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Abstract: Working stress is an important indicator reflecting the health status of structures. Passive-
monitoring technology using the piezoelectric effect can effectively monitor the dynamic stress of
structures. However, under static loads, the charge generated by the piezoelectric devices can only be
preserved when the external circuit impedance is infinitely large, which means passive-monitoring
techniques are unable to monitor static and quasi-static stress caused by slow-changing actions.
In current studies, experimental observations have shown that the impedance characteristics of
piezoelectric devices are affected by external static loads, yet the underlying mechanisms remain
inadequately explained. This is because the impedance characteristics of piezoelectric devices are
actually dynamic characteristics under alternating voltage. Most existing impedance analysis models
are based on linear elastic dynamics. Within this framework, the impact of static stress on dynamic
characteristics, including impedance characteristics, cannot be addressed. Accounting for static
stress in impedance modeling is a challenging problem. In this study, the static stress applied on
an embedded piezoelectric plate is abstracted as the initial stress of the piezoelectric plate. Based
on nonlinear elastic dynamic governing equations, using the displacement method, an impedance
analysis model of an embedded piezoelectric plate considering initial stress is established and verified
through a fundamental experiment and a finite element analysis. Based on this, the explicit analytical
relation between initial stress and impedance characterizations is provided, the mechanism of the
effect of initial stress on the impedance characterizations is revealed, and procedures to identify static
stress using impedance characterizations is proposed. Moreover, the sensitivities of the impedance
characterizations in response to the initial stress are thoroughly discussed. This study mainly provides
a theoretical basis for monitoring static stress using the electromechanical impedance of an embedded
piezoelectric plate. And the results of the present study can help with the performance prediction
and design optimization of piezoelectric-based static stress sensors.

Keywords: initial stress; static stress; electromechanical impedance; piezoelectricity; piezoelectric

transducer

1. Introduction

As civil engineering structures develop toward a larger size and higher complexity,
the safety of structures, especially the safety of infrastructure, has received worldwide
attention. Structural health monitoring technology is an effective means to ensure the safety
and stable service of engineering structures [1-3].

Working stress is an important indicator reflecting the health status of structures.
However, the current stress monitoring methods have various limitations [4]: resistance
strain gauges are not suitable for long-term monitoring, differential resistive sensors and
vibrating wire sensors cannot monitor dynamic stress, fiber Bragg grating sensors and their
supporting facilities are expensive, etc.
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Piezoelectric materials, especially piezoelectric ceramics, are widely used in electrome-
chanical conversion systems as energy transducers in various engineering fields [5-10]. In
the field of structural health monitoring, there are three main types of techniques: the wave
analysis technique [11-15], impedance analysis technique [16-23], and passive-monitoring
technique [24-29]. Currently, passive-monitoring techniques utilizing the piezoelectric
effect have enabled the dynamic stress monitoring of structures [26-29]. However, under
static loads, the charge generated by piezoelectric devices can only be preserved when the
external circuit impedance is infinitely large. This means passive-monitoring techniques
are unable to monitor static and quasi-static stresses caused by slow-changing actions, such
as prestressing in a prestressed structure, the temperature effect of large-volume concrete,
earth pressure, etc.

While passive-monitoring techniques utilizing the piezoelectric effect cannot moni-
tor static stresses, studies have shown that the impedance characteristics of piezoelectric
devices are affected by applied static loads [20-23]. Monitoring static stress in structures
through the impedance characteristics of embedded piezoelectric devices is a novel ap-
proach. In the research conducted by Zhang et al., piezoelectric plates were embedded in
concrete specimens, and the impedance analysis method was used to monitor the load-
bearing capacity degradation of the concrete specimens during axial compressive failure.
The experimental loading process revealed that even in the elastic stage, the impedance
characteristics of the piezoelectric plates were affected by the applied static loads [20].
Based on statistical analysis of experimental results, Pan and Guan proposed a nonde-
structive method to monitor the stress—strain relationship of concrete using embedded
piezoelectric sensors. And the experimental results indicated that as the load increased,
the measured conductance of the embedded piezoelectric sensors decreased in the applica-
ble frequency [21]. Using a two-dimensional embedded PZT-structure interaction model,
Ai et al. proposed a real-time identification approach for flexure-critical stress and damage
in reinforced concrete beams. Both their analytical and experimental results showed that
the conductance peak and resonant frequency of the embedded PZT transducer shifted
under tension and compression stresses [22]. In real-scale structures, the impedance of
implanted piezoelectric transducers is also found to be affected by applied static load.
In the investigation conducted by Karayannis et al., implanted PZT transducers were
employed to identify the damage level of a real-scale reinforced concrete beam—column
joint. In this real-scale experiment, the PZT transducers were successfully used in damage
diagnosis, and the impedance of the implanted PZT transducers was apparently affected
by the applied static load [23].

The aforementioned studies have indeed demonstrated the feasibility of utilizing the
impedance analysis method to monitor static stress from an experimental perspective.
However, the underlying mechanisms remain inadequately explained. This is because the
impedance characteristics of piezoelectric devices are actually dynamic characteristics un-
der alternating voltage. Most existing impedance analysis models are based on linear elastic
dynamics. Within this framework, the impact of static stress on dynamic characteristics,
including impedance characteristics, cannot be addressed. These inadequate impedance
analysis models, which do not account for static stress or incorrectly consider static stress
as the stress boundary amplitude, make it impossible to accurately predict the performance
and optimize the design of piezoelectric-based static stress sensors.

Accounting for static stress in impedance modeling is a challenging problem. For-
tunately, in the field of solid mechanics, scholars have utilized the continuum mechanics
approach to investigate the influence of initial stress on the elastic wave propagation char-
acteristics of piezoelectric materials. They have established nonlinear elastic dynamic
governing equations (constitutive equations, geometric equations, and equilibrium equa-
tions) of piezoelectric materials under the influence of initial stress, considering geometric
nonlinearity [30-32]. It is worth noting that the “initial stress” here is not a boundary
condition, but rather, an “initial condition” acting on the equilibrium equation prior to
the application of dynamic loads. From the above review, it is evident that in seeking an
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impedance analysis model that considers the influence of applied static stress, the “applied
static stress” may be abstracted as the “initial stress” of piezoelectric materials. Based on
the nonlinear elastic dynamic governing equations of piezoelectric materials, an impedance
analysis model that accounts for the influence of initial stress could be established.

