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Abstract: Cracks represent one of the most common types of damage in building structures and it is
crucial to detect cracks in a timely manner to maintain the safety of the buildings. In general, tiny
cracks require focusing on local detail information while complex long cracks and cracks similar to the
background require more global features for detection. Therefore, it is necessary for crack detection
to effectively integrate local and global information. Focusing on this, a local–global feature adaptive
fusion network (LGFAF-Net) is proposed. Specifically, we introduce the VMamba encoder as the
global feature extraction branch to capture global long-range dependencies. To enhance the ability of
the network to acquire detailed information, the residual network is added as another local feature
extraction branch, forming a dual-encoding network to enhance the performance of crack detection.
In addition, a multi-feature adaptive fusion (MFAF) module is proposed to integrate local and global
features from different branches and facilitate representative feature learning. Furthermore, we
propose a building exterior wall crack dataset (BEWC) captured by unmanned aerial vehicles (UAVs)
to evaluate the performance of the proposed method used to identify wall cracks. Other widely
used public crack datasets are also utilized to verify the generalization of the method. Extensive
experiments performed on three crack datasets demonstrate the effectiveness and superiority of the
proposed method.

Keywords: crack detection; CNN; Mamba; multi-feature adaptive fusion

1. Introduction

With the rapid development of the economy and the acceleration of urbanization,
buildings have been greatly and widely built. However, building structures are subject
to varying degrees of deterioration over long periods, which are prone to cracks after
being eroded by the external environment, such as high temperatures, ultraviolet rays,
and rain, causing the bearing capacity of the buildings to decline. The cracks will seriously
affect the safety and stability of each component of the buildings [1]. If the cracks are not
repaired promptly, they may continue to expand and spread to the internal structure of
the buildings, drastically reducing the life of the buildings. Once the building collapses
due to damage, it will greatly threaten the safety of people’s property and lives, eventually
causing irreversible damage [2]. Therefore, buildings must be regularly inspected for health
so that these cracks can be detected in time and handled with reasonable means, which
ensures the safety and stability of the building structures [3].

The traditional manual inspection methods are inefficient and have safety hazards,
which are not applicable to various high-rise buildings, while the use of drone technology
will solve this problem to a large extent due to its high mobility. Combining the UAV
photography technology with the automated crack detection technology is expected to
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achieve high efficiency, high precision, and high safety factors in obtaining and analyzing
crack information [4].

In general, digital image processing-based methods, machine learning-based methods,
and deep learning-based methods are the three main types of methods for crack detection.
The methods based on digital image processing techniques can be categorized into threshold
segmentation methods [5,6] and edge detection algorithms [7,8]. The core of the threshold
segmentation method lies in choosing a threshold value and comparing the threshold value
with the pixel value to determine which category the pixel belongs to, which is commonly
used to segment images into different regions or objects. For instance, Oliveira et al. [9]
utilized the dynamic threshold method to identify concrete cracks from small-sized image
blocks for automatic crack classification. Peng et al. [10] proposed a crack detection method
based on a quadratic threshold segmentation technique to detect cracks on airport runways.
The edge detection algorithm uses a differential function to identify the edge information
based on the large difference in gray values between the crack edge and the background.
The Sobel algorithm was introduced by Dhule et al. [11] to identify building cracks in
UAV images to assist engineers in maintaining buildings. Although the methods based on
digital image processing are simple, they are very much affected by the environment, lack
robustness when faced with complex conditions, and are not highly automated. In contrast,
machine learning and deep learning can automatically learn the information in the image,
which improves the damage detection accuracy as well as the robustness in complex scenes,
and gradually become the mainstream damage detection technology.

Machine learning (ML), as a core branch of artificial intelligence (AI), has shown great
potential and application value in several fields in recent years. Machine learning enables
computer systems to learn from large amounts of historical data to generate empirical
models, and then guide business decisions and make predictions. Machine learning
contains a variety of algorithms, including decision trees [12], plain Bayesian classifiers [13],
random forests [14], support vector machines [15], and neural networks [16]. For example,
Moon et al. [17] proposed a back-propagation neural network for the identification of
surface cracks in concrete structures. Unfortunately, traditional machine learning methods
rely on specialized knowledge and experience, restricting its widespread application.
Therefore, the researchers focus on deep learning which can learn more complex patterns
and laws from large amounts of data.

Deep learning can obtain the patterns in pictures from a large amount of data auto-
matically and extract more abstract features by utilizing multi-layer neural networks for
training. Deep learning-based methods significantly improve detection accuracy, enabling
them to adapt to more complex scenarios and improve both generalization and robustness.
As a result, they have a widespread application in crack detection. In particular, the con-
volutional neural network (CNN) methods [18,19] are widely used due to their ability
to efficiently capture local features. However, these methods cannot acquire the global
dependencies of the images, making it difficult to identify complete cracks, which manifests
in that the fracture phenomenon of cracks is easily caused. Therefore, more and more
transformer-based methods [20,21] have been proposed, which have the ability to model
the long-range dependencies by utilizing the self-attention mechanism. Unfortunately, high
computational complexity and low efficiency limit their development.

