 3.17 5.40–17.33 8.21 ± 3.45 5.37–18.02 8.55 ± 3.89 5.50–21.10 3.005 0.023 *

O-Y p 0.536 0.911 0.731 0.931 0.399

TB
OG 7.20 ± 2.99 4.77–5.89 7.06 ± 3.05 4.80–6.63 7.10 ± 2.99 4.83–6.81 7.63 ± 4.30 4.86–5.82 7.12 ± 2.97 4.79–6.87 0.864 0.489
YG 7.25 ± 3.48 4.88–19.15 7.32 ± 3.21 c 4.85–16.57 8.22 ± 4.78 b 4.77–24.95 8.41 ± 6.51 4.81–31.86 7.31 ± 3.50 4.86–20.65 3.424 0.012 *

O-Y p 0.938 0.698 0.187 0.504 0.789

BR
OG 11.43 ± 4.87 5.70–22.87 11.52 ± 5.23 5.64–23.29 11.23 ± 5.24 5.40–22.12 11.34 ± 5.76 5.02–24.49 11.64 ± 6.41 4.82–26.42 0.913 0.46
YG 9.95 ± 4.14 5.42–27.39 9.56 ± 3.36 5.50–16.69 9.49 ± 3.59 5.44–19.05 9.28 ± 3.67 5.08–18.81 9.08 ± 3.79 4.76–19.65 0.976 0.425

O-Y p 0.124 0.038 0.067 0.046 * 0.023 *

ES
OG 4.87 ± 2.14 e 3.09–11.73 4.30 ± 2.16 e 3.05–11.77 4.92 ± 2.15 e 3.06–11.90 5.09 ± 2.15 3.03–11.91 5.10 ± 2.18 abc 3.07–11.92 3.852 0.007 **
YG 3.66 ± 0.36 e 3.10–4.41 3.70 ± 3.69 e 3.21–4.51 3.72 ± 0.36 e 3.22–4.56 4.02 ± 1.22 3.29–9.69 3.89 ± 0.49 abc 3.26–5.18 3.802 0.007 **

O-Y p <0.001 ** <0.001 ** <0.001 ** 0.007 ** 0.001 **

Note: a indicates a significant difference in comparison with H1, b indicates a significant difference in comparison with H2, c indicates a significant difference in comparison with H3,
d indicates a significant difference in comparison with H4, and e indicates a significant difference in comparison with H5. *: p < 0.05, **: p < 0.01. O-Y p: Comparison between the OG and
YG p-values.
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For the effects of test heights on other muscles’ activation, in both groups, the RMS
values of the UT decreased with decreasing height. The muscle activation of AD was
significantly greater at H5 compared to other heights. The RMS values of the PM, TB, and
ES increased with decreasing height, but the differences between each height were not
significant, except for ES, which had significantly greater muscle activation at H5 compared
to other heights.

Additionally, comparisons of muscle activation between OG and YG showed statis-
tically significant differences. The RMS values of the PM, AD, and ES were significantly
greater in the OG than in the YG (p < 0.05). The difference in the RMS values of the PM was
1.43–1.69%, the AD was 1.28–2.87%, and the ES was 0.6–1.21%, respectively.

Overall, the sEMG analysis identified the main power muscles engaged during the
cooking task and highlighted differences in muscle activation patterns between the OG and
the YG. The analysis also revealed a significant effect of test height on muscle activation,
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with the OG showing significantly greater activation than the YG. These findings can
contribute to evaluating the comfort associated with different cooking heights.

3.2. Posture Analysis

The body postures that did not meet the ergonomic requirements for static work
(ISO11226-2000, RULA) in this experiment were neck flexion (>20◦), shoulder abduction
(>20◦), elbow internal rotation (>90◦), wrist abduction (>20◦), and no significant back, low
back, or hip flexion (<10◦) (Appendix B). The correlation coefficients between these joint
angles and test heights are shown in Table 5. The test height showed a negative correlation
with neck flexion and right elbow internal rotation and a positive correlation with right
shoulder abduction and right wrist abduction (p < 0.01).