In the present study, electromechanical impedance characterizations of an embedded
piezoelectric plate are utilized to identify the internal static stress of structures. The internal
static stress of structures applied on the embedded piezoelectric plate is considered to
be the initial stress of the piezoelectric plate, and the impedance characterizations of
the piezoelectric plate that change with the initial stress are employed to identify the
initial stress, thereby enabling the identification of static stress. Specifically, based on
the nonlinear elastic dynamic governing equations of piezoelectric materials, using the
displacement method, an impedance analysis model of an embedded piezoelectric plate
considering the effect of initial stress is established and verified through a fundamental
experiment and a finite element analysis. Using this impedance analysis model, the explicit
analytical relation between initial stress and impedance characterizations is determined, the
mechanism of the effect of initial stress on the impedance characterizations is revealed, and a
procedure to identify static stress is proposed. Moreover, the sensitivities of the impedance
characterizations in response to the initial stress are thoroughly discussed. This study
mainly provides a theoretical basis for monitoring static stress using the electromechanical
impedance of an embedded piezoelectric plate. And the results of the present study can
help with the performance prediction and design optimization of piezoelectric-based static
stress sensors.

The rest of this paper is organized as follows. In Section 2, adopting a nonlinear
dynamic equilibrium equation accounting for initial stress, an impedance analysis model of
an embedded piezoelectric plate considering initial stress is established. In Section 3, a fun-
damental experiment and a finite element analysis are conducted to validate the proposed
theoretical model. In Section 4, numerical studies are conducted to firstly reveal the effect
of static stress on the impedance characterizations. Secondly, to evaluate an individual’s
potential in static stress identification, the sensitivities of different characterizations to static
stress are identified and compared to each other. Subsequently, to guide the design of
piezoelectric-based static stress sensors, the impact of geometrical and mechanical factors
on the sensitivities of impedance characterizations to static stress is thoroughly discussed.
Section 5 concludes this study.

2. Impedance Analysis Model of an Embedded Piezoelectric Plate Considering
Initial Stress

As shown in Figure 1, a piezoelectric plate covered with continuous electrodes on
the upper and lower surfaces and encapsulated by insulating material is embedded in an
engineering structure. The surrounding environment of the piezoelectric plate is reinforced
concrete, foundation soil or a steel joint. Due to the external static load applied on the engi-
neering structure, the embedded piezoelectric plate is subjected to static stress T? through
the surrounding media. Note that a positive value of T? indicates tensile stress, while a
negative value of T? indicates compressive stress. The upper surface of the embedded
piezoelectric plate is subjected to a harmonic external voltage v(t) = V;,e/*!, and the lower
surface is grounded. Simplified models of the embedded piezoelectric plate are illustrated
in Figure 2. In the simplified full-scale model presented in Figure 2a, the cross-sectional area
of the plate is denoted as 4, and the thickness of the plate is represented by H. As shown in
Figure 2a, the piezoelectric plate is sandwiched by a pair of viscoelastic constraints with
stiffness of K and a viscous damping coefficient of C. The piezoelectric plate is subjected to
a static load aT? through the viscoelastic constraint (T? is the internal static stress of the
structure, where a positive number indicates tensile stress and a negative number indicates
compressive stress). Herein, the viscoelastic constraint is a simplification of the surrounding
environment, and the static stress T? is considered to be the initial stress of the piezoelectric
plate. As for the electrical loading, the lower surface of the piezoelectric plate is grounded,
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while the upper surface is subjected to a harmonic external voltage v(t) = V;,e/“*. From the
perspective of the displacement field, the simplified full-scale model presented in Figure 2a
is a symmetrical structure subjected to symmetrical loads, which means it can be further
simplified to a semi-thickness model, as presented in Figure 2b. The semi-thickness model
is actually the upper half of the full-scale model with adjusted electrical boundary condi-
tions. In the semi-thickness model, a semi-thickness piezoelectric plate with a thickness of
h = H/2is bonded on a rigid surface. The upper surface of the plate is subjected to a static
tensile load aT? through the viscoelastic constraint, and the static stress T? is considered
to be the initial stress of the piezoelectric plate. As for the adjusted electrical boundary
conditions, the lower surface of the piezoelectric plate is grounded, while the upper surface
is subjected to a harmonic external voltage v(t) = (Vj,/2)e/*. Using the semi-thickness
model, the mechanical and electrical components of the embedded piezoelectric plate can
be obtained. It should be noted that from the perspective of circuit connection, the full-scale
model consists of two semi-thickness model connected in series. This indicates that the
full-scale model and the semi-thickness model have the same input current but different
input voltages. In the following impedance characterization of the embedded piezoelectric
plate, the input voltage of the full-scale model and the input current of the semi-thickness
model are adopted.

Encapsulation layer Vise’ ot
H] ezt
Concrete, Earth or Grounded
Steel joint

Figure 1. A piezoelectric plate embedded in an engineering structure.

an’T

Vr'n e Jot
K o

Pl T Polarization direction IH

o Grounded

(b) o Grounded
(a)

Figure 2. Simplified model of embedded piezoelectric plate: (a) full-scale model, and (b) semi-
thickness model.

2.1. Basic Equations

From the perspective of piezoelectricity, the constitutive equations of a piezoelectric
plate polarized along the z axis can be written as [33]

T, = C§3Sz —e33E; (1)

D, = e335; + 8§3Ez )
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where S; and T, are the strain and stress components of the piezoelectric layer along
the z direction, respectively. E, and D, are the electric field strength and the electric
displacement along the z direction, respectively. c§3, e33 and £§3 are the elastic stiffness,
the piezoelectric constant and the dielectric constant, respectively. The superscripts E
and S indicate a parameter at a constant electric field and constant strain, respectively.
In the following derivation, the superscripts are dropped for simplicity. The geometric
relationship equations of the piezoelectric layer can be expressed as

_Jw

5. =22 ©
_ %
E=- @

where w is the displacement of the piezoelectric layer along the z direction, and ¢ is the
electric potential. It is assumed that there exists only one constant initial stress component
T in the piezoelectric layer, such that the dynamic and electric displacement equilibrium
equations of the piezoelectric layer can be written as

Pw 9T, 007w

P~ o Tz ®)
oD
= =0 ©)

where p is the density of the piezoelectric layer. Herein, different from the conventional
linear elastic model, a nonlinear dynamic equilibrium equation accounting for the initial
stress term T?, i.e., Equation (5), is employed [30-32]. If the input voltage v(t) is harmonic,
it is of the form

o(t) = Ve )

where V;,, is the input voltage amplitude, j = y/—1 is the imaginary unit, w = 27f is the
circular frequency, and f is the input voltage frequency (driving frequency). The steady-
state expressions of the stress, electric displacement, electric potential and displacement of
the piezoelectric layer can be expressed as

(Tz, Dz,¢,ZU> = [TZ(Z)IDZ(Z),QD(Z),Z/U(Z)]eth (8)

Substituting Equations (3) and (4) into Equation (1) yields

T(z) = C333£(Z) n 633%1’(2) ©)

Differentiate both sides of Equation (9) with respect to z:

0T:(z)  c330*w(z) | e330%¢(z)
0z a2 o {10

Substituting Equations (3) and (4) into Equation (2) yields

_ exdw(z)  €330¢(2)

