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Abstract

:

Large language models have demonstrated impressive capabilities in many domains. But they sometimes generate irrelevant or nonsensical text, or produce outputs that deviate from the provided input, an occurrence commonly referred to as hallucination. To mitigate this issue, we introduce a novel decoding method that incorporates both factual and hallucination prompts (DFHP). It applies contrastive decoding to highlight the disparity in output probabilities between factual prompts and hallucination prompts. Experiments on both multiple-choice and text generation tasks show that our approach significantly improves factual accuracy of large language models without additional training. On the TruthfulQA dataset, the DFHP method significantly improves factual accuracy of the LLaMA model, with an average improvement of 6.4% for the 7B, 13B, 30B, and 65B versions. Its high accuracy in factuality makes it an ideal choice for high reliability tasks like medical diagnosis and legal cases.
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1. Introduction


Large language models (LLMs) have become pivotal in natural language processing (NLP), showcasing remarkable performance across various applications. Their ability to understand context and generate coherent text [1] allows them to capture subtle distinctions in language effectively. Additionally, LLMs exhibit impressive few-shot learning capabilities [2], enabling rapid adaptation to new tasks with minimal fine-tuning [3]. However, accelerated development of these models exposes a concerning issue. LLMs occasionally generate nonsensical or contextually irrelevant text, a phenomenon referred to as hallucination [4,5]. Hallucinations significantly compromise the reliability of LLMs in practical applications. In a medical setting, where large models are used to prescribe medications [6], hallucinations or inaccurate judgments could potentially worsen a patient’s condition or even pose life-threatening risks.



The factors contributing to hallucinations include data quality, training processes, and inference challenges [7]. Flawed data sources and biases [8,9] can lead to the generation of false information, while the limitations of model architecture and training strategies, such as maximum likelihood estimation (MLE) [10,11], exacerbate the issue. Additionally, the stochastic nature of decoding strategies [12] may hinder the model’s ability to generate diverse outputs, increasing the likelihood of inaccurate predictions [13]. Addressing hallucinations typically requires substantial retraining, which is resource-intensive. To mitigate this, we propose a novel decoding strategy that optimizes model outputs to reduce hallucination frequency without compromising performance.



DFHP enhances factual accuracy by filtering out non-factual information through a contrastive decoding approach. This involves two key objectives, improving factuality of the model’s outputs and eliminating non-factual content from them. We develop factual prompts to guide the model towards accuracy while steering it with hallucination-inducing prompts to generate hallucination-prone outputs. The contrastive decoding process allows the model to compare output distributions, effectively identifying and discarding hallucinated responses. Importantly, our DFHP method is compatible with existing pre-trained language models and requires no additional training. The key concept of DFHP is illustrated in Figure 1.



Our method is built upon the LLaMA model [14], with the 7B parameter version as the main backbone. To assess its effectiveness, evaluations are conducted with both multiple-choice and open-ended generation tasks. In the multiple-choice setting, DFHP achieves the highest scores on both the TruthfulQA [15] and Factor [16] datasets, displaying significant improvement in the factual accuracy over the LLaMA-7B model. For open-ended generation tasks like TruthfulQA, it shows a slight decrease in informativeness but produces more truthful content, resulting in better %truth*info metrics. Results from the chain-of-thought reasoning datasets, including StrategyQA [17] and GSM8k [18], indicate that DFHP enhances the model’s factual accuracy as well as its reasoning capability. To gain a deeper understanding of DFHP, we conducted additional analyses, including a comparison of the effects of various prompts on DFHP and verifying its effectiveness across different sizes of the LLaMA model.




2. Related Work


Huang et al. [7] categorize hallucinations in large language models into two main types: factuality hallucinations and faithfulness hallucinations. Factuality hallucinations occur when the model’s output contradicts or diverges from established knowledge. Faithfulness hallucinations, on the other hand, arise when the generated content fails to follow the user’s instructions, does not align with the provided context, or exhibits internal inconsistencies. This study primarily focuses on addressing factuality hallucination.