In order to address the aforementioned limitations, a local–global feature adaptive
fusion network, referred to as LGFAF-Net, is proposed in this article. The model solves
the limitations of the transformer in terms of computational complexity to a certain extent
while retaining its ability to capture global features. Meanwhile, the convolutional neural
network structure preserves the capability to extract local information. Therefore, the cracks
are identified more accurately and completely. Specifically, the main contributions of this
paper are as follows:

1. A local–global feature adaptive fusion network, referred to as LGFAF-Net, is proposed
by introducing the VMamba encoder and the residual network. The CNN specializes
in local feature extraction and the VMamba can efficiently capture global long-range
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dependencies and spatial structure in an image, where combining the two allows the
model to better understand the overall structure and contextual information of the
image while preserving the image details.

2. For better integration of the global and local features from the dual-encoding, a multi-
feature adaptive fusion module is designed to facilitate the learning of representative
features and enhance crack detection capabilities effectively by combining the self-
attention mechanism [22] and the spatial and channel reconstruction convolution
(SCConv) [23].

3. To compensate for the lack of the building exterior wall cracks, the BEWC dataset
captured by UAVs is proposed to measure the performance of the proposed method
used to identify wall cracks.

2. Related Work

Currently, CNNs in deep learning methods are capable of effectively extracting deep-
level features so that they can be widely applied in segmentation and crack detection. Long
et al. [24] proposed the fully convolutional network (FCN) built with an end-to-end CNN
architecture, marking the pioneering work of deep learning in semantic segmentation.
Ronneberger et al. [25] designed the U-Net with a symmetric encoder–decoder structure
and skip connections to reduce information loss and preserve spatial information at dif-
ferent scales. Chen et al. [26] designed atrous spatial pyramid pooling (ASPP) to enlarge
the receptive field and proposed the Deeplab series of network structures, significantly
enhancing segmentation accuracy. SegNet, [27], which is grounded in the principles of
fully convolutional networks (FCNs), incorporates a symmetric encoder–decoder struc-
ture with a pooling index transmission mechanism. Based on SegNet, Zou et al. [28]
introduced multi-scale fusion to construct the Deepcrack network for crack segmentation,
further enhancing the precision of crack extraction. Xu et al. [29] proposed a modified
fusion convolutional neural network aimed at boosting the accuracy of crack detection.
Ren et al. [30] employed CNNs to build an encoder–decoder network structure, incorpo-
rating atrous convolution and spatial pyramid pooling to increase the receptive field to
some extent and capture multi-scale information from images. This enables the network to
acquire more extensive contextual information, further enhancing its performance. Based
on pre-trained ResNet34, Lin et at. [31] proposed the EMRA-Net with a pyramid edge
module and a multi-scale fusion module. Through self-learning weighting in the multi-
scale fusion module, the network effectively enhances the identification of subtle defects.
Ma et al. [32] introduced separable convolutions into crack detection to reduce model
parameters, achieved multi-scale feature enhancement through cross-layer feature learning
and fusion, and utilized a hybrid multi-attention module to capture long-term relationships
in cracks to enhance crack recognition capabilities. Although these CNN-based methods
have achieved satisfactory results in crack detection, their relatively poor ability to capture
global dependencies can easily lead to discontinuous and fragmented segmentation.

Vision transformer (ViT) [33] is an architecture that applies the transformer designed
for natural language processing to the field of computer vision. It utilizes a global self-
attention mechanism to process image data, aiming to overcome the limitations of CNN in
capturing long-term dependencies within images. Swin transformer [34] adopts a hierarchi-
cal construction similar to CNN, building higher-level representations through multi-stage
extraction and feature downsampling, which enables the model to better adapt to various
visual tasks. Mobile ViT [35] is a lightweight vision transformer structure that reduces the
number of model parameters while maintaining the ability to learn global representations.
Segformer [36] eliminates the need for positional encoding, thereby avoiding performance
degradation caused by them. In addition, it introduces a lightweight multilayer perceptron
(MLP) structure and generates the final segmentation results by fusing information from
different levels. TransUNet [37] combines the global context understanding capabilities
of the transformer with the local feature extraction capabilities of U-Net. Through its
hybrid architecture design, the model can balance both local details and global features,
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achieving better performance in image segmentation tasks. Liu et al. [38] designed a novel
transformer encoder block, using it to construct an encoder–decoder network. They also
proposed a scale-attention fusion module to emphasize semantic features. Bai et al. [39]
leveraged both CNN and transformer to propose a dual-encoder multi-scale fusion net-
work, which captures both global and local features. They further designed an interactive
learning module to more effectively fuse features from different branches.