D:(z) 0z 0z (1
Substituting Equation (11) into Equation (6) yields
e339’¢(z) _ exnd’w(z) (12)

022 92
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If we combine Equations (10) and (12), we have
oT.(z) (e33% + c33€33) Q*w(z) (13)
0z a €33 0z2
Substituting Equation (13) into Equation (5) yields
2 2 2
2 (e33” + caze33) ?w(z) | . o0*w(z)
_ = T 14
pw w(z) €33 8z2 z 822 ( )
Equation (14) can be simplified as
% +a?w(z) =0 (15)
022

where a2 = pw?/ (7 + T?) and 7 = (e33% + c33¢33) / €33. If we solve Equation (15), we have
w(z) = Aj sin(az) + A cos(az) (16)

where A1 and A; are unknown constants. If we combine Equation (16) with Equation (12),
we have
$(z) = B[Aysin(az) + Ap cos(az) + Azz + Ay (17)

where § = e33/¢e33, and A3 and Ay are integration constants. Using Equation (9), the stress
component of the piezoelectric layer can be obtained as follows:

T.(z) = an[Ay cos(az) — Ay sin(az)] + A3 (18)

where y = (6332 + C33€33) /e3z and § = e332/e33. Using Equation (11), the electric displace-
ment of the piezoelectric layer can be obtained as follows:

D;(z) = —e334s3 (19)

Until now, the expressions of the stress, the electric displacement, the electric potential
and the displacement of the piezoelectric layer have been obtained, and the unknown
constants are A1, Ap, Az and A4. Note that these basic equations are valid for both the
full-scale model and the semi-thickness model. The theoretical solutions of impedance
characterization for the embedded piezoelectric plate can be obtained using the input
voltage of the full-scale model and the input current of the semi-thickness model.

2.2. Theoretical Solutions of the Semi-Thickness Model

The electrical boundary conditions and the mechanical boundary conditions of the
semi-thickness model, as shown in Figure 2b, are summarized as follows, respectively.
The electrical boundary conditions of the semi-thickness piezoelectric plate:

¢(z)|z:h = (Vm/z) (20)
{ ¢(z)|z:0 =0
The mechanical boundary conditions of the semi-thickness piezoelectric plate:
{ w(z)|Z:0 =0 ) (21)
aT(Z)|z:h = _Kw<z)|z:h - ]wcw(z)|z:h
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The above boundary conditions generate the following four independent linear alge-
braic equations:

Bsin(ah) Ay + Bcos(ah)Ay + BhAs + BAs = (Vi /2)

’BAZ + ‘BA4 =0

Ay =0 22)
ann[Aq cos(ah) — Apsin(ah)] + adAs

= —(K+ jwC)[Aj sin(ah) + Ay cos(ah)]

And the four unknown constants A, Ay, Az and A4 can be solved as follows:

A = (Vin/2)da
1 = Bdasin(ah)—Ph(K+jwC) sin(ah)—apnhacos(ah)
An — —[ana cos(ah)+(K+jwC) sin(ah)] Ay
3= a0
Ay=0
Further, the input electric current of the semi-thickness model can be defined as
o dq(t)
i(t) = =7~ (24)
where g(t) is the input charge of the semi-thickness model given by
a(t) = [ Da(h)nda (25)
a

where D, (h) and n are, respectively, the electric displacement and the inward unit normal vector
of the ungrounded side surface. Here, we take n = —1. Substituting Equations (19) and (25)
into Equation (24), the input electric current can be expressed as

i(t) = L6l = waesz Azjelt (26)

where I;;, = waesz A3j is the amplitude phasor of the input electric current, and |I;;,| is the
amplitude of the input electric current.

2.3. Theoretical Solutions of Impedance Characterizations for Embedded Piezoelectric Plate

Considering the perspective of circuit connection, the full-scale model consists of two
semi-thickness models connected in series, which means the full-scale model has the same
input current as the semi-thickness model. Using the input voltage V;;, of the full-scale
model and the input current I;;, of the semi-thickness model, the input impedance Z and
admittance Y of the embedded piezoelectric plate can be determined, respectively, as

7V _ Vi

T Iin, T waezzAzj
__ 2Bdasin(ah)—2ph(K+jwC) sin(ah)—2apyha cos(ah) . 27)
- waegz|ana cos(ah)+(K+jwC) sin(ah)) J

Y=1

One should notice that the input impedance of the embedded piezoelectric plate
illustrated by the full-scale model is exactly twice that of the semi-thickness model.

3. Model Validation

In Section 2, the explicit solution of the electromechanical impedance for an embedded
piezoelectric plate considering the initial stress is obtained. In this section, the impedance
analysis model presented in Section 2 is verified by comparing its simplification via a
fundamental experiment and a finite element analysis.
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3.1. Experimental Validation

By taking T? = 0, K = 0 and C = 0, the present impedance analysis model is simplified
to that of a free-boundary PZT disk and compared with the experimental impedance
frequency response of three sample PZT disks. The sample disks and testing platform
presented in Figure 3 were employed in one of our previous works [8].

Four-terminal
Kelvin test cable
Test clips

Figure 3. Experimental setup: (a) sample PZT disk, (b) impedance analyzer, and (c) data
acquisition computer.

Anillustration of the employed PZT disks is presented in Figure 3a. The effective cross-
sectional area, thickness, density and dielectric constant of these three sample PZT disks are
very close to each other, and we take average values, respectively, of 2 = 6.17 x 107° m?,
H = 0.5mm, p = 7600 kg/m3 and .€§3 = 1.02 x 1078 F/m. The sample PZT disks have
asymmetrical electrodes, as shown in Figure 3a, and the shuttle-shaped part is connected to
the round electrode on the backside. The effective cross-sectional area is considered to be
the area of the smaller electrode. The dielectric constant is obtained using the capacitance
of the sample PZT disk times H then divided by a.

The resonant frequency fr, the anti-resonant frequency f,, the elastic constant c£; and
the piezoelectric constant es3 of these three sample PZT disks are presented in Table 1. It
should be noted that f, and f, are identified from the experimentally obtained impedance
frequency response, i.e., the driving frequency corresponding to the minimum impedance
is identified as f;, and the driving frequency corresponding to the maximum impedance is
identified as f,. Once f; and f, are identified, c; and e33 can be resolved. The procedures
to resolve c£; and e33 from f; and f, are provided in Appendix A.

Table 1. Material parameters of the sample PZT disks.

f. (MHz) f, (MHz) ck; (GPa) e33 (C/m?)
Sample 1 3.60 431 92.1 22.32
Sample 2 3.57 4.28 90.6 22.23
Sample 3 3.70 448 97.0 23.75

The impedance frequency responses of these three sample PZT disks are tested using
an impedance analyzer, as presented in Figure 3b, the data are gathered using a computer,
as presented in Figure 3c, and the results are presented in Figure 4.
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Figure 4. Impedance frequency response of sample PZT disks: experimental and theoretical results.