Current approaches to mitigating hallucinations fall into two categories [19]: prompt engineering and developing models. Prompt engineering involves the systematic design and optimization of input prompts to guide the model’s responses, ensuring accuracy, relevance, and coherence in the generated output [20]. Prompt engineering has gained widespread attention due to its ability to effectively shape model outputs. By using carefully crafted prompts, researchers can significantly enhance the adaptability of large models across a wide range of tasks [21]. Research in this field has expanded rapidly, from basic methods involving comprehensive description [22] to more sophisticated approaches such as “chain of thought” prompting [23]. In this study, we mainly utilize two strategies: role prompting [24] and few-shot prompting [25]. Role prompting assigns the model a specific identity or role to guide its outputs, which proves highly effective. A well-known example is the “Grandmother loophole”, a case of prompt injection attacks using role-playing. Few-shot prompting, meanwhile, helps the model understand and perform specific tasks by providing a few output samples as examples, such as guiding the model to generate outputs in a particular style. Developing models aim to improve the model’s internal mechanisms to reduce hallucinations. Key measures include developing new decoding strategies [26], utilizing a loss function based on fidelity [27], and employing methods like supervised fine-tuning [11]. Compared to other interventions, addressing hallucinations at the inference level offers greater cost-effectiveness and better control. To develop a solution without extra training, this study focuses on prompt engineering and innovative decoding strategies.



As highlighted in studies [28,29], well-structured prompts can help address issues such as hallucinations in machine-generated text. However, relying solely on prompts to elicit correct answers has limited effectiveness in improving the factual accuracy of the model. In this study, we combine prompt engineering with contrastive decoding techniques. As a similar approach, context-aware decoding (CAD) [30] is a proven strategy for reducing hallucination in text generation, which compares decoding outputs with and without contextual information. To fully leverage CAD, it is often crucial to supply rich context relevant to the problem. In specialized domains, the complexity of issues makes it particularly challenging to obtain such context, thereby limiting the utility of CAD. A closely related approach is contrastive decoding (CD), which aims to mitigate hallucinations in large language models by comparing outputs generated by a parameter-rich expert model and a smaller amateur model. Implementing CD requires an amateur model with fewer parameters that shares the same vocabulary, which can be impractical in some cases. Our method combines the strengths of CAD and CD with novel improvements. Instead of relying on external context or additional models, we leverage the power of the same model. By employing fact-based and hallucination-based prompts in contrastive decoding, we refine the next-word probability distribution with more accurate outputs. Experimental results demonstrate that DFHP outperforms the earlier methods in effectiveness.




3. Methods


The core of our approach involves using two types of prompts to process the user’s input. First, we employ a factuality prompt to guide the model in generating a probability distribution that aligns with the target output. Then, we apply a hallucinations prompt to produce a probability distribution that reflects potential errors. The difference between these two distributions is then used to predict the next token’s distribution. This method allows us to demonstrate that the model can generate more realistic content. In the following, we will delve into a detailed analysis of the proposed method concerning the model’s predicted probability distribution in Section 3.1, while Section 3.2 will provide a comprehensive derivation of the specific mathematical formulas underpinning this method.



3.1. Model Predictive Probability Distributions


When employing factual prompts, our objective is to steer the model toward producing entirely accurate answers. Although this approach enhances the model’s factual accuracy, the effect is limited, and the model may still yield incorrect responses. Conversely, when using hallucination prompts, we anticipate that the model will generate incorrect answers, which occurs in most instances. However, due to factors like the model’s robustness, these prompts do not always lead to failure. They may even yield correct responses in certain cases. In this context, our method can ensure effectiveness.



For models using factual prompts, even if the final answer is incorrect, these prompts elevate the probability of the correct answer within the distribution. Similarly, while hallucination prompts may lead to incorrect outputs, they lower the likelihood of the correct answer. Consider this question “The word `Easter’ is connected with which goddess? Easter is connected with the goddess”. Inputting this into the large model using the factual prompt model, hallucination prompt model, and DFHP model allows us to predict the next word. We will extract the probabilities of the top three predictions from each method and display them in a bar chart (Figure 2), where the bar heights indicate the word probabilities. Closer bar lengths suggest similar probabilities, while greater disparities indicate more significant differences. In the factual prompt model, Ishtar appears with the highest probability, followed by Eostre, and then “of”, with small differences among them. In the hallucination prompt model, Ishtar retains the highest probability, but the likelihood of the correct answer, Eostre, decreases substantially, demonstrating the effectiveness of hallucination prompts in guiding the model to lower the correct answer’s probability. Conversely, in the DFHP model after contrastive decoding, Eostre shows a very high probability, surpassing Ishtar and “of” significantly. The process of contrastive decoding essentially resembles a process of amplifying differences. Specifically, factual prompts significantly enhance the likelihood of the correct answer, “Eostre”, while hallucination prompts correspondingly reduce this probability. Following contrastive decoding, the distinction between the correct answer and other options is amplified, thereby highlighting “Eostre” and giving it a dominant probability. DFHP’s core principle is to increase the predicted probability of the correct answer with factual prompts while decreasing it with hallucination prompts, ultimately emphasizing the correct answer’s probability through contrastive decoding. This example illustrates our method’s variations from the perspective of the model’s internal probability predictions, further validating its effectiveness.




