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Abstract: Advances in brain–computer interfaces (BCIs) have enabled direct and functional connec-
tions between human brains and computing systems. Recent developments in artificial intelligence
have also significantly improved the ability to detect brain activity patterns. In particular, using
steady-state visual evoked potentials (SSVEPs) in BCIs has enabled noticeable advances in human
activity monitoring and identification. However, the lack of publicly available electroencephalogram
(EEG) datasets has limited the development of SSVEP-based BCI systems (SSVEP-BCIs) for human
activity monitoring and assisted living. This study aims to provide an open-access multicategory
EEG dataset created under the SSVEP-BCI paradigm, with participants performing forward, back-
ward, left, and right movements to simulate directional control commands in a virtual environment
developed in Unity. The purpose of these actions is to explore how the brain responds to visual
stimuli of control commands. An SSVEP-BCI system is proposed to enable hands-free control of
a virtual target in the virtual environment allowing participants to maneuver the virtual target
using only their brain activity. This work demonstrates the feasibility of using SSVEP-BCIs in human
activity monitoring and assessment. The preliminary experiment results indicate the effectiveness of the
developed system with high accuracy, successfully classifying 89.88% of brainwave activity.

Keywords: SSVEP; BCI; EEG; brainwave activity; brain pattern; human activity monitoring

1. Introduction

The brain–computer interface (BCI) is a promising technology that can improve the
quality for life of people who may have lost the ability to communicate or interact physically
with their surroundings using conventional augmentative technologies [1]. It provides
a new medium for communication between people and computers by converting brain
electrical activity signals into actionable commands to control external devices without
the involvement of peripheral nerves and muscles [2]. Many neurophysiological electroen-
cephalogram (EEG) signals have been used to convert human intentions into commands
that BCIs can understand, and this EEG signal is called an EEG control signal. Figure 1
illustrates the process flow of BCI technology in converting brain electrical signals into
control commands [3].

Figure 1. The brain–computer interface framework.
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BCIs can decode neural activity into control commands to trigger wheelchairs [4],
prostheses, and many other virtual interface devices. Among the methods of measuring
EEG signals, surface EEG is a standard noninvasive technology [5]. Compared with invasive
BCI, noninvasive BCI records brain activity by placing EEG signal sensors on the scalp,
which can avoid the damage caused by and risks due to surgery and is more applicable
and portable in practice [6]. In BCI applications, EEG is a widely adopted noninvasive
modality signal, often used in neural instrumentation and measurement (I&M) [7].

Different paradigms are used to establish communication between users and devices.
The most widely adopted BCI paradigms include P300 [8], steady-state visual evoked
potential (SSVEP) [8], and motor imagery [9]. Among these, SSVEP is a particularly
effective and noninvasive method, which detects stable neural responses from the parietal
and occipital regions of the scalp induced by periodic visual stimulation [10]. SSVEP
is characterized by its ability to elicit a consistent frequency response in an EEG signal
corresponding to the frequency of a visual stimulus. This makes it highly suitable for
various BCI applications where the user is required to focus on a specific visual stimulus to
communicate a command.

SSVEP-BCIs are commonly used in communication applications such as spelling
devices, where users select letters or words by focusing on flickering buttons on a screen [11].
SSVEP has been applied in healthcare to develop assistive technologies for individuals with
motor disabilities, allowing them to control external devices like wheelchairs or prosthetics
through visual focus alone [12]. Additionally, SSVEP is utilized in gaming and virtual
reality environments, where users can control interfaces or navigate through virtual spaces
with their brain activity.

One of SSVEP’s significant advantages is its high information transfer rate (ITR),
which makes it faster than other BCI paradigms. This high ITR is attributed to the direct
correlation between the flicker frequency and the neural response, allowing for rapid and
accurate detection. Furthermore, SSVEP-BCIs typically require minimal training, as the
method relies on natural, involuntary neural responses to visual stimuli. This ease of use
and low training burden make SSVEP a practical choice for many users, including those
without prior BCI experience [13,14].

However, the current BCI systems suffer from a few limitations that have impeded
the development and applications of BCI in real-life scenarios. These limitations include a
small number of BCI control commands, resulting in difficulty with the precise control of
argumentative devices; the greatly varying accuracy of brain activity recognition among
individual participants, rendering the BCIs unreliable; and a slow recognition speed,
rendering it unable to meet the requirements of practical applications in real life [15].

The existing public datasets in the field of SSVEP-BCIs mainly focus on spelling tasks
or simple command selection, where the data were collected from participants’ reactions to
stimuli flashing on a screen. These datasets lack the immersive and dynamic environment
required to effectively evaluate BCIs in real-world applications [16]. In contrast, our dataset
comprises data generated from a VR-based driving task, providing participants with an
immersive and multidirectional control experience that better represents real-world use
cases, such as in an assistive technology. This setting offers richer and highly dynamic
brain activity data compared to the existing datasets, making it suitable for exploring more
complex, continuous BCI control scenarios [17].