In the simplification of the present proposed impedance analysis model, to consider the
internal damping effect of the material, the elastic constant c%; is replaced with c; (1 + Qj),
where Q is the internal complex damping factor and j is the imaginary unit. Theoretically,
the larger the complex damping factor Q, the smaller the resonant displacement. The
damping factor Q also affects the valley and peak values of the absolute impedance at the
resonant and anti-resonant frequencies, respectively. That is to say, the larger the complex
damping factor Q, the larger the valley value but the smaller the peak value of the absolute
impedance. In the simplified impedance analysis model, we take Q = 0.02.

The theoretical impedance frequency responses of the sample PZT disks obtained from
the simplification of the present model are presented and compared with the experimental
results in Figure 4. As we can see in Figure 4, for the thickness stretch mode, the resonant
and anti-resonant frequencies obtained using the present model match well with the
experimental results. The mismatch in the peak value of the absolute impedance is due to
the estimation of the complex damping factor Q. Actually, the specific damping factor for
each sample PZT disk can be identified using the present model if needed.

3.2. Finite Element Method Validation

The proposed impedance analysis model is preliminary validated through a fun-
damental experiment, and further verification considering the impact of initial stress is
conducted using the finite element method (FEM) in the following section.

Herein, in both the theoretical and the finite element analysis, a numerical sample
piezoelectric plate made from standard PZT-5H with a cross-sectional area of 4 = 100 mm?
and a thickness of H = 2 mm is employed. And the one-dimensional material parameters
of standard PZT-5H are listed in Table 2.
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Table 2. One-dimensional material parameters of standard PZT-5H [8,34].
Densityp Elastic Constant cE, Piezoelectric Constant e33 Dielectric Constant 3,
7500 kg/m? 117 GPa 23.3 C/m? 1470 x 8.854 pF/m

Based on the present impedance analysis model, using Equation (27), considering
the internal complex damping factor and the external viscoelastic constraint, respectively,
tobe Q = 0.02, K = 0 and C = 0, the theoretical admittance frequency responses of the
sample piezoelectric plate with different initial stresses are determined and are presented
in Figure 5 and compared with the finite element results. In this finite element method

validation, two initial stresses are considered, i.e., T? = 0 and T? = —1 GPa.
0.08
1 Theory Ti': 0
0.07 4 e FEMT’=0

Theory T:': —1GPa

006 « FEMT’=-IGPa

0.05
0.04

0.03

Admittance |Y] (S)

0.02

0.01

0.00 T T T T T T T
0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05

Driving frequency f(MHz)
Figure 5. Admittance frequency response considering initial stress: FEM and theoretical results.

The finite element results for validation are obtained using COMSOL Multiphysics
5.6. In the COMSOL project, the Solid Mechanics Module and the Electrostatic Module are
employed, the plane strain assumption is adopted, a two-dimensional piezoelectric actuator
model is created, and a frequency-domain perturbation study is conducted. To simulate one-
dimensional performance using a two-dimensional model, the one-dimensional material
parameters of PZT-5H listed in Table 2 are manually entered in the COMSOL project.
As for the damping mechanism and initial stress, an isotropic elastic loss factor of 0.02
and a prestress term are adopted in the COMSOL project. The admittance frequency
responses for no prestress and a 1 GPa compressive prestress obtained from the COMSOL
project are presented in Figure 5 for verification. The COMSOL project is provided in the
Supplementary Materials.

As we can see in Figure 5, when there is no initial stress, the theoretical admittance
frequency response almost perfectly matches the finite element result. When a 1 GPa
compressive initial stress is applied on the sample piezoelectric plate, both the theoretical
and FEM curves shift leftward, resulting in a slight decrease in admittance peaks and
an obvious decrease in resonant frequency. From Figure 5, we can conclude that the
theoretically predicted impact of initial stress is consistent with the finite element result.

4. Numerical Results and Discussion

In this section, numerical studies are conducted to firstly reveal the effect of initial
stress on the impedance characterizations of an embedded piezoelectric plate and secondly,
to evaluate an individual’s potential in static stress identification. The sensitivities of
different characterizations to the compressive initial stress are identified and compared to
each other. Subsequently, procedures to identify static stress using impedance characteriza-
tions of an embedded piezoelectric plate are proposed. Moreover, to guide the design of
piezoelectric-based static stress sensors, the effect of the geometric dimensions, the external
constraint and the damping mechanism on the sensitivities of both the conductance peak
and the resistance peak to the initial stress is thoroughly discussed.
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The following numerical results are obtained using the explicit theoretical solutions
presented in Equation (27). Specifically, all the frequency response curves are directly
obtained from Equation (27), achieved using MATLAB R2017b with 1000 Hz driving
frequency spacing. And the peak or valley values as well as corresponding resonant or
anti-resonant frequencies are identified from the frequency response data. As for the
sensitivities of impedance characterizations to initial stress, different initial stresses yield
varying characterizations. We plot the scatters of the varying characterizations with respect
to varying initial stresses, and the slope of the linear fitting line of these discrete scatters is
identified as the sensitivity. In the following numerical study, the one-dimensional material
parameters of standard PZT-5H are employed and listed in Table 2.

4.1. Effect of Initial Stress on Impedance Characterizations

An analysis of the frequency response of the impedance characterizations considering
the effect of the initial stress is conducted in this section. Six impedance characterizations are
taken into account, i.e., the absolute value of impedance |Z|, absolute value of admittance
|Y|, resistance-real (Z), reactance-imag(Z), conductance-real (Y) and susceptance-imag(Y).
In this part, a numerical sample piezoelectric plate made from standard PZT-5H with
a cross-sectional area of @ = 100 mm? and a thickness of H = 2 mm is employed. As
mentioned in Section 3, to consider the internal damping effect of the material, the elastic
constant cZ; is replaced with ¢k (1 + Qj), where Q is the complex damping factor and j is
the imaginary unit. In this part, the internal damping factor of the material is considered to
be Q = 0.02, and the external viscoelastic constraint is considered to be K = 0 and C = 0.

To clearly show the effect of the initial stress on the impedance characterizations,
extremely large compressive initial stresses are considered in the following numerical study,
i.e., 0, —10 GPa, —20 GPa, —30 GPa, —40 GPa and —50 GPa. These considered initial
stresses exceed the ultimate load-bearing capacity of PZT-5H. For much smaller initial
stress in practice, the effect on impedance characterizations should have the same pattern,
as illustrated in the following section.