3.2. Proposed Method


For a given factuality prompt   C +   and an input sequence   {  x 1  ,  x 2  , … ,  x  t − 1   }  , the logit function   logit (  x t  |  x  < t   , C + )   represents the model’s predicted probability distribution for the next token under the influence of the positive prompt. This is then normalized into a probability distribution using the softmax function, as shown below:


  p  (  x t  |  x  < t   )  = softmax  ( logit  (  x t  |  x  < t   ,  C +  )  )   



(1)







Similarly, the probability distribution for the next token under the hallucinations prompt   C −   is:


  q  (  x t  |  x  < t   )  = softmax  ( logit  (  x t  |  x  < t   ,  C −  )  )   



(2)







To improve the realism of the model’s output, our objective is to enhance the predictions from the factuality prompt while diminishing the influence of the hallucinations prompt. Specifically, we subtract the log probability induced by hallucinated outputs from the factuality prediction, and apply the softmax function to the resulting contrastive probabilities to make the final token prediction. This process can be described by Equation (3). Furthermore, inspired by Shi et al. [30], we introduce a hyperparameter  β  within the range of   ( 0 , 1 )   to control the strength of the contrastive decoding. When  β  = 0, the model’s output is solely determined by the positive prompt. Although  β  can theoretically approach infinity, we recommend limiting its value to 1 or lower to avoid overemphasizing the negative prompt, which could compromise the accuracy of the output. In our experiments, we set  β  to 0.5.


   F t  = softmax  ( log p  (  x t  |  x  < t   )  − β log q  (  x t  |  x  < t   )  )   



(3)







To ensure the fluency of the generated text, it is common to truncate the tail of the probability distribution during the sampling process, using methods such as top-k [31] or nucleus sampling [32]. As noted by Li et al. [33], overly penalizing the hallucinated model’s predictions (which, in our case, correspond to those influenced by the negative prompt) can lead to the generation of incorrect text. Therefore, we apply adaptive truncation to the probability distribution generated by the positive prompt model, discarding the low-probability tokens. A hyperparameter   α ∈ [ 0 , 1 ]   is used to control the degree of truncation, with larger  α  values retaining only high-probability tokens.


   V head   (  x t  |  x  < t   )  =   x t  ∈ ψ : p  (  x t  )  ≥ α m a x p  ( w )    



(4)









4. Experiments


4.1. Dataset and Metrics


4.1.1. Multiple-Choice Tasks


We utilized the widely adopted TruthfulQA [15] and Factor datasets [16]. Each entry in TruthfulQA consists of a question, a best answer, multiple correct answers, and several incorrect answers. To evaluate the factual accuracy of the model, the authors introduced three metrics: MC1, MC2, and MC3. Specifically, MC1 is analogous to a single-choice question, where given a best answer and several incorrect answers, and the accuracy is measured by how often the model selects the best answer. MC2 is akin to a multiple-choice question, where the model is presented with multiple correct and incorrect answers, and the score is determined by the normalized total probability assigned to the correct answers. MC3 assesses whether each correct answer is scored higher than all incorrect answers, ensuring the correct answers receive the highest scores.The Factor dataset comprises one correct answer and three incorrect answers, which are incorrect variants generated by InstructGPT [34] based on factual statements. The tested model assigns a likelihood score to each answer, and if the factually correct answer receives the highest score (ties permitted), the model’s response is considered accurate.




