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Abstract: Compared with discrete emotion space, image emotion analysis based on dimensional
emotion space can more accurately represent fine-grained emotion. Meanwhile, this high-precision
representation of emotion requires dimensional emotion prediction methods to sense and capture
emotional information in images as accurately and richly as possible. However, the existing methods
mainly focus on emotion recognition by extracting the emotional regions where salient objects are
located while ignoring the joint influence of objects and background on emotion. Furthermore, in
the existing literature, when fusing multi-level features, no consideration has been given to the
varying contributions of features from different levels to emotional analysis, which makes it difficult
to distinguish valuable and useless features and cannot improve the utilization of effective features.
This paper proposes an image emotion prediction network named ARMNet. In ARMNet, a unified
affective region extraction method that integrates eye fixation detection and attention detection is
proposed to enhance the combined influence of objects and backgrounds. Additionally, the multi-
level features are fused with the consideration of their different contributions through an improved
channel attention mechanism. In comparison to the existing methods, experiments conducted on
the CGnA10766 dataset demonstrate that the performance of valence and arousal, as measured by
Mean Squared Error (MSE), Mean Absolute Error (MAE), and Coefficient of Determination (R?), has
improved by 4.74%, 3.53%, 3.62%, 1.93%, 6.29%, and 7.23%, respectively. Furthermore, the inter-
pretability of the network is enhanced through the visualization of attention weights corresponding
to emotional regions within the images.

Keywords: image emotion prediction; dimensional emotion space; attention mechanism; eye fixation
detection; multi-channel fusion

1. Introduction

Emotion analysis is a critical research area that aims to enhance human—computer
interaction and enable intelligent sensing of emotions [1-3]. Effective emotion sensing
involves accurately perceiving and interpreting the subtle emotional states depicted in
images. In mainstream research, image emotion prediction is usually performed based
on dominant affective categories, which include six or eight basic emotion categories [4,5].
However, discrete affective spaces can only represent basic affective categories and are
insufficient for subtle emotion representation. With the increasing demand for subtle
emotional sensing and representation, image emotion analysis based on dimensional
emotion space gradually attracts extensive attention from researchers.
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In contrast, dimensional emotion spaces use precise numerical values to represent
emotions, making them better suited for describing subtle emotional details [6,7], such as
the Pleasure—Activation—-Dominance (PAD) model and the valence—arousal-dominance
(VAD) model. In this way, dimensional emotion spaces provide an infinite range of emo-
tions and preserve intermediate emotion states, offering a more comprehensive emotional
sensing capability [8]. Therefore, dimensional emotion prediction has broader applications
in multimedia and other fields, such as intelligent advertising, multimedia retrieval, and
public opinion analysis.

Currently, most of the public dimensional emotion annotated image datasets, such
as International Affective Picture System (IAPS) [9], Nencki Affective Picture System
(NAPS) [10], Geneva Affective Picture Database (GAPED) [11], and Open Affective Stan-
dardized Image Set (OASIS) [12], are built based on 2D or 3D emotion models. These
datasets are small, generally containing around 1000 images per dataset. In 2017, Kim
et al. established the first large-scale dataset named CGnA10766 [13], which included
10,766 images based on dimensional emotion annotations. When the dataset contains a
considerable number of samples, deep-learning techniques can be used to solve complex
problems [13-15]. In addition, Kim et al. proposed the first deep learning-based prediction
model combining the different levels of features and proved that these features are related to
emotions [13]. In 2019, Zhao et al. developed a polarity-consistent deep attention network
(PDANet) that integrates spatial and channel-wise attention into a convolutional neural
network (CNN) with an emotion polarity constraint. Experiment results demonstrated that
the PDANet outperforms the state-of-the-art approaches [16]. In 2021, Li et al. proposed a
spatial and channel-wise attention-based emotion prediction (SCEP) model that uses the
results from saliency detection for spatial attention and leverages spatial and channel-wise
attention, multi-layer characteristics [17]. Alarcao et al. extracted 30 discriminant hand-
crafted features and analyzed the impact of using the discriminant handcrafted features on
three well-known CNNss to identify the feature’s contribution [8].