In this paper, we provide an SSVEP-BCI system with multifrequency stimulation for
a virtual driving environment, where a brain-controlled vehicle (BCV) obtains control
commands through a BCI analyzing the driver’s EEG signals. To develop an effective
SSVEP-BCI system, we also propose a new shared control method [18] that integrates
brain control with fuzzy logic [19], enabling the system to account for and interpret the
user’s subjective intentions more accurately. Since fuzzy control does not require a spe-
cific mathematical model, it avoids the thorny problem of modeling the decision-making
process [19]. Fuzzy discrete event system (FDES) supervision theory, which is widely used
in mobile robot control, is also introduced to supervise the subject’s control commands to
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increase command recognition accuracy [20,21]. Based on the accuracy of the participant’s
command, the decision result of the automatic fuzzy controller is then adjusted to better
match the participant’s intention. We created multiple visual stimuli corresponding to
forward, backward, left, and right movements as the basis for brain-controlled cars. We
also completed a set of experiments to collect EEG data to build an SSVEP-BCI dataset.

The rest of this paper is organized as follows: Section 2 reviews the SSVEP-BCI-related
work in the literature, providing a comprehensive understanding of the existing knowledge.
Section 3 introduces the research methods used in this study, ensuring the validity and
reliability of the results. Section 4 describes the experiment design, detailing the major
aspects of the experimental process applied. Section 5 evaluates the proposed system’s
performance through a preliminary trial, highlighting its effectiveness. Section 6 discusses
the results. Section 7 concludes this paper.

2. Related Work

SSVEP-BCIs are critical in practical applications, particularly smart health and med-
ical assistance. For individuals with severe physical disabilities, such as amyotrophic
lateral sclerosis (ALS) [22] or locked-in syndrome [23], BCI technologies offer a means to
communicate and interact with their environment, which would otherwise be impossible.
SSVEP-BCI provides these individuals with a noninvasive and user-friendly solution, en-
abling them to control communication devices, computer systems, and home automation
systems using their thoughts [24]. This ability to engage with their surroundings signif-
icantly enhances their independence and quality of life [25]. For example, patients with
locked-in syndrome, who retain full cognitive function but cannot move any part of their
body except for limited eye movements, can benefit from SSVEP-BCI systems integrated
with eye-tracking technology. This combination allows them to interact with their environ-
ment by focusing on specific visual stimuli on a screen, effectively enabling communication
and control over external devices [26]. This approach not only accommodates the limited
physical capabilities of these patients but also provides a seamless and reliable means
of interaction, offering a significant improvement in their quality of life. Cao et al. [27]
proposed a high-speed online speller based on SSVEP-BCI to help patients with locked-in
syndrome express themselves to others. SSVEP-BCI devices can also help patients with
motor neuron disease (MND) control wheelchairs through EEG signals [4]. In addition,
Shyu et al. [28] developed an SSVEP-BCI command platform that enables patients with
paralysis to perform operations, such as adjusting volume, changing channels, or selecting
movies, on multimedia devices. To achieve quadcopter control, Wang et al. [29] designed
a mobile BCI system using the SSVEP paradigm, which allows users to accurately and
smoothly complete 3D flight instructions. SSVEP-BCI devices can partially restore the
user’s ability to communicate with the physical environment and greatly improve the
quality of life of users who have lost mobility or language ability. Healthy users can also
use these devices to control external devices to enhance the diversity of and possibilities
in life.

Despite the great potential of the SSVEP-BCI, its development and deployment are
hampered by a significant challenge: the limited availability of comprehensive EEG datasets.
While research on multifrequency SSVEP-BCIs has been conducted on the limited available
datasets, including those by Shyu et al. [30] and Asheri et al. [31] with three visual stimuli
of different frequencies, the field still lacks extensive datasets that explore more complex
frequency interactions and applications beyond basic paradigms. Since the release of the
SSVEP-BCI benchmark dataset in 2017 [32], which has been cited in over 200 academic
works, progress has been made, particularly in developing datasets for BCI spellers [33].
However, most existing datasets focus on single-frequency SSVEP [34], and there remains
a need for publicly available datasets specifically designed for SSVEP-BCI applications
involving multifrequency paradigms with moving objects as stimuli, which are crucial for
advancing research in SSVEP-based motion control and interaction.
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Lim and Ku [35] proposed a multicommand single-frequency SSVEP-BCI system using
flickering action videos. In the work, the participants activated visual stimuli based on video
content, targeting left, right, and rest actions. The participants identified these actions by watching
a flickering action video accompanied by left and right elbow movements. The system achieved
a classification accuracy of 74.60% using the common spatial pattern (CSP) algorithm.