3. Methodology

In this section, a comprehensive overview of the proposed LGFAF-Net is presented.
Firstly, the two-branch structure is introduced to capture local and global features, followed
by a decoder unit that combines the visual state space block (VSS block) and the CNN, ulti-
mately forming a U-shape structure network. In addition, the local and global features are
fused by the multi-feature adaptive fusion. This section aims to explain each component’s
functions and contributions.

3.1. Network Overview

In general, local information is important for capturing fine cracks, while long and
complex cracks need to be identified completely with more global long-range dependencies,
which demonstrates the necessary for crack segmentation to introduce a dual-encoding
method based on the CNN and Mamba to extract local and global features.

As shown in Figure 1, the proposed LGFAF-Net focuses on three main stages:
(1) Encoding stage: To enhance the ability to capture the local information and global
long-term dependencies, a dual-encoding branch based on the CNN and Mamba is built,
where the local feature extraction branch is constructed with ResNet34 [40] to enhance local
patterns and the global feature extraction branch is built with the VMamba encoder [41] to
acquire global features. (2) Multi-feature adaptive fusion: To effectively fuse the local and
global features from the two-branches, a multi-feature adaptive fusion module is produced
with the self-attention mechanism and the SCConv. (3) Decoding stage: In this stage,
the decoder unit is proposed with the visual state space block and the CNN for information
reconstruction and feature mapping. Furthermore, a skip connection is introduced to
preserve spatial information at different resolutions. Finally, a U-shape construction for
crack identification is built.

3.2. Encoding Stage

For the feature extraction, the CNN network and Mamba model focus on different
aspects, where the former is concerned with local patterns and the latter pays attention
to global long-range dependencies. Through utilizing the CNN and Mamba as the dual-
encoding branches, both local detailed information and global features are captured so as
to increase the accuracy of crack recognition.

Global Feature Encoder: Mamba [42] is a new selectively structured state space model
that excels in long sequence modeling tasks. To better suit 2D image tasks, researchers ex-
tend the concepts and architecture of the Mamba to computer vision, and the architecture of
the VMamba is built through designing the innovative technology of the cross-scan module
(CSM) for the adaptation of two-dimensional spatial features. In this paper, the VMamba
encoder acts as the global feature encoder to enable the network to efficiently model the
long-range dependencies of image data through its global sense field and dynamic weight-
ing mechanism. Firstly, the VMamba divides the input image into blocks, preserving the
two-dimensional structure of the image. There are four stages in the VMamba encoder,
where each stage is constructed by stacking multiple VSS blocks, and the number of VSS
blocks for the four stages is two, two, four, and two, respectively. Furthermore, the feature
maps of the previous stage are subjected to a downsampling operation before being fed
into the next stage, which ultimately results in the feature maps of the four stages with
different resolutions.



Sensors 2024, 24, 7076 5 of 20

Figure 1. Network framework of proposed LGFAF-Net.

The core component of the VMamba is the visual state-space block, as shown in
Figure 2. The VSS block consists of two residual modules to effectively mitigate the prob-
lems of gradient vanishing and gradient explosion through residual connection, making
the network easier to optimize. To be specific, the input feature map is divided into two
branches, one of which is fed into the 2D selective scan block (SS2D block) after the layer
normalization, followed by an element-wise addition operation with the original features
of the other branch. In the SS2D block, before being fed into the SS2D which is the most
important component of the SS2D block, it is necessary for feature maps to pass through
the linear layer, the DWconv, and the SiLU activation function to enhance the nonlinearity
and improve the network’s performance. Another layer normalization function and linear
layer are employed to map the input data into a new space to form a higher-level feature
representation. After passing through the first residual block, the corresponding output
features are fed into the second residual block. Similarly, the second residual block is also
divided into two branches, one of which is fed into the feed-forward neural network (FFN)
layer after the layer normalization, performing further feature extraction and transforma-
tion of the data, and then the element-wise addition operation is applied to fuse it and the
features of the other branch to obtain the final output features of the VSS block.
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Figure 2. Network structure of the VSS block [41].

Local Feature Encoder: The CNNs have made significant progress in crack detection
due to their strong ability to capture detailed information, in which the residual network
(ResNet) has been widely used. ResNet is designed to address the training challenges of
deep convolutional neural networks when increasing the depth of the network, such as
gradient vanishing or gradient explosion. ResNet greatly improves the training effect and
depth of the network by introducing the concept of residual learning, allowing the network
to learn the information between inputs and outputs.