The impedance frequency response of the sample piezoelectric plate considering six
different compressive initial stresses is presented in Figure 6. The frequency corresponding
to the peak value of the impedance is approximately the anti-resonant frequency of the
sample piezoelectric plate. And the frequency corresponding to the valley value of the
impedance is approximately the resonant frequency of the sample piezoelectric plate.
As one can see in Figure 6, with an increase in the compressive initial stress, both the
impedance peak and the corresponding anti-resonant frequency decrease linearly.
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Figure 6. Impedance frequency response considering compressive initial stress.
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Resistance is the real part of impedance, and its frequency response considering
different compressive initial stresses is presented in Figure 7. The frequency corresponding
to the peak value of the resistance is also approximately the anti-resonant frequency of the
sample piezoelectric plate. As one can see in Figure 7, with an increase in the compressive
initial stress, both the resistance peak and the corresponding anti-resonant frequency
decrease linearly.
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Figure 7. Resistance frequency response considering compressive initial stress.

Reactance is the imaginary part of impedance, and its frequency response considering
different compressive initial stresses is presented in Figure 8. The frequencies where the
reactance firstly and secondly approaches zero are, respectively, the exact resonant and
anti-resonant frequencies of the sample piezoelectric plate. As one can see in Figure 8,
with an increase in the compressive initial stress, the resonant frequency, the anti-resonant
frequency, and the absolute peak and valley values of the reactance decrease linearly.
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Figure 8. Reactance frequency response considering compressive initial stress.

For the same extremely large compressive initial stress, i.e., 0, =10 GPa, —20 GPa,
—30 GPa, —40 GPa and —50 GPa, the admittance frequency response of the sample piezo-
electric plate is presented in Figure 9. The frequency corresponding to the peak value of the
admittance is approximately the resonant frequency of the sample piezoelectric plate. And
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the frequency corresponding to the valley value of the admittance is approximately the anti-
resonant frequency of the sample piezoelectric plate. As one can see in Figure 9, with an
increase in the compressive initial stress, both the admittance peak and the corresponding
resonant frequency decrease linearly.
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Figure 9. Admittance frequency response considering compressive initial stress.

Conductance is the real part of admittance, and its frequency response considering
different compressive initial stresses is presented in Figure 10. The frequency corresponding
to the peak value of the conductance is also approximately the resonant frequency of the
sample piezoelectric plate. As one can see in Figure 10, with an increase in the compres-
sive initial stress, both the conductance peak and the corresponding resonant frequency
decrease linearly.
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Figure 10. Conductance frequency response considering compressive initial stress.

Susceptance is the imaginary part of admittance, and its frequency response consider-
ing different compressive initial stresses is presented in Figure 11. The frequencies where
the susceptance firstly and secondly approaches zero are, respectively, the exact resonant
and anti-resonant frequencies of the sample piezoelectric plate. As one can see in Figure 11,
with an increase in the compressive initial stress, the resonant frequency, the anti-resonant
frequency, and the absolute peak and valley values of the susceptance decrease linearly.
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Figure 11. Susceptance frequency response considering compressive initial stress.

4.2. The Sensitivities of Different Characterizations to Compressive Initial Stress and Procedures to
Identify Static Stress

The approximate linear relationship between initial stress increasing and impedance
characterizations changing are observed in Section 4.1. The change rate of the characteriza-
tions with respect to the compressive initial stress is considered to be the sensitivity of the
characterizations to the compressive initial stress.

For the sample piezoelectric plate employed in Section 4.1, the resonant and anti-
resonant frequencies with respect to the compressive initial stress are presented in Figure 12.
It is observed that with increasing of compressive initial stress, both the resonant and anti-
resonant frequencies decrease linearly, and the sensitivities of resonant and anti-resonant
frequencies to the compressive initial stress are, respectively, identified as —3.50 Hz/MPa
and —3.96 Hz/MPa.
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Figure 12. Resonant and anti-resonant frequencies with respect to compressive initial stress.

The impedance-related characterizations of the sample piezoelectric plate with re-
spect to the compressive initial stress are presented in Figure 13. It is found that with an
increase in the compressive initial stress, the peak value of the absolute impedance, the
peak value of the resistance, the peak value of the reactance, and the valley value of the
reactance all decrease linearly, and the sensitivity of these impedance-related characteri-
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zations to the compressive initial stress are, respectively, identified as —10.40 m()/MPa,
—10.63 mQ)/MPa, —5.91 mQ)/MPa and —4.67 mQ)/MPa.
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Figure 13. Impedance-related characterizations with respect to compressive initial stress.

The admittance-related characterizations of the sample piezoelectric plate in relation to
the compressive initial stress are presented in Figure 14. It is shown that with an increase in
the compressive initial stress, the peak value of the absolute admittance, the peak value of
the conductance, the peak value of the susceptance, and the valley value of the susceptance
all decrease linearly, and the sensitivity of these admittance-related characterizations to the

compressive initial stress are, respectively, identified as —0.509 pS/MPa, —0.509 uS/MPa,
—0.266 uS/MPa and —0.244 uS/MPa.

0.08
0.06 -0.5094S / MPa
~0.509uS / MPa
0.04
~0.266uS / MPa

0.02 \\v/\\v\v
—=— Admittance peak —0.244uS / MPa

|| —®— Conductance peak
—A— Susceptance peak
—v¥— Susceptance valley
0.00 T T T T T T T T T T
0 10 20 30 40 50

Admittance-related characterization (S)

Compressive initial stress I” (GPa)
Figure 14. Admittance-related characterizations with respect to compressive initial stress.

Note that the identified sensitivities of the characterizations are the slope of the linear
fitting line of the scatters.

From the above sensitivity analysis, we should notice that the impedance-related
characterizations that are more sensitive to the changes in initial stress are the peak value
of the absolute impedance, the peak value of the resistance, and their corresponding anti-
resonant frequency. As for the admittance-related characterizations, the ones that are more



Sensors 2024, 24, 7096

16 of 31

sensitive to changes in the initial stress are the peak value of the absolute admittance, the
peak value of the conductance, and their corresponding resonant frequency.

To effectively identify the initial stress utilizing the sensitivity of the above-mentioned
characterizations to the initial stress, we need to refer to the original characterizations at
zero initial stress. Since the original characterizations may suffer noise in practice, the
change rate of the characterizations compared to the original characterizations at zero initial
stress is also an important indicator reflecting the potential to identify the initial stress.

Taking the characterizations at zero initial stress as the baseline, the relative change
rate of the characterizations with respect to the compressive initial stress is defined as the
relative sensitivity. The percent change in the characterizations for different compressive
initial stresses are presented in Figure 15, and the relative sensitivities of different char-
acterizations are also marked in Figure 15. It is found that the relative sensitivity of both
the absolute admittance peak and the conductance peak are very close to each other and
identified as approximately —7.68 x 107%/MPa. Meanwhile, the relative sensitivity of
the other potential characterizations, i.e., the resonant frequency, anti-resonant frequency,
the absolute impedance peak and the resistance peak, are approximately identified as
—3.50 x 107¢/MPa.
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Figure 15. The percent change in the characterizations with respect to the compressive initial stress.