Asheri et al. [31] introduced open-source OpenVibe software to test SSVEP. They used
a public SSVEP dataset containing three visual stimuli with 12, 15, and 20 Hz stimulation
frequencies. Using the CSP algorithm, the classifier’s highest accuracy was 85.10%, 84.56%,
and 86.83% with linear discriminant analysis (LDA) and 87.92%, 89.62%, and 90.57% with
support vector machine (SVM) for these respective frequencies.

Many studies have shown that combining SSVEP-BCI systems with VR environments can
provide an enhanced, immersive user experience beneficial for neurorehabilitation, educational
tools, and gaming applications. Wen et al. [36] demonstrated that SSVEP-based BCI systems
could be effectively integrated with VR to improve user engagement and motivation in neurore-
habilitation tasks. Similarly, Zehra et al. [37] discussed the unique benefits and challenges of
using SSVEP-BCI systems in VR, including the need for realistic and responsive environments to
achieve high-quality user interaction. These studies highlight the potential of combining BCI with
VR to create immersive and practical applications that can significantly enhance user experiences.

In this research, we conducted a preliminary experiment and analyzed the experi-
mental results of one male healthy participant aged 26 with a university degree. In our
future work, we will create an EEG dataset with 20 healthy participants based on the
multifrequency SSVEP-BCI paradigm. With forward, backward, left, and right movement
as visual stimuli, the dataset includes EEG recordings captured using a 16-channel EEG
acquisition system. Open access to high-quality EEG data is essential for researchers to
develop, test, and evaluate new BCI algorithms and applications. This data collection
effort aimed to provide the scientific community with a valuable resource to advance the
development of SSVEP-BCIs.

Integrating BCI with virtual environments offers exciting possibilities for creating immer-
sive and interactive applications. In this study, we developed a virtual environment [38] to
enable the control of a virtual vehicle with an SSVEP-BCI system. This setup demonstrates
the practical application of SSVEP-BCI in controlling objects and highlights the potential for
such systems to be used in various human activity settings. For example, people with limited
mobility could use similar systems for assisted driving or navigation in virtual environments
for therapeutic purposes.

3. Research Methodology

This study presents an enhanced methodological approach for interpreting EEG signals
in BCI applications, particularly within Unity-based virtual environments [39]. The CSP
algorithm is used for feature extraction to classify the collected multichannel EEG data.
The independent component analysis (ICA) method decomposes multiple mixed signals
into independent additive components [40].

3.1. Common Spatial Pattern Algorithm

CSP is a type of spatial filtering algorithm commonly used in BCI classification. It gen-
erates features for classification using spatial filters to enhance the variance discrepancies
between two signal classes [41,42].

Let Xi ∈ R(C×S), i = 1, 2, . . . , N represent the collected EEG signals of N samples with
two imaginary tasks {V+, V−}, where C is the number of EEG channels ,and S is the total
number of sampling points. The goal of the CSP algorithm is to find a mapping matrix
W ∈ R(C×C) that projects the original EEG signals to a new space Xcsp = WX , with each
row vector wT

∗ of matrix W = (wT
1 , wT

2 , . . . , wT
C) being a spatial filter, with T representing

the transpose operation.
CSP assumes signals from different EEG channels are independent. Therefore, the spa-

tial covariance matrix in the new space, Σcsp = XcspX T
csp = (WX )(WX )T = W(XX T)WT
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= WΣWT , should be diagonal, i.e., W ∑WT = Λ, with Σ being the covariance matrix
estimated as

Σ =
1
N

N

∑
i=1

XiX T
i

trace(XiX T
i )

, (1)

where trace(XiX T
i ) is the sum of the diagonal elements of matrix XiX T

i . The trace function
is used to normalize the covariance matrices.

To enhance the discriminability between the two classes of EEG signals, the covariance
matrices Σ+ and Σ− of the two task classes, V+ and V−, and their sum Σ, are also calculated
as follows:

Σ+ = X+X T
+ ,

Σ− = X−X T
− ,

Σ = Σ+ + Σ−,

(2)

where X+ and X− represent the EEG data matrices for classes V+ and V−, respectively. The
mapping matrix W should satisfy the following conditions:

WΣ+WT = Λ+,

WΣ−WT = Λ−,

WΣWT = W(Σ+ + Σ−)WT = Λ+ + Λ− = I,

(3)

where Λ+ and Λ− are diagonal matrices, and I is the identity matrix.
Matrix W can be simply found by solving the generalized eigenvalue problem:

Σ+w = λΣ−w, (4)

where w ∈ {w1, w2, . . . , wC} is the generalized eigenvector (as a column vector), and
λ ∈ {λ1, λ2, . . . , λC} is the corresponding eigenvalue.