In this article, ResNet34 is employed to build the CNN branch. Firstly, a 7 × 7 convolu-
tion layer is adopted to expand the receptive field. Then the features are fed into the next
four layers built with residual units. The residual blocks contained in the residual units of
the first to fourth layers are 3, 4, 6, and 3, respectively.

3.3. Multi-Feature Adaptive Fusion

In order to fully utilize local and global features extracted from the dual-encoding net-
work, a multi-feature adaptive fusion module is designed with the self-attention mechanism
and the SCConv. Figure 3 illustrates the detailed structure of the proposed MFAF module.

Figure 3. Network structure of proposed MFAF module.

Firstly, the local and global feature maps FL and FG are integrated by element-wise
addition operation to obtain preliminary fusion features Fs, then it is fed into the cross-



Sensors 2024, 24, 7076 7 of 20

covariance attention calculating the attention along the feature channels instead of focusing
on the feature maps across spatial dimensions. To enhance the representation capacity of
the feature map, the residual connection is applied to the preliminary fusion features Fs
and the features that are enhanced by the cross-covariance attention. The specific operation
is as follows:

F̃ = Attention(Q, K, V) + Fs, (1)

Attention(Q, K, V) = V · So f tmax(QT · K). (2)

Further, faced with the redundant features extracted by the former network, the SC-
Conv is carried out to reduce the computation of redundant features and promote the
learning of representative features. In addition, the feed-forward neural network is intro-
duced to extract higher-order and more abstract feature representations from raw data
through nonlinear transformations of multiple hidden layers. To better capture subtle
changes in the data and improve model representation and performance, another two
residual connections are integrated into the model after the SCConv and FFN as follows:

y = F̃ + SCConv(F̃), (3)

F̂ = y + FFN(y). (4)

Finally, the enhanced fusion features after a series of manipulations F̂ and the original
local and global features are fused by element-wise addition. The specific expression is
as follows:

FG L = FG + FL + F̂. (5)

3.4. Decoding Stage

To make full use of the ability to model long sequences and capture long-range
dependencies of the Mamba and the capabilities of the CNN model to extract local features,
we combine the VSS block and the CNN model to design a decoder unit as shown in
Figure 4a. Specifically, the fusion feature maps are fed into a VSS block, followed by a
convolution module composed of a 1 × 1 convolution layer, a batch normalization (BN),
and a rectified linear unit (Relu) activation function.

Figure 4. Network structure of decoding stage.

In addition, skip connections are introduced to splice features of the same resolution in
the corresponding phases of the encoder and decoder in the channel dimension, preserving
more detailed information. Further, a residual block is applied to smooth the feature maps
and reduce noise, followed by a 1 × 1 convolution to generate the final crack prediction
results. The residual block is illustrated in Figure 4b.

3.5. Loss Function

The cross-entropy loss function used widely in segmentation is adopted for training,
which measures the difference between the probability distribution predicted by the model
and the true probability distribution. The specific mathematical equation is illustrated
as follows:

L = −[ylogŷ + (1 − y)log(1 − ŷ)], (6)
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where y denotes the true label and ŷ denotes the predicted probability value.

4. Experiment Setting

In this section, we provide detailed information on the experimental datasets, which
consists of a self-constructed building crack dataset and two widely used public crack
datasets, the experimental setting, and the common evaluation metrics.

4.1. Datasets

DeepCrack [28]: This dataset is composed of 537 images of cracks with a resolution
of 544 × 384. The cracks in this dataset are diverse and cover a wide range of scenarios
including building wall cracks, concrete cracks, and asphalt pavement cracks with various
widths and shapes. In the experiment, the training set consists of 477 images and the testing
set contains 60 images. Some representative images are shown in Figure 5.

Figure 5. Some examples from the DeepCrack dataset.

BEWC dataset: The dataset of cracks on the exterior walls of buildings captured by
drones is sourced from DJI M350RTK drone equipped with the Zenmuse P1 camera, encom-
passing a wide range of scenarios, such as walls made of tiles, painted walls, and concrete
cracks. We select a number of representative buildings and utilize the drone to shoot
around them. Specifically, we set the drone 4 m away from the wall and shoot samples
every 1.8 m with an image resolution of 5460 × 8192. The crack regions are manually anno-
tated using the semantic segmentation annotation tool Isat-sam which is combined with
Meta’s Segment Anything Model (SAM), where the crack areas are labeled in white against
a black background. After annotation, the high-resolution drone images are cropped into
512 × 512 pixel images, and pictures containing cracks are selected to form the final dataset
of cracks on building exterior walls. Ultimately, 2094 crack images are selected, including
125 painted walls, 662 concrete walls, and 1307 tile walls. Then, it is divided into a training
set and a test set for training and testing, respectively. This resulted in a training set of
1671 images and a test set of 423 images. Some representative images are shown in Figure 6.
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Figure 6. Some examples of the BEWC dataset.