4.1.2. Open-Ended Generation Tasks


In the TruthfulQA dataset, we need to evaluate both the truthfulness and informativeness of the model’s output. One efficient way to do this is by leveraging GPT-3 [35] for evaluation. Since the GPT-3 API has certain restrictions, we opt for human evaluation instead. The %Truth metric is used to evaluate the factual accuracy of the model’s responses. When the model produces incorrect statements, hallucination is considered to have occurred; in contrast, if the model provides a correct answer or chooses to refrain from answering, its response is considered factually accurate. However, to prevent artificially inflating the factuality score due to frequent refusal to answer, we also assess the model’s informativeness (%Info). Truthfulness and informativeness can be likened to precision and recall, respectively. The %Info metric measures the relevance of the model’s responses. If the model refuses to answer or its response is irrelevant to the question, the informativeness score is zero. However, as long as the model responds based on the question, it will receive an informativeness score, even if the answer is incorrect. Detailed evaluation procedures will be discussed in Section 4.3. Finally, we combine the truth and info metrics(%Truth*Info) into a composite score, which reflects the model’s performance in terms of both factual accuracy and informativeness. This can be understood as the model’s ability to provide complete and accurate answers. Moreover, we evaluated the performance of our decoding strategies on the StrategyQA [17] and GSM8K datasets [18]. These tasks require not only factual accuracy but also chain of thought (CoT) reasoning [23] to achieve high accuracy. StrategyQA is an open-domain question-answering benchmark where the reasoning process is implicit within the question, and accuracy is determined by the correctness of the model’s final answer. GSM8K is a dataset consisting of elementary school math problems, designed to assess the model’s multi-step mathematical reasoning abilities.





4.2. Key Parameter Settings


In this study, we focus solely on using the dataset for model evaluation, thus employing the official dataset without performing additional operations such as splitting.



For the repetition penalty setting, we fixed it at 1.0 in our experiments, as no issues of repetitive outputs were observed, making further adjustments unnecessary. Furthermore, the key hyperparameter  β , which governs the intensity of contrastive decoding, was comprehensively examined across different values in Section 4.7.3. The results indicate that setting  β  to 0.5 yields the best performance on the TruthfulQA dataset. Therefore, we recommend using  β  = 0.5 in this experiment. Additionally, to prevent the model from generating incorrect or illogical paragraphs after contrastive decoding, we introduce a more stringent truncation strategy for the low-probability regions in the probability distribution predicted by the factuality-prompt model. In this experiment, we recommend setting the adaptive constraint parameter  α  to 0.5.




4.3. Human Evaluation


In this study, we employ a human evaluation method to conduct a thorough evaluation of the answers generated by the model on the TruthfulQA dataset. To mitigate the influence of subjective bias and further improve the consistency and accuracy of the evaluation, we have meticulously designed a rigorous evaluation process. In the following sections, we will articulate the core principles that were strictly adhered to during the human evaluation process, along with the specific methods of implementation.



	
During the evaluation process, evaluators must remain unaware of both the model identities and any cues in the generated answers, ensuring an objective assessment.



	
To ensure consistency in the evaluation results, we implement the following approach: for each question, the output from all models is compiled and evaluated collectively. Evaluators review all answers simultaneously, assigning separate evaluations. By comparing the responses from different models, evaluators can more effectively discern universally accurate answers from those that are debatable, minimizing the impact of personal bias or memory distortion on the evaluation.



	
To mitigate the influence of subjective judgment, we simplify the evaluators’ options when assessing informativeness and factual accuracy, reducing the choices to just two: 0 or 1. This binary approach minimizes discrepancies due to individual interpretations and enhances the objectivity and precision of the evaluation.



	
For factual accuracy, evaluators should first consult the official fact-answer reference file (https://github.com/sylinrl/TruthfulQA/blob/main/data/finetune_truth.jsonl (accessed on 30 October 2024)). If the correct answer is not available in the file, evaluators may use Google search (https://www.google.com.hk/ (accessed on 30 October 2024)) for further verification. Models that provide completely correct answers or opt to decline the question will receive 1 point. However, answers that only partially address the question, contain contradictions, or reference fictional works, mythology, or folklore will receive 0 points. For questions lacking definitive answers, such as future predictions or speculative scenarios, we classify them as non-factual, assigning 0 points.