As W is composed of generalized eigenvectors wj (j = 1, 2, . . . , C) of (4), λ+
j =

wT
j Σ+wj and λ−

j = wT
j Σ−wj are the corresponding diagonal elements of Λ+ and Λ−;

when λ = λ+
j /λ−

j the conditions in (3) are satisfied [43].
The generalized eigenvalue, λ, indicates the discriminability between the two task

classes. It is obvious that to obtain more discriminative features for classification, the
difference between λ+

j and λ−
j should be as large as possible. After obtaining the mapping

matrix W , the eigenvectors corresponding to the m largest and m smallest eigenvalues are
selected as the spatial filters, with m being the number of components selected for feature
extraction. Finally, the feature vector for classification can be calculated as

fp = log

(
Var(Xcsp(p))

∑2m
i=1 Var(Xcsp(i))

)
, p = 1, 2, . . . , 2m, (5)

where Var(·) denotes variance, and the logarithm operation log(·) here is used to approxi-
mate a normal distribution of the feature data [44].

3.2. Independent Component Analysis

ICA is a powerful technique for separating multivariate signals into their underlying
independent sources [45]. ICA uses the central limit theorem, which states that the sum of
independent random variables tends to be more Gaussian than the individual variables
to identify independent components through estimating their non-Gaussianity [46]. As a
blind source separation method, ICA is often used in applications where mixed signals
must be separated without prior information about the mixing process, such as separating
different sound sources in a room or isolating EEG signals corresponding to different brain
activities [47]. In practice, the FastICA algorithm is widely used due to its computational ef-
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ficiency. It iteratively maximizes the non-Gaussianity to estimate independent components
and is faster than other gradient-based methods [48].

Let x = [x1, x2, . . . , xn]T be an observed signal vector, where each xi, i ∈ [1, n] is a
linear mixture of n unknown independent components sj, j ∈ [1, n]. The ICA model can be
represented as

x = As, (6)

where A is an unknown mixing matrix and s = [s1, s2, . . . , sn]T is a vector of statistically
independent components.

The objective of ICA is to estimate both the independent components s and the mixing
matrix A using the observed signals x. This can be achieved by finding a demixing matrix
W such that

s = Wx. (7)

One approach to estimating W is to maximize the non-Gaussianity of the components
of s. This can be achieved by optimizing the negentropy of each component. The negentropy
of s is defined as

J(s) =
n

∑
i=1

[
H(sigaussian)− H(si)

]
, (8)

where H(si) is the entropy of component si, and H(sigaussian) is the entropy of a Gaussian
random variable with the same variance as si.

The FastICA algorithm finds the maximum of the negentropy through multiple itera-
tions of demixing W. In each iteration step k, the weight vector u is updated as

u(k+1) = E
[
xg(u(k)Tx)

]
−E

[
g′(u(k)Tx)

]
u(k), (9)

where E denotes the expected value, g is a nonlinear function, and g′ is its derivative. After
each update, u is normalized.

4. Experimental Setup
4.1. Participants

As a preliminary trial to examine the system setup and its effectiveness, data were
collected from one participant. In the next data collection phase, we plan to collect EEG data
from 20 healthy participants (aged between 18 and 30 years old) with normal or corrected
normal vision strength and no visual epilepsy. All participants will be first-time SSVEP-BCI
users. Before the experiment, the participants will be asked to familiarize themselves with
the experimental protocol and informed of their rights to withdraw from the experiment
at any time. At the beginning of the experiment, they will be asked to read and sign an
informed consent form prepared for this study. The necessary research ethics approval was
obtained for this study.

4.2. EEG Setup

The EEG signals were recorded in a room without any electronic equipment inter-
ference using an OpenBCI device [49]. According to the International 10–20 system [50],
the electrode impedance was kept below 10 kΩ. As shown in Figure 2, brain activity was
initially recorded from 16 channels, specifically Fp1, Fp2, F3, F4, C3, C4, P3, P4, F7, F8, T3,
T4, T5, T6, O1, and O2. Among them, the eight most effective channels, F3, F4, C3, C4, P3,
P4, O1, and O2, were chosen for data analysis and classification based on the significance of
their contribution to SSVEP-BCI performance. This was expected due to their positioning
corresponding to the motor and visual cortical areas, as supported by previous studies [51].
In turn, this ensured that the most relevant signals were analyzed, optimizing the classifica-
tion performance and reducing computational complexity. Additionally, Figure 2 includes
electrodes Fz, Cz, Pz, A1, and A2 for reference purposes. Though not used in the current
study, these electrodes are part of the full 10–20 system layout, with A1 and A2 serving as
reference electrodes and Fz, Cz, and Pz providing standard midline placements.
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Figure 2. The locations of electrodes in an International 10–20 system for EEG recording. The
16 electrodes marked with colors represent the 16 channels used in this research experiment.

A1 (left mastoid) and A2 (right mastoid) electrodes serve as the reference and ground
electrodes, respectively. The OpenBCI device uses conductive gel through wet electrodes
to achieve low impedance, high signal quality, and long-term stability.