CrackSeg9k [43]: This dataset consists of 9159 images with a resolution of 400 × 400.
This dataset is composed of several publicly available datasets, such as crack500 and
GAPS384. Due to the inclusion of various types of datasets, it is rich in crack types and
has a wide distribution of crack sizes. To increase the training rate, the size of the image is
resized to 256 × 256. We divide this dataset according to its default scheme of dividing the
training and test sets, and finally obtained 7332 images for the training set and 1827 images
for the test set. Some representative images are shown in Figure 7.

4.2. Implementation Details

The proposed LGFAF-Net is conducted on the Pytorch framework, and all experi-
ments are implemented on a server equipped with an Nvidia GeForce GTX 3090 GPU.
Some experimental hyperparameters are set relying on the researcher’s experience and
experimental analysis. During the training stage, the AdamW optimizer with a learning
rate of 0.0001 is adopted and the batch size is set to 4. In addition, the model training epoch
is set to 500 to allow the model to be fully fitted.

4.3. Evaluation Metrics

The widely used evaluation metrics for crack segmentation are Precision, Recall,
F1-score (F1), and mIoU. Precision is the ratio of correctly predicted positive samples to
all samples predicted as positive, reflecting the false detection rate; Recall is the ratio of
correctly predicted positive samples to all true positive samples, reflecting the missed
detection rate; F1-score is the harmonic mean of Precision and Recall, which considers both
the false detection rate and the missed detection rate and can better reflect the detection
ability of the method; IoU is the Intersection over Union between the predicted map and
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the ground truth map, and mIoU is the average IoU for all categories. The larger these four
evaluation metrics are, the better performance will be. The formulas are as follows:

Recall =
TP

TP + FN
, (7)

Precision =
TP

TP + FP
, (8)

F1 =
2 × Precision × Recall

Preicision + Recall
, (9)

mIoU =
TP

FN + TP + FP
, (10)

where TP is the positive sample with correct prediction. FN is the positive sample with
incorrect prediction. FP is the negative sample with incorrect prediction. TN is the negative
sample with correct prediction.

Figure 7. Some examples from the CrackSeg9k dataset.

5. Results and Discussion

In order to fully demonstrate the superiority of the proposed network, the following
popular networks used to identify surface damage such as cracks are selected to be com-
pared with our method, including CrackSegNet [30], EMRA-Net [31], Crackformer-II [38],
APFNet [32]. Three cracks dataset, consisting of the BEWC dataset produced in this paper
and two widely used public cracks datasets DeepCrack and CrackSeg9k, are applied to
evaluate the performance of the proposed method. In addition, the ablation study is carried
out to evaluate the contribution of each module.
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5.1. Comparative Experiments

The results on the DeepCrack dataset: The objective experimental results of the
proposed method on the dataset are presented in Table 1. The proposed network has
achieved excellent results in the four objective evaluation indicators previously mentioned,
including 89.83% on Precision value, 87.50% on Recall value, 88.65% on F1-score, and 89.40%
on mIoU value. Although our method does not achieve the best results on Recall, it
outperforms the compared methods on the other three metrics. Specifically, our method
exceeds the second-best model EMRA-Net by 1.84% in Precision, 1.21% in Recall, 1.52% in
F1-score and 1.26% in mIoU, respectively. In Recall, although our method performs worse
than APFNet, our model obtains a gain of 5.15% in Precision, 1.93% in F1-score, and 1.61%
in mIoU, respectively, compared with the APFNet.

Table 1. Comparative results for different methods on the DeepCrack dataset.

Precision (%) Recall (%) F1-Score (%) mIoU (%)
CrackSegNet [30] 85.73 87.05 86.38 87.52
EMRA-Net [31] 87.99 86.29 87.13 88.14

CrackFormer-II [38] 84.90 87.95 86.40 87.53
APFNet [32] 84.68 88.86 86.72 87.79
LGFAF-Net 89.83 87.50 88.65 89.40

The visualization results are illustrated in Figure 8. In the first three rows, the areas
marked with red boxes are very tiny and indistinguishable from the background. All four
comparison networks from Figure 8c–f fail to completely identify the fine cracks while
the proposed method exhibits greater proximity to the ground truth. In the fourth to
sixth rows, the areas are labeled with red boxes including the regions that are particularly
susceptible to being misidentified as cracks, such as shadows and pits. As shown in Figure 8,
the proposed LGFAF-Net eliminates interference and correctly detects the cracks. However,
most comparison methods falsely identify the areas similar to cracks but not cracks.