Considering both the sensitivity and the relative sensitivity of the potential characteri-
zations to the initial stress, the absolute admittance peak, the conductance peak, and their
corresponding resonant frequency should have the most potential in identifying the initial
stress. The second potential characterizations should be the absolute impedance peak, the
resistance peak, and their corresponding anti-resonant frequency.

Taking the peak value of admittance as an illustrative example, the internal static
stress of structures can be identified through the following procedures. First, encapsulate
the piezoelectric plate with proper materials dependent on the application environment,
and calibrate the original admittance peak value of the encapsulated piezoelectric plate
under no load. Next, assess the admittance peak value of the encapsulated piezoelectric
plate under a specified static load, comparing it with the original admittance peak value
to calibrate the sensitivity of the admittance peak value to variations in the initial stress.
Subsequently, embed the encapsulated piezoelectric plate within the target structure and
adjust its orientation to align with the target stress. Finally, measure the admittance peak
value of the embedded piezoelectric plate; the internal static stress can be obtained by
dividing the difference in admittance peak values by its sensitivity to the initial stress.

Reviewing Figures 9, 10, 14 and 15, the absolute admittance peak and the conductance
peak are actually very close to each other, and the conductance curve has only one peak,
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while the admittance curve has both a peak and a valley. Similar to the relation between the
absolute admittance peak and the conductance peak, the resistance peak is also very close
to the absolute impedance peak. For the sake of simplicity, we shall concentrate on the con-
ductance peak and resistance peak, along with their associated resonant and anti-resonant
frequencies, in the following discussion concerning factors that influence sensitivity.

4.3. Influence of Geometric Dimensions on Sensitivities of Conductance Peak and Resistance Peak

Through the sensitivity analysis in Section 4.2, the conductance peak and resistance
peak are found to be, respectively, the most and second most promising characterizations
in identifying the initial stress. In this part, the influence of geometric dimensions on the
sensitivities of both the conductance peak and resistance peak in response to compressive
initial stress is investigated. The results obtained in this part can help with the design and
optimization of PZT-based static stress sensors. In the following discussion, the external
constraint stiffness is considered to be K = 0, the external viscous damping coefficient
is considered to be C = 0, and the internal complex damping factor is considered to be
Q=0.02.

The conductance peak value, resonant frequency, resistance peak value and anti-
resonant frequency, in relation to the compressive initial stress for various piezoelectric
layer thickness H, are presented, respectively, in Figure 16a—d. The scatters presented in
Figure 16 are obtained based on sample piezoelectric plates with a constant cross-sectional
area of 2 = 100 mm? and various thicknesses of H = 1 mm, 2 mm, 3 mm, 4 mm and 5 mm.
The sensitivities of the conductance peak value, resonant frequency, resistance peak value
and anti-resonant frequency to the compressive initial stress for various piezoelectric layer
thicknesses are marked in Figure 16 and summarized in Table 3.

Similarly, the conductance peak value, resonant frequency, resistance peak value and
anti-resonant frequency, in relation to the compressive initial stress for various piezoelectric
layer cross-sectional areas a, are presented, respectively, in Figure 17a—d. Figure 17 is
obtained based on sample piezoelectric plates with a constant thickness of H = 2 mm
and various cross-sectional areas of a = 25 mm?, 50 mm?, 100 mm? and 200 mm?2. The
sensitivities of the potential characterizations to the compressive initial stress for various
piezoelectric layer cross-sectional areas are marked in Figure 17 and summarized in Table 3.

In Figures 16a and 17a and Table 3, it is found that the sensitivity of the conductance
peak value in response to the compressive initial stress is significantly affected by the
geometric dimensions of the piezoelectric layer. With an increase in the piezoelectric layer
thickness H, the sensitivity of the conductance peak value diminishes significantly. No-
tably, when the thickness is quintupled from 1 mm to 5 mm, the sensitivity reduces from
—2.04 uS/MPa to a mere 1/25 of its original value, yielding —0.0821 uS/MPa. Conversely,
as the cross-sectional area of the piezoelectric layer expands, the sensitivity of the conduc-
tance peak value rises in a linear fashion. Specifically, when the cross-sectional area is
enlarged eightfold from 25 mm? to 200 mm?, the sensitivity correspondingly increases eight-
fold, shifting from—0.127 uS/MPa to —1.02 uS/MPa. In contrast to the sensitivity term,
the relative sensitivity of the conductance peak value remains unaffected by the geometric
dimensions and maintains a constant level, at approximately —7.75 x 10~¢/MPa.

Although the sensitivity of the resistance peak value in response to compressive
initial stress is also greatly affected by the geometric dimensions, as one can notice in
Figures 16c and 17c and Table 3, the influence patten is completely different. Unlike the
sensitivity of the conductance peak value, as the piezoelectric layer thickness increases,
the sensitivity of the resistance peak value increases significantly. Specifically, when the
thickness is quintupled from 1 mm to 5 mm, the sensitivity increases twenty-five times
from —2.65 mQ)/MPa to —66.7 mQ)/MPa. Conversely, as the cross-sectional area of the
piezoelectric layer expands, the sensitivity of the resistance peak value reduces linearly.
Specifically, when the cross-sectional area is enlarged eightfold from 25 mm? to 200 mm?,
the sensitivity correspondingly reduces to 1/8 of the original value from—42.5 m(}/MPa to
—5.32 mQ)/MPa. Similarly to the relative sensitivity of the conductance peak value, the
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relative sensitivity of the resistance peak value also remains unaffected by the geometric

dimensions and maintains a constant level, at approximately —3.45 x 10~°/MPa.
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Figure 16. Cont.
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Figure 16. Characterizations with respect to compressive initial stress considering different piezoelec-

tric layer thicknesses H while the cross-sectional area is 2 = 100 mm?.

Table 3. Influence of geometric dimensions on sensitivities of conductance peak and resistance peak.