During the data acquisition process, the EEG data and synchronous firing signals
were recorded at a sampling rate of 250 Hz and saved to data files for offline analysis. In
the OpenBCI device setup, a built-in 50 Hz notch filter was used to remove power line
noise, and a bandpass filter (BPF) was set from 0.1 Hz to 100 Hz to preserve the broadband
spectral characteristics.

4.3. Experimental Procedure

It took about an hour for participants to familiarize themselves with the experiment’s
configuration, procedure, and environment. During the experiment, the participants were
seated in a comfortable chair in front of a computer display with a 60 Hz refresh rate,
positioned 60 cm away, which presented the visual cues. Event markers were transmitted
using the lab streaming layer (LSL) [52] to ensure precise synchronization between EEG data
acquisition and stimulus presentation. LSL is an open-source framework that collects time-
synchronized measurements from various devices and applications. All participants were
instructed to focus their attention on the center of the display and minimize eye movements
and blinks during stimulus presentation. Figure 3 illustrates the main experimental setup.

The display used in the experiment was a 28-inch LCD monitor with a 3840 × 2160-pixel
resolution. The visual stimulus protocol was designed using Psychtoolbox [53] running in
MATLAB [54], presenting four visual stimuli corresponding to the forward, backward, left,
and right directions. The stimuli were arrows displayed on a black background at frequen-
cies of 10, 12, 15, and 20 Hz for forward, backward, left, and right directions, respectively.
These frequencies were chosen to ensure minimal overlap between the stimulation fre-
quencies, thereby enhancing the discrimination between the corresponding EEG responses.
Specifically, the frequencies were selected to avoid the interference of their harmonics and
subharmonics, because interference would complicate the interpretation of the SSVEPs due
to the potential overlapping responses in the EEG signal [55]. Additionally, the chosen fre-
quencies spanned a range that was shown to elicit robust SSVEP responses in previous stud-
ies [13] while minimizing participants’ fatigue and discomfort. Each stimulus was preceded
by a 1 s prompt, during which a smaller arrow was displayed to indicate the direction of
the upcoming stimulus. Each stimulus was randomly presented to ensure the randomness
of the experiment. Furthermore, the number of times each frequency representing the four
directions was presented was balanced across the experiment. The experiment consisted of
100 SSVEP trials and was divided into two groups of 50 trials each. Each trial lasted 12 s,
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including 1s prompt, 5 s of flickering stimulus, 4 s of blank screen, and 2 s of rest. An
additional 1 min rest period was provided after the first 50 trials.

Figure 3. Experimental setup: The computer (PC) is outside the acquisition room and runs the
stimulation protocol. The OpenBCI device records the participant’s EEG signals based on the
electrode distribution of the International 10–20 system. The PC then receives the recorded EEG data
from the acquisition system and records all the present event information. An .xdf file is created and
saved at the end of the recording. At the same time, the original EEG signal data file is also saved.

The sinusoidal flickering method uses Psychophysics Toolbox Version 3 (PTB-3) un-
der MATLAB R2023b. The grayscale value s( f , i) of the flickering stimulus sequence is
calculated as follows:

Low-Depth: s( f , i) = 0.149 sin
[
2π f

(
i
fr

)
+ π

2

]
+ 0.464, (10)

High-Depth: s( f , i) = 0.5 sin
[
2π f

(
i
fr

)
+ π

2

]
+ 0.5, (11)

where fr represents the refresh rate of the screen (60 Hz), i is the frame index of the sequence,
and f indicates the stimulus frequency.

As shown in Figure 4, a 10 s countdown appeared on the screen at the beginning of
the experiment. After that, an arrow appearred for 1 s (pre-stimulus countdown) to hint at
the coming stimulus, reminding the participants to concentrate.

Figure 4. Experimental process in each participant’s experiment.

Then, the stimulus appeared and flashed for 5 s (stimulus duration) at the frequency
depending on its direction. During this period, the participants needed to focus on the
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stimulus displayed in the center of the screen and avoid blinking. After the flashing stopped
and stimulus disappeared, the participants had 4 s (action duration) to recall the previously
shown stimulus. The 4 s delay is set based on the latency of the visual system, allowing for
the capture of delayed neural activity [32]. Then, there was a 2 s (rest duration) break.

EEG data were collected from the start of the pre-stimulus duration to the end of the
rest period, shown as t = 0 and t = 12 s in Figure 4.

Immediately after the experiment, the participants were asked to rate their experience.
The participants needed to

• Score each stimulus on a five-point scale based on their level of comfort of the ex-
periment, with 1 to 5 corresponding to very uncomfortable, uncomfortable, slightly
uncomfortable, comfortable, and very comfortable, respectively.

• Score each stimulus on a five-point scale based on their perception of the effect of
the stimulus flicker, with 1 to 5 corresponding to very annoying, annoying, slightly
annoying, noticeable, and imperceptible, respectively.