Figure 8. Visualization results of comparison experiments on the DeepCrack dataset. (a) Raw image;
(b) ground truth; (c) CrackSegNet; (d) EMRA-Net; (e) CrackFormer-II; (f) APFNet; (g) proposed
LGFAF-Net. Distinct regions are marked with red boxes.
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The results on the BEWC dataset: The objective experimental results of the proposed
method on the BEWC dataset are presented in Table 2. The proposed network achieves
excellent results in the four objective evaluation indicators previously mentioned, including
76.75% on Precision value, 77.18% on Recall value, 76.96% on F1-score, and 81.20% on mIoU
value. Although our method does not achieve the best results in Precision, it outperforms
the compared methods in the other three metrics. Specifically, our method outperforms
the second-best model APFNet by 2.71% in Precision, 3.12% in Recall, 2.91% in F1-score,
and 1.89% in mIoU, respectively. In Precision, although our method performs worse
than CrackFormer-II, our model outperforms CrackFormer-II by 9.04% in Recall, 2.99% in
F1-score and 1.94% in mIoU, respectively.

Table 2. Comparative results for different methods on the BEWC dataset.

Precision (%) Recall (%) F1-Score (%) mIoU (%)
CrackSegNet [30] 79.50 68.39 73.53 78.98
EMRA-Net [31] 75.40 72.58 73.97 79.25

CrackFormer-II [38] 80.89 68.14 73.97 79.26
APFNet [32] 74.04 74.06 74.05 79.31
LGFAF-Net 76.75 77.18 76.96 81.20

The visualization results are shown in Figure 9, which contains various scenes in-
cluding walls made of tiles, painted walls, and concrete walls. To better compare and
observe, we utilize red boxes to mark the location of the differences in segmentation results
from different networks. In the first row, it is a long and complex crack in a painted wall.
As shown in Figure 9, the proposed LGFAF-Net can effectively identify the complete crack
while the comparison networks extract the slender crack but fail to characterize the areas
with complex shapes that are labeled with red boxes. For cracks similar to the background
which is hard to segment, the proposed method also outperforms other comparison models
in terms of the completeness and continuity of crack identification, as shown in Figure 9,
the second row to the fourth row. In addition, in the fifth and sixth rows, the proposed
network is closer to the ground truth when dealing with the fine cracks in walls made
of tiles.

The results on the CrackSeg9k dataset: The objective experimental results of the
proposed method on the CrackSeg9k dataset are presented in Table 3. The proposed
network achieves excellent results in the four objective evaluation indicators previously
mentioned, including 76.73% on Precision value, 73.68% on Recall value, 75.17% on F1-score,
and 79.36% on mIoU value. Although our method does not achieve the best results in
Precision and Recall, it outperforms the compared methods in the other two metrics.
Specifically, our method outperforms the second-best model APFNet by 3.08% in Precision,
0.94% in F1-score, and 0.65% in mIoU, respectively. In Precision, although our method
performs worse than CrackSegNet, our model outperforms CrackSegNet by 3.2% in Recall,
1.65% in F1-score, and 1.08% in mIoU, respectively.

Table 3. Comparative results for different methods on the CrackSeg9k dataset.

Precision (%) Recall (%) F1-Score (%) mIoU (%)
CrackSegNet [30] 76.83 70.48 73.52 78.28
EMRA-Net [31] 73.88 71.13 72.48 77.59

CrackFormer-II [38] 72.49 73.29 72.89 77.83
APFNet [32] 73.65 74.82 74.23 78.71
LGFAF-Net 76.73 73.68 75.17 79.36
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Figure 9. Visualization results of comparison experiments on the BEWC dataset. (a) Raw image;
(b) ground truth; (c) CrackSegNet; (d) EMRA-Net; (e) CrackFormer-II; (f) APFNet; (g) proposed
LGFAF-Net. Distinct regions are marked with red boxes.

The visualization results are shown in Figure 10, which contains various scenes.
To better compare and observe, we utilize red boxes to mark the location of the differences
in segmentation results from different networks. In the second row, there is a very obvious
interference at the tile joints, which can be easily misidentified as cracks, and the proposed
LGFAF-Net accurately identifies the area that is a crack compared to other comparison
methods. In the third and fourth rows, for the finer cracks in the red boxes, our method
segments them more accurately and closer to the ground truth. In addition, in the last
two rows, our method outperforms other comparison models when faced with the case of
severe background interference.

The above analysis of the objective evaluation indicators and visualization results con-
firms that the proposed LGFAF-Net outperforms other comparison methods, which demon-
strates the combination of the Mamba and the CNN, and the multi-feature adaptive fusion
module are effective in crack detection and can improve the accuracy of crack segmentation.