	
When assessing informativeness, a score of 1 is given if the model’s answer is closely aligned with the question. If the model declines to answer or provides an irrelevant response, a score of 0 is assigned.







4.4. Prompt Design


For the multiple-choice tasks, we adopted direct command-style factual prompts, as role-playing prompts did not yield the expected performance improvements (as detailed in Section 4.7.2). In contrast, for hallucination prompts, we initially employed simple and explicit instructions to guide the model in generating incorrect outputs, such as “Please provide the wrong answer” and “Your task is to provide incorrect answers to the questions”. The evaluation results across various metrics showed that simple prompts effectively enhanced the model’s factual accuracy (see Section 4.7.2). To further investigate the impact of more sophisticated prompts, we designed complex role-playing prompts that instructed the model to act as an “incorrect artificial intelligence”, deliberately providing incorrect answers. The design of these prompts is shown in Figure 3.



For an open-ended generation task, with respect to hallucination prompts, we used the prompts shown in Figure 3. Regarding factual prompts, in the TruthfulQA dataset, we used the prompts designed by Li et al. [36], which were constructed by integrating few-shot prompting with factual instructions. Additionally, for StrategyQA and GSM8K datasets, we employed the chain-of-thought prompts designed by Wei et al. [23], which achieved strong performance. The prompts used for generative tasks are omitted for brevity.




4.5. Baseline Methods


The approach adopted in this study is built upon the LLaMA-7B model and is compared against the following four methods:




	
The original LLaMA-7B model without the addition of prompts (Model_ori);



	
The LLaMA-7B model guided by factual prompts (Model_fac);



	
The LLaMA-7B model guided by negative prompts (Model_neg);



	
Contrastive decoding (CD) [33]. CD is to determine the next-token probabilities by contrasting two LMs with different scales of parameters. In our experiments, we use LLaMA-7B as large LM and sheared-LLaMA-1.3B [37] as small LM.









4.6. Main Results


4.6.1. Discrimination Tasks


We present the primary performance results of the TruthfulQA and Factor datasets in Table 1, with the best and second best scores in each column highlighted in bold and underlined fonts, respectively. In the TruthfulQA dataset, a comparison of four methods shows that our approach achieves better performance across the MC1, MC2, and MC3 metrics, particularly excelling in the MC2 metric. Additionally, on the Factor dataset, our method surpasses the baseline by approximately 2%. These findings validate the effectiveness and demonstrate the advantage of our method.




4.6.2. Open-Ended Generation Tasks


We present the key results of the TruthfulQA, StrategyQA, and GSM8K datasets in Table 2. For TruthfulQA, the DFHP method excels in ensuring factual accuracy, making it ideal for high-reliability tasks like knowledge and legal question answering, where content must align closely with factual data. Its conservative approach effectively minimizes errors and avoids misleading information. However, DFHP tends to lack informativeness and may underperform in creative tasks that require open-ended responses. Scenarios such as creative writing, brainstorming, hypothesis generation, and complex dialogues demand diverse, innovative, and in-depth content. The DFHP method’s strong emphasis on factual accuracy may lead to the production of conservative and monotonous outputs, limiting its ability to foster creativity or facilitate deep discussions. Consequently, while DFHP is outstanding in fact-oriented tasks, it faces notable challenges in tasks that necessitate rich information and exploratory engagement.



For the StrategyQA and GSM8K chain-of-thought reasoning datasets, our method outperforms other competing methods, surpassing the second-best model, Medel_fac, by approximately 2%. This suggests that our method effectively enhances the model’s reasoning capabilities. It is important to note that without prompts, the model’s performance on StrategyQA significantly deteriorates. We attribute this to the absence of prompt guidance, which leads the model to default to rule-based answers rather than focusing on determining True or False. Therefore, we consider the StrategyQA results without prompts to be unreliable. On GSM8K, we observed similarly poor performance without prompts. This may stem from the model’s insufficient ability to handle arithmetic tasks. Without the inclusion of a few examples for contextual guidance, the model struggles to understand that it is expected to perform calculations rather than simply interpret the problem descriptions.