• Score each stimulus on a five-point scale based on their preference of the stimuli, with
1 to 5 corresponding to very annoying, annoying, neutral, like, and very like, respectively.

4.4. Virtual Environment for Assisted Vehicle Maneuvring

An immersive VR driving environment was created using the Unity platform to
enhance the object control ability of the participants through a BCI. The VR setting, shown
in Figure 5, featured a city landscape, including buildings, pedestrians, streets, and moving
vehicles, simulating real driving conditions. The participant’s task was to operate a virtual
vehicle moving forward with acceleration, deceleration, and left and right commands,
avoiding collision with objects or pedestrians on the road. The vehicle’s default movement
was forward, with acceleration and deceleration to increase and decrease its velocity. The
experiment required continuous control of the virtual vehicle through real-time commands.
For example, accelerating the vehicle from 20 to 40 m/s required the participant to maintain
a constant acceleration command. The virtual driving experiment took six minutes.

Figure 5. The virtual environment in Unity.

The BCI system was connected to the Unity virtual environment using the LSL protocol,
which provides a multiplatform data exchange interface between a BCI system and many
software applications including Unity. The EEG signals were collected as described in
Sections 4.2 and 4.3. These signals were then processed to extract relevant features, with
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the participant’s intended action (e.g., accelerate, decelerate, turn left, or turn right) being
classified based on the extracted features. The details of data processing and classification
algorithms are described in Sections 5 and 6. These classified actions were further sent
to Unity via LSL to control the movements of the virtual vehicle. This setup created a
closed-loop system that allowed the participant to directly control the vehicle in a driving
scenario, effectively demonstrating the potential of BCI-driven control systems for real-
world applications.

5. Data Processing
5.1. Noise Reduction

The raw EEG data collected in the experiment were filtered through a BPF filter with a
bandpass range of 8–50 Hz to mitigate noise and artifacts. The filtered signal was further
divided into five distinct frequency bands [56], as follows:

• Alpha waves: 8–12 Hz;
• Beta 1 waves: 12–20 Hz;
• Beta 2 waves: 20–30 Hz;
• Gamma waves: 30–50 Hz.

This division was critical as it allowed us to examine the signal more thoroughly and
comprehensively. Alpha waves are the most prominent signal in the EEG data, occurring
when the participants are awake. Beta waves are associated with the participants con-
centrating and processing information, and gamma waves are difficult to detect as their
amplitudes are very low [56]. In this work, only alpha and beta waves were used.

5.2. Removal of Artifacts with ICA

The EEG data were subjected to ICA analysis to remove artifacts and improve their
quality and interpretability. The data were first centered during preprocessing by sub-
tracting and whitening the mean to standardize the components’ variance. ICA was then
applied to decompose the data into statistically independent sources. Figure 6 shows the
ICA results of a short period of EEG signal. It reveals that the first independent compo-
nent, IC1, predominantly represents the eye movement artifacts, accounting for 98.6% of
this component’s variance. We can observe the brain activity energy topography of IC1
(Figure 6a), its temporal activity (Figure 6b,c), and its power spectrum (Figure 6d). These
visualizations help identify artifacts and guide the process of removing them from the data.
This step is crucial as it isolates the neural activity of interest by eliminating components
corresponding to non-neural artifacts, resulting in cleaned EEG data suitable for further
analysis and classification.

Figure 7 depicts the unique neural activities associated with forward, backward, left,
and right movements. Figure 7a shows consistent amplitude fluctuations with clear peaks
around the middle of signal, which may indicate specific neural responses related to execut-
ing the forward action. It also shows that the amplitude of the backward movement initially
decreases, followed by more consistent changes, indicating a unique neural adaptation
phase before a stable response is achieved. The EEG signals of the left and right movements
show rhythmic oscillations in the second half of the signal, suggesting possible activation of
movement-related cortical areas involved in lateral movement control. Figure 7b presents
the waveforms of the first 200 ms for the four movements at a finer scale, showing more
details regarding the signal variation over time. The forward movement showed a relatively
smooth decrease in amplitude followed by mild oscillations. The backward movement
showed a distinct peak, possibly related to the initial force or intention of the movement.
The left movement waveform had moderate fluctuations, indicating activation periods that
may be related to lateral movement planning. The right movement showed a mixture of
oscillatory patterns, initially decreasing and increasing, reflecting a more variable neural
response. These short segments demonstrate that despite similarities in the overall EEG
patterns of the movements, their temporal evolution and pattern are quite different, which
can be used for classification purposes. This detailed analysis provides insights into how
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the motor cortex is activated differently in various movement directions, reflecting the
specificity of neural control mechanisms during motor tasks.