Table 5. The Spearman correlation of the joint angles and test heights.

Neck Flexion Right Shoulder
Abduction

Right Elbow
Internal Rotation

Right Wrist
Abduction

OG −1.000 ** 1.000 ** −1.000 ** 1.000 **
YG −1.000 ** 1.000 ** −1.000 ** 1.000 **

Note: ** indicates a significant correlation at the 0.01 level (two-tailed).

The ANOVA analysis of joint angles showed that height had a significant effect on
joint angles (p < 0.01) (Table 6). As shown in Figure 4, neck flexion and right elbow internal
rotation gradually increased, and right shoulder abduction and right wrist abduction
gradually decreased with decreasing test height. Neck flexion was within 20◦–25◦ in both
the OG and YG. Right shoulder abduction was within 20◦–60◦ in both the OG and YG.
Right elbow internal rotation was more than 90◦ at H2 in the OG and more than 90◦ at H3
in the YG. Right wrist abduction was less than 20◦ at H5 in the OG, whereas the right wrist
abduction of the YG is greater than 20◦ at all heights.

Moreover, comparisons of body posture between OG and YG showed statistically
significant differences. Right shoulder abduction was significantly greater in the OG than
in the YG, except at H1 (p < 0.05), with a difference ranging from 5.91◦ to 7.96◦.
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Figure 4. The joint angles at different heights in the OG and YG. (a) Neck flexion. (b) Right shoulder
abduction. (c) Right elbow internal rotation. (d) Right wrist abduction. Note: *: p < 0.05. the dash line
in a is 20◦, the dash line in b is 20◦, the dash line in c is 90◦, the dash line in d is 20◦.
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Table 6. Mean, standard deviation, and data range of joint angles (/degree) at different test heights, with repeated measures ANOVA results.

Joint H1 H2 H3 H4 H5 F p

Neck Flexion
OG 20.05 ± 1.83 e 17.04–22.78 20.57 ± 1.83 e 17.09–22.94 20.92 ± 1.91 e 17.83–23.50 21.12 ± 1.91 17.55–23.47 21.70 ± 2.00 abc 18.49–24.27 7.741 <0.001 **
YG 20.65 ± 2.90 bcde 15.63–26.87 21.48 ± 3.10 ae 15.78–28.95 21.96 ± 3.56 ae 14.96–30.94 22.34 ± 3.29 a 16.07–30.32 22.89 ± 3.25 abc 17.44–31.04 13.136 <0.001 **

O-Y p 0.504 0.336 0.325 0.227 0.237

Right
Shoulder

Abduction

OG 40.64 ± 10.11 e 21.29–53.97 39.63 ± 7.10 e 28.08–50.13 36.59 ± 6.03 ae 27.15–46.00 35.81 ± 4.50 e 25.64–43.69 31.69 ± 5.21 abcd 23.65–39.50 10.098 <0.001 **
YG 35.64 ± 7.81 bcde 21.10–52.43 31.67 ± 8.29 ae 17.10–45.42 30.07 ± 7.44 ae 16.96–42.52 27.67 ± 8.06 a 13.49–40.50 25.78 ± 6.48 abc 14.10–36.14 6.689 <0.001 **

O-Y p 0.141 0.009 * 0.013 * 0.002 * 0.010 *

Right Elbow
Internal
rotation

OG 86.58 ± 11.32 bcde 69.89–109.27 90.68 ± 12.88 acde 72.36–114.80 95.70 ± 12.78 ab 77.37–122.48 98.51 ± 13.48 ab 76.09–127.61 100.53 ± 13.58 ab 79.07–131.19 9.477 <0.001 **
YG 82.26 ± 12.98 bcde 57.33–101.45 88.09 ± 10.68 ade 66.23–103.12 91.19 ± 12.81 ade 72.61–108.86 98.19 ± 10.54 abce 79.06–112.95 102.42 ± 9.23 abcd 84.39–115.55 15.357 <0.001 **