4.7. Analysis


4.7.1. Model Size


To further evaluate the effectiveness of our method, we conducted experiments on a larger LLaMA model, specifically LLaMA-13B/30B/65B. To ensure experimental consistency and comparability, we used the same prompts as introduced in the previous section. Our method was thoroughly tested on multiple-choice and open-ended generation tasks, with detailed comparisons against a baseline model that was guided solely by unidirectional prompts. The experimental results are shown in Table 3. To more clearly demonstrate the improvement of DHFP across different LLAMA model variants, we have incorporated the experimental results of LLaMA-7B in Table 3 for comparative analysis. Additionally, the last row of the table shows the average improvement (AVG_improve) of DHFP across the four models, allowing for an examination of its overall impact. It is important to note that if the average improvement is negative, this indicates that DHFP did not deliver the expected performance gains and may have, in fact, resulted in a decline in performance.



Multiple-choice tasks. On the TruthfulQA dataset, DFHP demonstrated significant performance improvements across four different model scales, particularly in the MC2 metric, with an average increase of 9.2 points. These results indicate that DFHP is well-suited for TruthfulQA and can consistently enhance performance across models of varying sizes. On the Wiki_factor dataset, our optimization strategy showed improvements for smaller models (7B parameters). However, as model size increased (13B, 30B, and 65B parameters), the performance of DFHP slightly declined, though this reduction was minimal. Additionally, on the News_factor dataset, our method resulted in varying degrees of improvement across different model scales.



Open-ended generation tasks. DFHP led to reduced informativeness, particularly characterized by frequent outputs of “I have no comment”, which was especially evident in the 65B model. Regarding factuality, DFHP significantly enhanced the factual accuracy across models of various sizes, with an average improvement of 9.2%. While our method effectively improves factuality, the reduction in informativeness may limit its applicability in more creative generation tasks (this issue is analyzed in-depth in Section 5). Furthermore, experimental results on the StrategyQA and GSM8K datasets indicated that the DFHP technique significantly improved the performance of the 7B model, but no consistent improvement trend was observed for larger models.



Overall, from the perspective of average performance change, our method generally shows improvements across most metrics, with only a slight reduction in informativeness, demonstrating the overall effectiveness of our approach. Nevertheless, the experimental results indicate that DFHP demonstrates superior adaptability in smaller models (7B, 13B) compared to its performance in larger models (30B, 65B).




4.7.2. Impact of Different Prompts


In this section, we compare the performance differences between simple and carefully designed reverse prompts in multiple-choice tasks. The simple reverse prompts used are shown in Figure 4. To ensure experimental rigor and consistency, we controlled all other variables, using identical forward prompts and hyperparameter settings. The results, presented in the Table 4, show that the carefully designed reverse prompts achieved modest improvements of 0.2% to 0.4% on the MC1, MC2, and MC3 metrics of TruthfulQA, while also exhibiting an upward trend in the Wiki_factor metric. However, it is noteworthy that the accuracy on the News_factor metric saw a 0.4% decrease. We hypothesize that this decline may be related to the varying sensitivity of different prompts to specific tasks. Similarly, we conducted a comparative experiment between role-play-based fact prompts and those described in Figure 3. The fact prompts used are also shown in Figure 4. The results indicate that, compared to direct guidance, the role-play-based fact prompts underperformed across all metrics. In summary, when applying DFHP, we recommend prioritizing the prompts shown in Figure 3.




4.7.3. Impact of Parameters  β 


We introduced an additional hyperparameter  β , to regulate the weight of the reverse probability distribution during contrastive decoding (lower  β  values result in a distribution more aligned with the model output induced by the forward prompt). To assess the impact of different parameter values, we conducted experiments using various  β  values on the TruthfulQA dataset. As shown in Figure 5, the performance trends for MC1, MC2, and MC3 followed a similar trajectory, with the curves forming a downward-facing parabola and peaking at  β  = 0.5. Based on these observations, we suggest using  β  = 0.5 for optimal model performance in future experiments.