Conductance Peak Value Resonant Frequency Resistance Peak Value Anti-Resonant Frequency

W sty STARE setvhy  UHANY ety SDUNY ey

H=1mm —2.04 —7.76 x 10°° —6.99 —3.45 x 107° —2.65 —3.45 x 10°° -7.91 —3.44 x 107°

H=2mm —0.509 —7.75 x 107° —3.50 —3.46 x 107° -10.6 —3.45 x 107° —3.96 —3.44 x 107°

H=3mm —0.226 —7.73 x 107° —2.34 —3.47 x 107° —239 —3.47 x 107° —2.64 —3.44 x 107°

H =4 mm -0.127 —7.75 x 1076 -1.75 —3.46 x 10°° —41.6 —3.38 x 10°° —1.98 —3.44 x 107°

H=5mm —0.0821 —7.80 x 10¢ —1.40 —3.46 x 107° —66.7 —3.47 x 10° —1.58 —3.43 x 107°

a =25mm? -0.127 —7.74 x 107° —3.50 —3.46 x 10°° —425 —3.46 x 107° —3.96 —3.44 x 107°
a =50 mm? —0.254 —7.74 x 10° —3.50 —3.46 x 10°° -21.3 —3.47 x 10°° —3.96 —3.44 x 10°
a =100 mm? —0.509 —7.75 x 107° —3.50 —3.46 x 107° -10.6 —3.45 x 10°° —3.96 —3.44 x 107
a =200 mm? -1.02 —7.77 x 10° —3.50 —3.46 x 107° —5.32 —3.46 x 10°° —3.96 —3.44 x 107

As for the influence of geometric dimensions on the sensitivities of the resonant and
anti-resonant frequencies presented in Figures 16b,d and 17b,d and Table 3, the sensitivities
of both the resonant and anti-resonant frequencies are not affected by the change in the
piezoelectric layer cross-sectional area, but are affected by the variation in the piezoelectric
layer thickness. With an increase in the piezoelectric layer thickness, the sensitivities of
both the resonant and anti-resonant frequencies reduce linearly. It is noteworthy that the
relative sensitivities of both the resonant and anti-resonant frequencies remain unaffected
by the geometric dimensions and maintain at a constant level, at approximately —3.45 x
107%/MPa.

The above discussion indicates that when the conductance peak value of an embedded
piezoelectric plate is employed to identify the initial stress, enabling the identification of
static stress, opting for thin plates with expansive cross-sectional areas is the preferred
course of action. Conversely, when the resistance peak value is employed for stress identifi-
cation, thicker piezoelectric plates with diminished cross-sectional areas exhibit heightened
sensitivity. In instances where the resonant and anti-resonant frequencies serve as indica-
tors of stress, the use of thin piezoelectric plates results in commendable sensitivity, with
the cross-sectional area having no discernible impact on this sensitivity.
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Figure 17. Cont.
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Figure 17. Characterizations with respect to compressive initial stress considering different piezoelec-
tric layer cross-sectional areas a while the thickness is H = 2 mm.

4.4. The Influence of the Constraint Stiffness K, the External Viscous Damping Coefficient C and
the Internal Complex Damping Factor Q on the Sensitivity of the Conductance Peak and
Resistance Peak

In the modeling of an embedded piezoelectric plate, the surrounding environment is
simplified to a pair of viscoelastic constraints with a stiffness of K and a viscous damping
coefficient of C. To consider the internal damping effect of the piezoelectric plate, a complex
damping factor Q is introduced, and the elastic constant c£, is replaced with c;(1 4+ Qj). In
this part, the influence of K, C and Q on the sensitivities of both the conductance peak and
the resistance peak in response to the compressive initial stress is investigated. The findings
garnered from this part can help in assessing the efficacy of initial stress identification across
diverse application environments. In the following discussion, a sample piezoelectric plate
with a cross-sectional aera of = 100 mm? and a thickness of H = 2 mm is employed.

The conductance peak value, resonant frequency, resistance peak value and anti-
resonant frequency, in correlation with compressive initial stress for varying constraint
stiffnesses K, are depicted, respectively, in Figure 18a—d. In these Figures, the viscous
damping coefficient is considered to be C = 0, the complex damping factor is considered to
be Q = 0.02 and the various constraint stiffnesses are considered to be K=0,5 x 108 N/m
and 1 x 10° N/m. The sensitivities of the conductance peak value, resonant frequency,
resistance peak value and anti-resonant frequency in response to the compressive initial
stress for various constraint stiffnesses are marked in Figure 18 and summarized in Table 4.

Similarly, the conductance peak value, resonant frequency, resistance peak value and
anti-resonant frequency in correlation with the compressive initial stress for various viscous
damping coefficients C are depicted, respectively, in Figure 19a—d. In Figure 19, the con-
straint stiffness is considered to be K = 0, the complex damping factor is considered to be
Q =0.02 and the varying viscous damping coefficients are considered to be C = 0, 10 Ns/m
and 20 Ns/m. The sensitivities of the conductance peak value, resonant frequency, re-
sistance peak value and anti-resonant frequency in response to the compressive initial
stress for various viscous damping coefficients are marked in Figure 19 and summarized in
Table 4.

For varying complex damping factors Q, the conductance peak value, resonant fre-
quency, resistance peak value and anti-resonant frequency in correlation with the compres-
sive initial stress are depicted, respectively, in Figure 20a—d. In Figure 20, the constraint
stiffness is considered to be K = 0, the external viscous damping coefficient is considered to
be C = 0, and the varying internal complex damping factors are considered to be Q = 0.01,
0.02 and 0.03. The sensitivities of the conductance peak value, resonant frequency, resis-
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tance peak value and anti-resonant frequency in response to the compressive initial stress
for varying complex damping factors are marked in Figure 20 and summarized in Table 4.
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Figure 18. Characterizations with respect to compressive initial stress considering different elastic
constraints K.

In Figures 18a, 19a and 20a and Table 4, it is found that the sensitivity of the conduc-
tance peak value in response to the compressive initial stress is barely affected by the change
in constraint stiffness, but reduces linearly with an increase in the external viscous damping
coefficient C and internal complex damping factor Q. It is noteworthy that the relative
sensitivity is not relevant to K and Q, but is affected by the external damping coefficient C,
i.e., the relative sensitivity reduces as the external damping coefficient increases.
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Table 4. Influence of the elastic constraint K, external viscous damping coefficient C and internal
complex damping factor Q on sensitivities of conductance peak and resistance peak.

Conductance Peak Value Resonant Frequency Resistance Peak Value Anti-Resonant Frequency
A Relative cprs Relative I Relative . Relative
Sensitivity e s Sensitivity A Sensitivity e s Sensitivity e
(1S/MPa) Sf;‘fl’\‘ﬁ,‘;‘y (Hz/MPa) Sf{‘/i,l“;,‘;ty (mQ/MPa) Sg‘/;‘d‘},‘;‘y (Hz/MPa) S(ef/i,l“;,‘g)ty
K=0 —0.509 —7.75 x 107® —3.50 —3.46 x 107 —10.6 —3.45 x 107 —-3.96 —3.44 x 107
- 8
o ~0523 ~7.89 % 1076 ~3.55 ~345 % 1076 ~10.6 ~355 x 1076 —4.00 ~343 x 1076
- 9
! ~0532 ~7.99 x 10 ~361 ~3.44 x 106 ~10.9 ~374 x 107 ~4.05 ~3.44 x 1076
C=0 —0.509 —7.75 x 107° —3.50 —3.46 x 10° —10.6 —3.45 x 107° —3.96 —3.44 x 107°
C=10Ns/m —0.357 —6.75 x 107 —-3.49 —3.45 x 107 —4.46 —1.89 x 107 —-3.95 —3.43 x 107
C=20Ns/m —0.265 —5.99 x 107¢ —3.48 —3.44 x 107 -1.36 —0.66 x 107¢ —-3.95 —3.43 x 107
Q=0.01 —-1.01 —7.74 x 107¢ —3.47 —3.43 x 107 -215 —3.50 x 107 -3.95 —3.43 x 107
Q=002 —0.509 —7.75 x 107° —3.50 —3.46 x 107° —10.6 —345 x 107° —3.96 —3.44 x 107°
Q=003 —0.340 —7.76 x 107° —3.50 —3.46 x 107° —-7.07 —3.45 x 107° —3.94 —3.42 x 107°
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Figure 19. Characterizations with respect to compressive initial stress considering different external
viscous damping coefficients C.