O-Y p 0.340 0.553 0.342 0.943 0.660

Right Wrist
Abduction

OG 24.05 ± 10.31 4.10– 45.18 23.63 ± 9.78 3.39–47.17 23.23 ± 9.27 6.83–45.39 21.16 ± 9.93 2.78–47.89 19.73 ± 9.60 2.42–45.63 2.456 0.072
YG 25.01 ± 13.38 0.88–51.18 23.36 ± 11.41 5.81–46.36 23.89 ± 12.17 de 5.54–43.58 21.68 ± 12.92 c 2.92–39.22 20.23 ± 12.76 c 0.03–39.25 2.930 0.041 *

O-Y p 0.828 0.944 0.868 0.903 0.903

Note: a indicates a significant difference in comparison with H1, b indicates a significant difference in comparison with H2, c indicates a significant difference in comparison with H3,
d indicates a significant difference in comparison with H4, and e indicates a significant difference in comparison with H5. *: p < 0.05, **: p < 0.01. O-Y p: Comparison between the OG and
YG p-values.
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To summarize, the analysis of body postures identified specific joint angles associated
with non-ergonomic static postures during cooking tasks. It was found that cooking height
significantly influenced these joint angles, and differences in operating postures were
observed between the OG and the YG. The combination of sEMG and motion capture
indicators provides a comprehensive assessment of cooking height comfort, highlighting
differences between older and young populations.

3.3. RPD Analysis

In addition to the objective results, comfort at different heights was also assessed using
subjective discomfort scores. As shown in Table 7, the RPD of overall and body parts was
significantly different in the OG at different test heights, except for the forearm (p < 0.05).
The YG had significant differences in the neck and low back (p < 0.05).

Table 7. The significant difference in overall and body parts RPD between the OG and YG p-value.

Overall Neck Shoulder Low Back Upper Arm Forearm Wrist

OG <0.001 ** <0.001 ** <0.001 ** 0.026 * <0.001 ** 0.165 0.028 *
YG 0.173 <0.001 ** 0.124 0.004 * 0.083 0.594 0.095

Note: ** indicates a significant correlation at the 0.01 level (two-tailed). * indicates a significant correlation at the
0.05 level (two-tailed).

In the RPD of the overall body, as shown in the box plot (Figure 5a), H3 and H4 had
the lowest scores in the OG, while the YG had the lowest score at H4. The main discomfort
areas in the OG were the shoulder, neck, and upper arm (Figure 5b), whereas in the YG,
they were the upper arm, neck, and shoulder (Figure 5c). The RPD in the upper arm,
shoulder, and wrist gradually decreased with decreasing height, while the RPD in the neck
and low back gradually increased.
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4. Discussion

Due to the lack of quantitative data on musculoskeletal loading in older adults during
kitchen activities, this study combined sEMG and motion capture to investigate the effects
of cooking height on muscle activation, posture, and perceived discomfort in older and
young adults in terms of kitchen cooking tasks in their daily lives. It was found that changes
in kitchen cooking height significantly affected muscle activation and body posture. As
the cooking height decreased, the muscle activation of the major muscle, AD, gradually
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decreased, neck flexion and right elbow internal rotation gradually increased, and right
shoulder abduction and right wrist abduction gradually decreased in both the OG and YG.
Furthermore, this study compared differences between older women and young women. The
YG exhibited a significantly higher contribution rate from the BB and TB than the OG. Muscle
activation of the PM, AD, and ES were significantly higher in the OG compared to the YG,
and right shoulder abduction was significantly higher in the OG. Both OG and YG consider
cooking heights of H3 or H4 (200–250 mm below the elbow) to be the most comfortable.