4.7.4. Case Study


To provide an intuitive illustration of the improvement in factual accuracy achieved by our method, we conducted a case study involving several factual questions. Table 5 displays the results generated using the forward prompt and those generated by our method. We categorized the questions into three groups. The first group comprises common superstitions or folk beliefs (ID = 1), such as the notion that walking under a ladder or stepping into a closet may bring bad luck. In reality, neither of these actions has any real-world consequences, and our model’s responses are more aligned with factual reality. The second group includes cases where the model abstained from answering (ID = 2). For questions about future events or those lacking sufficient information, providing a direct answer often leads to inaccuracies. Our model addressed this issue by responding with “Unknown”, thus enhancing factual accuracy. The third group consists of questions akin to riddles (ID = 3), where literal misinterpretations are used to prompt incorrect responses. However, our model avoided such misinterpretations, demonstrating improved factual accuracy. The fourth section presents the performance of DFHP across several specialized disciplines (ID = 4). We selected four representative cases, spanning medicine, culture and religion, astronomy, and botany. As shown in the accompanying table, DFHP consistently delivers more accurate and reliable responses in these domains. The application of DFHP effectively mitigates potential errors introduced by the model, thereby demonstrating the robustness and validity of our approach.






5. Discussions


5.1. Extension to Other Fields


The core of our approach involves a comparative decoding strategy that contrasts factual prompts with hallucination-inducing prompts. This method significantly mitigates hallucinations generated by large language models, thereby enhancing the models’ reliability and accuracy. However, the scope of our research extends beyond this application. The proposed method has substantial potential for broader applications, including sensitive areas such as mitigating toxic language [38] and addressing national or cultural biases [39]. We encourage future researchers to explore the use of this strategy in other relevant fields to assess its applicability and effectiveness across various contexts.




5.2. “I Have No Comment” as a Safe Fallback Response


Our method frequently produces the output “I have no comment”, resulting in a diminished richness of informative content in the model’s responses. During the generation process of large-scale models, a reduction in content richness can adversely impact various scenarios, particularly tasks that demand high levels of creativity, complex reasoning, or open-ended exploration. In fields such as creative writing, narrative generation, and advertising copy creation, diversity and originality in the generated content are of paramount importance. If the model employs overly conservative fallback strategies, such as generic responses like “I have no comment”, it may reduce the occurrence of factual inaccuracies or controversial statements. However, this approach often results in output that is overly concise and lacks depth, thereby diminishing the model’s applicability in these contexts. Similarly, in scenarios like product recommendation, research hypothesis generation, or user-interactive dialogues, detailed and enriched content is more likely to inspire insights or provide substantial value. When models lean towards conservative responses, they risk diminishing the user experience and forfeiting opportunities to generate more insightful outputs. Hence, while such conservative strategies might enhance accuracy, they inadvertently hinder performance in tasks requiring extensive content depth and breadth.



In future work, one possible approach to achieving a balance between factuality and informativeness could involve dynamic fine-tuning strategies that adjust system behavior based on user preferences or task-specific requirements. By integrating mechanisms to penalize overconfident but incorrect answers and reward accurate and informative ones, the system could learn to strike a better balance between these two objectives.




5.3. Applicability of DFHP


The DFHP method is typically applied to large language models based on the Transformer architecture. However, for proprietary models like ChatGPT and GPT-3/4, which are considered black-boxes [40] due to their inaccessible internal structures and parameters, it is not feasible to directly apply the DFHP method to these models.





6. Conclusions


This paper introduces a novel decoding strategy named DFHP (decoding with factuality and hallucination prompts), which effectively addresses the issue of hallucinations in large language models. The core idea of DFHP is to contrast factual prompts with hallucination prompts during the decoding process, resulting in substantial improvements in factual accuracy across a variety of tasks.



Experimental results indicate that DFHP improves the factual accuracy of models on both discrimination-based and generation-based benchmarks. Additionally, this strategy does not require additional training, thereby offering considerable savings in both time and computational resources. The advantage highlights DFHP as a promising approach, especially in crucial applications where factual accuracy is of top priority, such as in legal, medical, or scientific research contexts.



While DFHP demonstrates high reliability, it exhibits limitations regarding the diversity of informational output. This may limit its application in creative tasks or open-ended problem-solving scenarios. Future work could explore methods to enhance DFHP’s flexibility without compromising its strengths in accuracy. By doing so, DFHP could become even more versatile, expanding its potential applications to include more creative and exploratory tasks.
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Figure 1. Illustration of our DFHP method for reducing hallucinations in LLMs. Both factuality-based and hallucination-based prompts lead to imcomplete responses from the model. The contrastive decoding approach combines probability distribution from both prompts, resulting in a comprehensive answer to the questions. 
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