As one can notice in Figures 18c, 19c and 20c and Table 4, the influence pattern of K,
C and Q on the sensitivity of the resistance peak value is similar to that on the sensitivity
of the conductance peak value. The resistance peak value in response to the compressive
initial stress is barely affected by the change in constraint stiffness, but reduces significantly
with an increase in the external viscous damping coefficient C, and reduces linearly with
an increase in the internal complex damping factor Q. It is noteworthy that the relative
sensitivity of the resistance peak value is not relevant to K and Q, but is significantly
affected by the external damping coefficient C, i.e., the relative sensitivity greatly reduces
as the external damping coefficient C increases.

Regarding the impact of K, C and Q on the sensitivities of the resonant and anti-
resonant frequencies showcased in Figures 18b,d, 19b,d and 20b,d and Table 4, it is observed
that both the sensitivities and relative sensitivities of the resonant and anti-resonant frequen-
cies remain invariant with respect to the constraint stiffness K, external viscous damping
coefficient C and internal complex damping factor Q. The sensitivities of the resonant and
anti-resonant frequencies maintain a constant level, at approximately —3.50 Hz/MPa and
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—3.95 Hz/MPa, respectively. And the relative sensitivities of the resonant and anti-resonant
frequencies maintain the same constant level, at approximately —3.45 x 10~¢/MPa.

The preceding discussion suggests that when utilizing the conductance peak value
or resistance peak value of an embedded piezoelectric plate to identify the initial stress,
opting for piezoelectric materials with extremely low damping effects is the most advisable
approach. Moreover, the presence of an encapsulating material with a pronounced damping
effect may lead to a significant reduction in identification sensitivity. In contrast, when
resonant and anti-resonant frequencies are employed as stress indicators, the damping
effect of encapsulation becomes negligible.
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Figure 20. Characterizations with respect to compressive initial stress considering different internal
complex damping factors Q.

5. Conclusions

In this study, based on the nonlinear elastic dynamic governing equations of piezo-
electric materials, using the displacement method, an impedance analysis model of an
embedded piezoelectric plate considering the effect of initial stress is formulated and
validated through a fundamental experiment and a finite element analysis. An explicit
analytical relationship between initial stress and impedance characterizations is offered,
and an approximate linear correlation between the increment in initial stress and the change
in impedance characterizations is observed in the numerical investigation. The proposed
model enabled the performance prediction and design optimization of piezoelectric-based
static stress sensors.



Sensors 2024, 24, 7096

28 of 31

The results of the sensitivity and relative sensitivity analyses for various impedance
characterizations in response to the initial stress reveal that the absolute admittance peak,
the conductance peak and their respective resonant frequencies are highly promising for
the identification of initial stress. Following this closely, the absolute impedance peak, the
resistance peak and their corresponding anti-resonant frequencies are identified as the
second most promising indicators.

Through an examination of the impact of geometric dimensions on sensitivity, it is
found that for the purpose of stress identification utilizing the conductance peak value of an
embedded piezoelectric plate, the preference lies with thin plates featuring extensive cross-
sectional areas. Conversely, for stress sensing using the resistance peak value, the sensitivity
is enhanced by employing thicker piezoelectric plates with reduced cross-sectional areas.
When resonant and anti-resonant frequencies are used to identify static stress, the sensitivity
achieved with thin piezoelectric plates is commendable, and the cross-sectional area has no
discernible impact on this sensitivity.

An analysis of the influence of constraint stiffness and damping mechanisms on
sensitivity indicates that for stress identification through the conductance or resistance
peak values of an embedded piezoelectric plate, the use of piezoelectric materials with an
extremely low damping factor is the optimal strategy. Furthermore, the incorporation of
an encapsulating material with high damping properties can significantly diminish the
identification sensitivity. In contrast, when resonant and anti-resonant frequencies are used
as stress indicators, the damping effect of encapsulation becomes negligible.
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Notation List

a Effective cross-sectional area

C  External viscous damping coefficient

cz;  Elastic stiffnesses at constant electric displacement

cy;  Elastic stiffness at constant electric field (superscript E is dropped in Section 2)
D,  Electric displacement component along z direction

E,  Electric field strength component along z direction

e Euler number

e33  Piezoelectric constant for e-type constitutive equations

f Input voltage frequency (driving frequency)
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fa  Anti-resonant frequency

fr Resonant frequency

H  Thickness of piezoelectric plate

h Semi-thickness of piezoelectric plate
hzs  Piezoelectric constant for h-type constitutive equations
Iiy  Input current amplitude

i Input current

j Imaginary unit

K External constraint stiffness

k¢ Thickness mode coupling factor

Q  Internal complex damping factor

q Input charge

S, Strain component along z direction
T,  Stress component along z direction
T?  Initial stress along z direction

t Time

Vin  Input voltage amplitude

v Input voltage

v Longitudinal wave velocity

w Displacement along z direction
& pw?/ (17 +T9)

B em/e3

(55 e332/ £§3

€3,  Dielectric constant at constant strain (superscript S is dropped in Section 2)
i (e33” +cize33) /€35

Y Mass density

¢ Electric potential

w  Circular frequency of input voltage

Appendix A

The h-type constitutive equations of a piezoelectric plate polarized along the z axis
can be written as

EZ - 7h33SZ + €§3Dz

where C?% denotes the elastic stiffnesses at constant electric displacement, and /133 denotes
piezoelectric constant for h-type constitutive equations. Based on h-type constitutive
equations, the velocity of a longitudinal wave propagating along z and the thickness mode
coupling factor are obtained as follows:

oD = /&
b (A2)

&
ki = hszy | 5
33

The longitudinal wave velocity v” and the thickness mode coupling factor k; are also
related to the resonant and anti-resonant frequencies of a piezoelectric plate as follows:

S

ol )

fo= (A3)
ki = %cot(%%)

Obviously, once f, and f, are known, k; and vP can be easily obtained using
Equation (A3). Subsequently, c5} and h33 can be solved using Equation (A2). If we compare
the h-type constitutive equations with e-type constitutive equations, c£; and e33 can be
solved as follows:

{ chy = ¢ — hy’el, (A4)
e33 = hy3e3,
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All the equations used in Appendix A can be found in reference [33].
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