Our findings reveal that older and young women have different force generation
patterns in kitchen cooking tasks. It was found that there was a higher muscle contribution
rate of the BB and TB in the YG compared to the OG, and right shoulder abduction
was significantly higher in the OG than in the YG in this study. This indicated that the
older women tended to exert force on the shoulder, while the young women tended to
exert force on the upper arm. Some studies have suggested that older adults adopt a
more “economic” motor strategy, which reduces the biomechanical load on the upper
extremity [50]. Norheim, in his study of arm kinematics during hammering movements,
also found that older workers seemed to use a less biomechanically demanding movement
strategy [51]. This may be related to the cooking experience and habits of older and young
people, potentially contributing to different areas of muscle fatigue in different age groups.

This study concluded that older women should be more aware of shoulder muscle
fatigue and pain when performing kitchen cooking tasks compared to young women.
Jonsson pointed out that for tasks longer than one hour, the average muscle activation
should not exceed 10% [52]. It was found that the muscle activation of the BR and AD in the
OG exceeded this recommended threshold, meaning that older women were more likely
to experience muscle fatigue in the shoulder, forearm, and wrist areas during prolonged
kitchen cooking. Additionally, it also was found that the muscle activation of the PM,
AD, and ES was significantly higher in the OG than in the YG. Arjunan and Kumar [53]
found that as individuals age, the complexity of sEMG decreases, while the variability in
muscle contractility increases. Older adults require more time and effort to complete tasks
compared to young adults [54,55]. Qin et al. observed a more pronounced and consistent
decrease in EMG power frequency among older adults, indicating reduced resistance to
fatigue in the trapezius and upper deltoid muscles during repetitive tasks [56,57]. Further-
more, in this experiment, the body postures that did not meet the ergonomic requirements
for static work were neck flexion, shoulder abduction, elbow internal rotation, and wrist
abduction. It also confirmed that WMSDs in kitchen workers commonly occur in the body
parts of the shoulder, neck, low back, and wrist. In comparison, there was more shoulder
discomfort feedback from the OG and more upper arm discomfort feedback from the YG,
which may be related to the prevalence of shoulder osteoarthritis and rotator cuff disease
in the older population [58].

Despite different power-up patterns and muscle activation between OG and YG,
both considered H3 and H4 as more comfortable cooking heights. In sEMG results, the
muscle activation of the AD gradually decreased with decreasing test height, and there
were no significant differences between the muscle activation at the two heights H3 and
H4 and they were significantly lower than at H2 in both the OG and YG. This indicates
that H3 and H4 are indeed the heights at which the upper limb muscles are more energy
efficient. Studies have shown that the lower the level of shoulder abduction, the lower
the muscle activation of the AD [59]. In our research, shoulder abduction decreased as
height decreased, reducing muscle activation and making lower cooking surfaces more
comfortable. Additionally, the muscle contribution rate and muscle activation of TB showed
an increasing trend with decreasing height, indicating a shift in muscle force from the
forearm to the upper arm. Previous studies have shown that complex tasks lead to a
redistribution of muscle forces, with multiple muscles synergistically participating [60,61].
In addition, the muscle activation of the ES showed an increasing trend with decreasing
height, indicating the presence of ES stretching (bending at the low back), and the muscle
activation at H5 was significantly higher than at H3 in both the OG and YG. It has been



Sensors 2024, 24, 7056 13 of 18

reported that low back pain among cooks has become a major source of occupational health
problems [62]. However, in our experiments the muscle activation of ES was low and none
of the trunk flexion exceeded 10◦. It was considered that the low back discomfort produced
by kitchen workers may be related to prolonged standing rather than inappropriate cooking
height [63]. The change in neck flexion angle with countertop height was small within 3◦.
The countertop height decrease was able to reduce discomfort in the upper arms, shoulders,
and wrists, but there was a gradual increase in discomfort in the neck and low back. This
also corresponds to the objective results of the muscle activation and postural analysis.
Subjects reported lower localized ratings at H3. By comprehensive analysis, H3 or H4 is a
more comfortable cooking height both for older and young women.