5.2. Ablation Experiments

To investigate the effectiveness of each component of the network in crack segmen-
tation, ablation experiments are performed using the DeepCrack dataset as an example.
The baseline stands for the network composed of the VMamba encoder and the decoder
designed in this paper. On the basis of the baseline network, we sequentially add the CNN
encoder branch and the multi-feature adaptive fusion module that fuses the features of
both encoder branches to the network.
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Figure 10. Visualization results of comparison experiments on the CrackSeg9k dataset. (a) Raw image;
(b) ground truth; (c) CrackSegNet; (d) EMRA-Net; (e) CrackFormer-II; (f) APFNet; (g) proposed
LGFAF-Net. Distinct regions are marked with red boxes.

As shown in Table 4, the best performance is obtained by the model that includes all
components while the baseline with nothing performs the worst. Specifically, the proposed
LGFAF-Net achieves the best performance with 89.83% in Precision, 87.50% in Recall,
88.65% in F1-score and 89.40% in mIoU. Due to the removal of the CNN encoder branch
and the fusion module, the baseline network achieves the result with 88.50% in Precision,
86.40% in Recall, 87.44% in F1-score, and 88.39% in mIoU. It can be observed very clearly
from the table that the network’s performance is improved by adding a CNN encoder
branch to the baseline. More specifically, compared to the baseline, F1-score improves by
0.8% and mIoU improves by 0.67%. Furthermore, when the proposed MFAF module is
added to the dual-encoding network, the best objective evaluation indicators have been
achieved. Compared to the baseline, F1-score improves by 1.21% and mIoU improves
by 1.01%. The above analysis demonstrates the effectiveness of the combination of the
VMamba encoder and the CNN encoder as well as the advancement of the proposed
multi-feature adaptive fusion module.

Table 4. Ablation experiments for the proposed methods on the DeepCrack dataset.

Precision (%) Recall (%) F1-Score (%) mIoU (%)
Baseline 88.50 86.40 87.44 88.39

Baseline+CNN Encoder 89.69 86.84 88.24 89.06
LGFAF-Net 89.83 87.50 88.65 89.40
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The visualization results are shown in Figure 11. To observe more carefully, we enlarge
the key area. From the third to the fifth column, the segmentation results are approaching
the ground truth, which shows that each of our proposed modules is useful for crack
segmentation. It can be observed that the baseline has extracted the overall crack area,
but has performed poorly for some subtle areas. With the addition of the CNN local feature
extraction branch, the detail areas are better recognized. With the addition of the designed
MFAF module, the local and global features from the dual branches are better fused to
facilitate the learning of the representative feature features, and the segmentation results
are closest to the ground truth.

Figure 11. Visualization results of ablation experiments. (a) Raw image; (b) ground truth; (c) baseline;
(d) baseline + CNN encoder; (e) proposed LGFAF-Net.

5.3. Estimation of Crack Geometry Information

After the cracks have been accurately extracted, the computation of geometric charac-
teristics of the cracks is also essential for the correct assessment of the extent of damage to
the building. We use the method based on digital image processing to calculate the length
and width of cracks. For the length of cracks defined as the length of the skeleton line
at the center of the crack, the center skeleton line of each crack is extracted, and then the
respective length of each crack is calculated through each skeleton line. For the calculation
of the length of the skeleton line, the length of the whole crack can be calculated by sequen-
tially calculating the distance between two neighboring pixel points and summing them.
The distance pk between two neighboring pixel points on the skeleton line is as follows:

pk =
√
(xk+1 − xk)2 + (yk+1 − yk)2, (11)

where xk, yk and xk+1, yk+1 are the pixel coordinates of the kth and (k+1)th pixel point,
respectively. The total length of the cracks Lp is as follows:

Lp = Σpk. (12)

For the calculation of crack width, a method based on the central skeleton line is
adopted. Firstly, this method requires obtaining the edge lines and central skeleton lines
of the cracks. For a point on the central skeleton line of the crack where the width is to
be determined, a perpendicular line from this point to the central skeleton line is drawn.
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The perpendicular line intersects with the two edge lines at respective intersection points.
The sum of the distances from the point on the central line where the width is to be
determined to the intersection points on the edge lines is the crack width at that point,
which is as follows:

Wp = r1 + r2, (13)

where r1 and r2, respectively, represent the distance from the center point to the edge lines
on both sides. The schematic diagram of length and width calculation is shown in Figure 12.

Figure 12. Calculation of crack geometry information. The green line represents the center skeleton
line of the crack and the red line represents the edge line of the crack.