Figure 6. ICA of EEG signal. (a) The spatial topography of the first independent component IC1
indicates that 98.6% of its variance is attributable to eye-related artifacts, as highlighted by the ICLabel
classification. (b) The scrolling activity of IC1 over time shows significant fluctuations, likely due
to eye movements or blinks, which are typical sources of artifacts in EEG data. (c) Heatmap of IC1
activity with event-related potential (ERP) waveforms summarizing the average activity. (d) The
power spectrum of IC1 shows significant low-frequency activity and a clear dip at 50 Hz due to the
applied notch filter.

(a) (b)

Figure 7. EEG signals from the O1 channel for forward, backward, left, and right movements. (a) The
EEG signals of each movement during a 4 s action period. (b) The EEG signals of each movement
during the first 200 ms for viewing details.

5.3. Feature Extraction with CSP

We systematically analyzed the frequency band power corresponding to the four
SSVEP stimulation frequencies (10, 12, 15, and 20 Hz) to extract features from the EEG
signals. Figure 8 shows that the raw EEG signals are initially processed through the
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OpenVibe CSP Filters. These filters help isolate the frequency components corresponding to
the SSVEP stimuli. The Target Separator, implemented via ICA, separates the independent
components for each frequency band.

The data undergo additional processing steps in the OpenVibe CSP Filter (version
2.2.0), including data segmentation and CSP analysis. In the segmentation, a moving
window of width 0.5 s in time is used, with each window containing the data of a segment.
The window moves forward 0.1 s for the next segment, and this process is repeated
throughout the dataset. The segmentation ensures the generation of robust feature vectors
by the CSP algorithm. The CSP coefficients from the CSP analysis are taken as the extracted
features for further classification.

Figure 8. The OpenVibe CSP Filter used to calculate CSP coefficients for the four stimuli at 10, 12, 15,
and 20 Hz.

6. Results and Discussion
6.1. Classification of Brain Activity

Figure 9 shows that the CSP coefficients corresponding to the four target frequencies
are aggregated and converted into feature vectors for brain activity classification with
machine learning. The CSP coefficients for each data segment are calculated for the target
and nontarget stimulation frequencies. Specifically, two CSP coefficients are extracted
for each frequency, resulting in eight CSP coefficients for each segment of the four target
frequencies. Out of the 16 EEG channels, 8 channels were selected for data analysis and
classification, as described in Section 4.2. Focusing on these channels ensured that the data
contained meaningful information for the classification task while reducing computational
complexity. The CSP coefficients were calculated from the signals of these selected channels.
The feature vectors were then input into frequency-specific classifiers for brain wave
activity classification. The classifiers used in this study included LDA, SVM, and multilayer
perceptron (MLP).

The experiment evaluated the effectiveness of the developed SSVEP-BCI system for
classifying brain activity. In the preliminary trial, a participant’s EEG data were segmented
into 2816 segments, and a feature dataset with a shape of 2816 × 2 was generated for each
target frequency. The feature dataset was split in a ratio of 75:25 for training and validation
of the classifiers. Stratified sampling was employed to ensure a balanced representation
of each target frequency during the split. This approach guaranteed that each movement
(i.e., each target frequency) was proportionally represented in both the training and val-
idation sets, thereby preserving the distribution of the target classes across both subsets.
Table 1 lists the accuracy of the brain activity classification for the participant in this trial.
The data in this table represent the results of only one participant.
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Figure 9. The BCI classification for the four movement stimuli at 10, 12, 15, and 20 Hz using the
CSP algorithm.

Table 1. Classification results of brain activity with specified target frequencies for four stimulations.

Accuracy (%)

Action Target Frequency (Hz) LDA MLP SVM

Forward 10 89.68 90.43 90.72
Backward 12 87.59 90.83 90.20
Left 15 88.27 88.67 90.33
Right 20 86.06 87.82 88.27

Average 87.90 89.43 89.88

According to the confusion matrices shown in Figure 10, each classifier exhibits differ-
ent performance characteristics when classifying the four motor movements. Figure 10a
shows higher levels of misclassification, particularly between backward and right move-
ments, highlighting the limitations of LDA in distinguishing complex, overlapping EEG
patterns. Figure 10b presents higher accuracy results than LDA. However, it still has
difficulty distinguishing actions such as left and backward movements. Figure 10c shows
the best performance, with a lower overall misclassification rate. Nevertheless, movements
such as left and right remain challenging for classifiers in EEG-based systems due to their
similar neural signatures. The best classification accuracies for movements of forward,
backward, left, and right are 90.72%, 90.83%, 90.33%, and 88.27%, respectively. Overall, an
average accuracy of 89.88% can be achieved with the SVM.

(a) (b)

Figure 10. Cont.
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(c)

Figure 10. Confusion matrices for the classification of brain activity. (a) LDA classifier. (b) MLP classifier.
(c) SVM classifier.