In conclusion, it was considered that the cooking height should be 200–250 mm below
the elbow for both older and young women. The average elbow height of China’s adult
females aged 61–70 years old is 939 mm, and the average elbow height of China’s adult
females aged 25–35 years old is 973 mm (GB/T 10000-2023). Based on the 32 mm system
cabinet system, it was considered suitable for older women that the height of the cooking
countertop should be 704 mm or 736 mm (689–739 mm). The height of the cooking coun-
tertop suitable for young women should be 736 mm or 768 mm (723–773 mm). Numerous
studies have been conducted on kitchen height in the past. Pekkarinen concluded that the
shoulders would be more relaxed during cutting and stirring when located at a height of
150–200 mm below the elbow [64]. A stove height of 746–826 mm was determined from the
low back height of older adult Malaysians [65]. This was a little higher than our findings,
which were considered more applicable to Chinese home kitchens and more in line with
Chinese women’s cooking habits and power patterns. In addition, this study is a small
sample experiment, and subsequent researchers can expand the sample size and narrow
the height interval to conduct research based on this study. For low back discomfort caused
by prolonged standing in the kitchen, low back support attachments can be considered for
kitchens for older adults to mitigate the low back discomfort associated with the operation
process [66]. Moreover, when interviewing older adults, people not only considered the
height that needed less effort when choosing the optimal height but also took into account
real-life kitchen scenarios. For example, generally, the lower the height of the countertop
the less effort it takes. However, the cooking height that is too low will make it difficult to
see what is on the cutting board and observe the food cooking in the pan. In addition, there
is a risk of getting your face steamed by the heat from the pan. The height of the ignition
and the size of the storage design of the cabinetry should be considered to determine the
height of the kitchen countertop.

The main limitation of this study is that it was conducted in a small-sample laboratory
setting that did not fully simulate a real kitchen environment. However, some key features
of kitchen tasks, such as repetitive hand movements, brief multiple manipulations, and
static postures, were reflected, providing some insight into physical risk factors and partici-
pant comfort in kitchen tasks. Therefore, the results still hold reference value for kitchen
countertop height design. Future studies could investigate the effects of other operations
(cutting, washing, picking, multitasking) on muscle fatigue in a real kitchen setting. This
study focused only on a Chinese female population; expanding the sample to include
women from diverse cultural and ethnic backgrounds and examining gender differences
could provide a more comprehensive understanding of the relationship between cooking
height and muscle fatigue. Additionally, as the kitchen is a high fall-risk environment,
particularly for the elderly, future research could explore lower limb muscle activation and
gait changes in kitchen multitasking scenarios.

5. Conclusions

This is the first study to investigate differences in upper limb muscles’ activation, body
posture, and perceived discomfort among women of different ages under varying kitchen
cooking heights. The present study revealed that cooking height and age significantly
influenced these indicators. It was found that older women and young women have
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different muscle force patterns and body postures. The YG showed a significantly higher
contribution rate from the BB and TB than the OG. Muscle activation of the AD (different in
1.28–2.87%), PM (different in 1.43–1.69%), and ES (different in 0.6–1.21%), as well as right
shoulder abduction (different in 5.91◦–7.96◦), were significantly higher in older women than
in young women. Muscle activation of the AD and right shoulder abduction decreased
substantially with decreasing cooking height. Combining the indicators, 200–250 mm
below elbow height was considered a more comfortable cooking height for older and
young women. This study quantified differences in muscle loading at various heights in
older and young women during kitchen cooking tasks, and proposed an appropriate height
for kitchen cooking that meets the cooking behavior and exertion habits of Chinese women.
It also provides scientific data support for cabinet manufacturers. As aging populations
increase globally, understanding muscle exertion patterns across age groups can inform the
design of ergonomically suitable furniture for older adults, supporting their independence
in later life.
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Table A2. Results of repeated measures ANOVA for joint angles at different test heights. 
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YG 0.69 ± 0.52 e 0.85 ± 0.84 0.99 ± 0.82 1.04 ± 0.74 e 1.33 ± 0.96 ad 3.535 0.020 *

O-Y p 0.005 * 0.041 * 0.042 * 0.013 * 0.047 *
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Table A2. Cont.