We chose to take some test images indoors to verify the usability of our method.
We placed a ruler in the shot as a scale so that we could deduce the actual distance
corresponding to one pixel in the image based on the actual length of the ruler L and the
number of pixels it occupied P, and the spatial resolution of the image which is usually
expressed in terms of ground sampling distance (GSD) is calculated as follows:

GSD =
L
P

, (14)

where GSD is the ground sampling distance, which is the actual distance corresponding to
one pixel. The two sets of crack images and the results of crack identification are shown
in Figure 13. The pixel length and width of the cracks, as well as the actual length and
width converted based on the corresponding GSD, are presented in Table 5 and the specific
calculation process is as follows:

La = Lp × GSD, (15)

Wa = Wp × GSD, (16)

We = |Wr − Wa|, (17)

where Lp represents the pixel length of the crack, La s the calculated actual length of the
crack, Wp represents the pixel width of the crack, Wa is the calculated actual width of the
crack, Wr is the real width of the crack measured with a crack meter, We is the error of
crack width identification, and GSD is the ground sampling distance, which is the actual
distance corresponding to one pixel. For these two sets of images, GSD is 0.098 mm/pixel,
which means the actual distance corresponding to one pixel is 0.098 mm. The visualization
process is shown in Figure 13.
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Table 5. Some examples of estimation of crack geometry information.

Lp (pixel) La (mm) Wp (pixel) Wa (mm) Wr (mm) We (mm)
image1 crack1 397.53 38.96 5 0.49 0.45 0.04

crack2 241.67 23.68 4.29 0.42 0.35 0.07
image2 crack1 515.19 50.49 2.96 0.29 0.25 0.04

Figure 13. Some examples of estimation of crack geometry information. (a) Row image; (b) ground
truth; (c) the edge lines and central skeleton lines; (d) crack width.

According to the above process and formulas, the specific geometric results of three
cracks in the two sets of crack images are shown in Table 5. It can be seen that the cracks
are completely identified, and the actual length and width of the cracks are also calculated
accordingly. For the crack width, the error of this method is controlled within 0.1 mm,
which can obtain relatively accurate actual widths of the cracks.

5.4. Impact of Crack Characteristics on Structural Health

Crack characterization is a complex but vital matter for the analysis and evaluation of
structural health, which involves several aspects of spatial size, depth, shapes, and others.

The spatial size of cracks: This includes the length and width of cracks. Shorter cracks
may only affect localized areas, while long cracks may run through the entire structure,
seriously affecting its load-bearing capacity and stability. Generally speaking, cracks with
widths less than 0.2 mm may not affect the structural safety of the building, and cracks
with widths above 0.2 mm need regular inspections and the changes in the cracks should
be recorded [44,45]. Among them, for cracks with larger widths, further risk assessment is
required to determine whether repair measures are needed.

The depth of cracks: Methods for crack depth detection include thermal imaging
techniques [46], stress wave theory [47], and ultrasonic techniques [48]. As the crack depth
increases, the structure becomes more prone to deformation and damage when subjected to
external forces, thereby affecting its load-bearing capacity. The deeper the crack is, the more
likely it is to cause exterior wall leakage and accelerate steel corrosion, thereby endangering
structural health.

The shape of cracks: The shape of cracks can be categorized into linear, curved,
and alligator [49,50]. Straight-line cracks usually extend along a certain direction, including
longitudinal and transverse cracks, which have a certain effect on the structural integrity;
arc-shaped cracks indicate that there is a large local stress concentration in the structure;
and alligator cracks may reduce the structural integrity and durability.

Others: Other factors affecting structural safety include the distribution and the
development trend of cracks. We should pay attention to whether the cracks appear in the
critical stress areas of the structure, such as the nodes of beams and columns, or the weak
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areas of the walls. In addition, the cracks should be observed to assess whether they are
expanding, or deforming, which may pose a greater risk to structural safety.

In summary, various characteristics of cracks are crucial to structural health. In this
paper, we mainly focus on one important factor about the buildings of spatial size, where
we attempt to propose a crack detection algorithm based on UAV data. By integrating
the results of image-based crack detection with UAV image positioning information, this
algorithm can assist in initially screening building areas that may pose potential safety
hazards, thereby reducing manual workload and improving detection efficiency. In the
future, determining how to further obtain the depth of cracks through the multimode
sensors (LIDAR, infrared, etc.) carried by UAV needs to be further explored.

6. Conclusions

The proposed LGFAF-Net aims to detect cracks in building walls accurately. The pro-
posed network combines the VMamba encoder and the CNN encoder to utilize the ability
of the Mamba to model global dependencies and the CNN network to capture local fea-
tures. In addition, to better fuse the features extracted from the dual-encoding network,
the MFAF module is introduced, which can facilitate representative feature learning and
improve the accuracy of the crack segmentation. Furthermore, a building exterior wall
crack dataset captured by UAVs is built in this paper, making up for the lack of data on
building cracks. Finally, we have conducted extensive experiments on both self-constructed
building crack datasets and widely used crack public datasets to demonstrate the effective-
ness and advancement of our proposed methodology. In our future work, we will utilize
the information from thermal infrared images to further detect the crack depth features
and realize the lightweight to be deployed on edge devices for real-time detection, in order
to achieve a more comprehensive exploration of the crack features to ensure the safety of
the building structure.
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