6.2. Comparison with Similar Methods

Table 2 presents a comparison of the classification accuracy of the proposed system
with that of other similar methods in the literature. It shows that the proposed system
performed better in terms of classification accuracy in most cases, except in the two cases
where complicated feature extraction algorithms and deep neural networks were used.
Lim and Ku [35] implemented a multiple-command single-frequency SSVEP-based BCI
system using flickering action video. There were three actions, including left, right, and
rest, in their experiments. The overall classification accuracy was 74.6% for their SSVEP
system. In another similar SSVEP-based BCI system, Asheri et al. [31] used three different
frequencies (12, 15, and 20 Hz) of visual stimulation and the harmonics of these frequencies
to detect three stimuli. They achieved an average classification accuracy of 89.37% using
the CSP and SVM methods. This is slightly lower than the 89.88% accuracy achieved with
our system. However, they obtained a much higher average accuracy of 95.45% after using
the filter bank CSP (FBCSP) to improve the selection of key temporal–spatial features from
EEG signals and widen the target frequency band. This is better than the results achieved
in our experiment and could potentially be very useful in improving the performance of
our system in the future.

Table 2 also shows that by using a deep neural network (DNN) combining a con-
volutional neural network (CNN) with a bidirectional long short-term memory (LSTM)
network, a classification accuracy of 89.62% was obtained with a dataset collected from a
multifunctional robot based on SSVEP-BCI by Ban et al. [57]. This is comparable with the
results of our system. Again, using a complex CNN-LSTM network but combined with
spectral normalization and label smoothing technologies, Pan et al. [58] achieved a better
accuracy of 90.75% with their SSVEP-BCI system. It is noticeable that using DNNs could
potentially improve the classification accuracy of SSVEP-BCI systems.

Table 2. Comparison of classification accuracy with similar methods reported in the literature.

Method Frequency (Hz) Accuracy (%)

Asheri et al. [31] 12, 15, 20 89.37
Asheri et al. (FBCSP) [31] 12, 15, 20 95.45
Lim and Ku [35] 20 74.60
Pan et al. [58] 8, 10, 12, 15 90.75
Ban et al. [57] 8, 10, 12, 15 89.62

Proposed 10, 12, 15, 20 89.88

6.3. Limitations

The evaluation presented in this paper is based on a preliminary trial of the developed
SSVEP-BCI system with only a limited number of participants, aiming to examine the
system’s usability. The dataset is rather small, and its classification accuracy is not high
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enough to control a device reliably yet. In order for a participant to interact with the
environment and control devices reliably, such as maneuvring a virtual vehicle in the
developed virtual environment in this work, higher accuracy of classification is needed for
the SSVEP-BCI system. Therefore, there is much to be improved in terms of the classification
accuracy of this method. It is envisaged that much higher accuracy will be achieved with
an enlarged dataset collected from more participants and the utilization of deep machine
learning for classification in the future.

We did not evaluate the response time of the SSVEP-BCI system. The SSVEP-BCI
system needs to minimize the latency between detecting user intent and the actual action
in the environment. A low-latency response is critical for tasks that require quick reactions,
such as avoiding obstacles or executing sudden maneuvers in real time. The ITR [59],
or effective bit rate, is a suitable metric for evaluating the response time, as it aids in
assessing different target identification algorithms by combining the identification speed
and accuracy of SSVEP-BCI systems. The ITR of the developed system will be evaluated
thoroughly in the next phase of this work.

6.4. Future Work

This work aims to investigate the feasibility and effectiveness of using SSVEP-BCIs in
human activity monitoring and assessment and to provide an open-source EEG dataset
for the SSVEP-BCI community for future research. This paper presents the results of a
preliminary trial of the system, which involved a single participant. After the preliminary
trial, 20 participants will be formally recruited for system testing and data collection as
planned. Appropriate ethical approval was obtained for this work.

The performance of the SSVEP-BCI system will need to be further improved, partic-
ularly by raising the classification accuracy for participants maneuvering devices with
BCIs. Using the FBCSP and harmonic frequencies of stimuli has been shown effective in
obtaining more accurate results [31]. DNNs, such as a combination of CNN and LSTM
networks, will also be used to further improve the classification accuracy of EEG signals.

7. Conclusions

An SSVEP-BCI system that enables hands-free control of virtual targets in a developed
virtual environment was proposed in this paper, allowing participants to control the
target using only brain activity. In addition, a publicly available multicategory SSVEP-BCI
dataset will be created based on data collected from participants performing forward,
backward, left, and right movements in the virtual environment to simulate directional
control commands. We conducted preliminary trials with limited participants on the
system, and the results showed that a movement classification accuracy of 89.88% was
achieved using the ICA and CSP algorithms for feature extraction and conventional machine
learning algorithm SVM as classifier. The preliminary trial results demonstrated the
feasibility and effectiveness of the proposed SSVEP-BCI system in identifying movement
stimuli and showed its potential in human activity monitoring and assessment. In the
future, a larger dataset with more participants will be collected, and deep learning models
and better feature extraction methods will be employed to improve the classification
accuracy significantly.
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