Joint H1 H2 H3 H4 H5 F p

e. Hip Flexion
OG 3.28 ± 1.85 e 2.42 ± 1.77 e 3.71 ± 1.95 e 4.05 ± 1.82 4.57 ± 1.97 abc 2.810 0.047 *
YG 1.56 ± 1.17 e 1.93 ± 1.89 2.23 ± 1.84 2.36 ± 1.67 e 3.01 ± 2.17 ad 3.529 0.020 *

O-Y p 0.005 * 0.041 * 0.042 * 0.013 * 0.048 *

f1. Right
Shoulder
Flexion

OG 48.19 ± 9.89 bcde 43.70 ± 9.64 ade 39.01 ± 9.70 ae 34.58 ± 8.76 ab 32.37 ± 8.12 abc 15.010 <0.001 *
YG 42.76 ± 12.97 bcde 37.44 ± 13.32 ade 32.85 ± 12.34 ae 28.43 ± 12.38 ab 26.09 ± 11.44 abc 16.565 <0.001 *

O-Y p 0.208 0.151 0.140 0.128 0.094

f3. Right
Shoulder
Internal
Rotation

OG 30.57 ± 14.17 bcde 24.30 ± 15.72 ade 20.33 ± 16.14 ade 13.39 ± 14.67 abc 11.09 ± 15.26 abc 8.618 <0.001 *
YG 11.72 ± 13.71 e 10.40 ± 13.88 e 6.94 ± 10.95 3.41 ± 12.27 1.10 ± 13.88 ab 2.838 0.045 *

O-Y p <0.001 * 0.016 * 0.013 * 0.053 0.071

g1. Right
Elbow Flexion

OG 70.89 ± 12.02 cde 67.10 ± 12.89 de 62.85 ± 11.83 ade 57.67 ± 9.72 abce 53.47 ± 9.13 abcd 9.831 <0.001 *
YG 77.66 ± 16.72 bcde 70.49 ± 14.22 ade 68.50 ± 14.09 ade 62.76 ± 14.49 abce 55.89 ± 12.98 abcd 17.968 <0.001 *

O-Y p 0.213 0.500 0.245 0.269 0.559

g2. Right
Elbow

Abduction

OG 31.19 ± 8.93 32.22 ± 9.24 32.46 ± 8.22 32.03 ± 7.30 29.56 ± 7.54 2.095 0.112
YG 44.38 ± 9.86 43.33 ± 10.17 43.84 ± 11.53 e 42.21 ± 10.88 e 39.24 ± 10.39 cd 3.812 0.015 *

O-Y p <0.001 * 0.004 * 0.004 * 0.005 * 0.007 *

h1. Right Wrist
Flexion

OG 1.69 ± 4.94 cde 3.54 ± 6.07 ce 5.61 ± 6.48 ab 5.60 ± 7.31 a 7.65 ± 6.33 ab 12.680 <0.001 *
YG 3.97 ± 12.43 bcde 6.96 ± 12.19 acde 9.10 ± 13.55 abde 12.24 ± 12.61 abc 12.84 ± 11.93 abc 24.449 <0.001 *

O-Y p 0.514 0.338 0.376 0.089 0.148

h3. Right Wrist
Internal
Rotation

OG 11.24 ± 11.92 11.84 ± 12.08 11.96 ± 12.76 de 9.30 ± 12.30 c 8.92 ± 13.45 c 4.011 0.012 *
YG 11.54 ± 11.87 11.13 ± 12.81 11.24 ± 12.42 11.57 ± 10.63 10.05 ± 11.40 0.912 0.472

O-Y p 0.945 0.877 0.876 0.592 0.806

Note: a indicates a significant difference in comparison with H1, b indicates a significant difference in comparison
with H2, c indicates a significant difference in comparison with H3, d indicates a significant difference in com-
parison with H4, and e indicates a significant difference in comparison with H5. *: p < 0.05. O-Y p: Comparison
between the OG and YG p-values.
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