Dimensional emotion spaces use precise numerical values to represent emotions. This
high-precision representation of emotion requires dimensional emotion prediction methods
to capture emotional information in images as accurately and richly as possible. However,
existing methods mainly extract affective regions with the salient objects, which starts
from the object level [18,19], but they only focus on a few affective regions with the salient
objects, neglecting the joint influence of objects and background. Most image emotion
research fuses multi-level features through skip connections [20,21], which means that
these methods do not take into account the differences between the low-level features
and the high-level features [22]. Therefore, they fused multi-level features without consid-
ering their different contributions to emotion prediction, which makes it challenging to
discriminate between valuable and useless features and cannot enhance the utilization of
effective features.

An image prediction network based on dimensional emotion, joint affective region,
and multi-channel fusion (ARMNet) is designed to solve the above problems. The main
contributions of this paper are as follows:

(1) A method for extracting union affective regions, combining eye fixation detection and
attention detection, is proposed to expand the effective emotional area. This method
can extract the joint affective regions composed of the objects and the background,
which has high contributions to emotion prediction.

(2) Animproved channel attention mechanism is proposed, which increases the gating
mechanism and fuses the multi-level features to consider the different contributions
from multi-level features through attention-based weight adaptive adjustment.

2. Related Work
2.1. Image Emotion Analysis Based on Specific Affective Regions

The key to image emotion analysis is to extract the appropriate discriminant fea-
tures [16] and those specific affective regions that have a strong influence when triggering
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emotion [18,23]. Based on the definition of local regions, there are two main methods
that exist to extract the specific affective regions. One of the methods extracts specific
affective regions based on segmentation or object detection. Xiong et al. segmented local
sentiment regions by considering the similarities of colors and textures [24]. Yang et al.
used the EdgeBoxes tool to generate thousands of candidate regions and then selected
the affective regions automatically by calculating the emotion and object scores of each
candidate region [25]. Rao et al. used Faster-RCNN to generate candidate boxes with
emotions instead of objects [20]. Another method extracts specific affective regions using
the spatial attention mechanism. She et al. used a cross-spatial pooling strategy in the
detection branch to generate the spatial attention weight map [23]. Yao et al. extracted
polarity- and emotion-specific attended representations by utilizing polarity-specific at-
tention and specific affective attention in lower and higher layers, respectively [26]. Zhao
et al. proposed integrating spatial and channel attention into CNN so that both spatial and
channel attention could be considered [16]. Li et al. took the results of the salient object
detection as an attention distribution to pay attention to every feature entry of multi-layer
feature maps [17]. They suppressed the irrelevant regions via a progressive attention
process over multiple layers.

Likewise, to highlight the degree of human attention to the information-rich regions,
more methods have been proposed using saliency object detection to locate the emotional
areas of images [18,19]. The eye fixation detection module can also predict the likelihood of
where the human eyes are staring. Wang et al. quantified the performance of human eye
detection networks based on deep learning [27]. The results showed that the Salicon [28]
has relatively superior comprehensive performance. However, when the number of salient
regions in an image is relatively small, current methodologies often neglect a substantial
amount of non-salient emotional information.

2.2. Image Emotion Analysis Based on Multi-Level Features Fusion

Some studies tried to model this phenomenon using multi-level image features to
predict emotion [20,22,29]. For example, Rao et al. [20] proposed a multi-level depth
representation network (MldrNet) with a backbone and four branches, which fused the
multi-level depth representation with the Mean function. Zhu et al. proposed a BI-GRU
framework for visual emotion recognition based on the assumption that features are at
different levels [21]. Nagappan et al. presented a multi-stream feature extraction method
that captures object and scene features for emotion prediction, integrating various deep
image features using a multi-layer perceptron (MLP) and multi-task learning [30]. Rapolu
et al. introduced a deep convolutional neural network (CNN) fusion technique that uti-
lizes a differential CNN for extracting emotional features and a supplementary CNN for
capturing central object details, significantly enhancing image emotion recognition perfor-
mance compared to existing state-of-the-art methods [31]. However, most methods fused
multi-level features by simply concatenating multi-level features into one. This simplistic
fusion approach, characterized by a straightforward skipping connection, overlooks the
distinct contributions of high-level and low-level features. However, these features’ roles
in emotion prediction are not equivalent; thus, enhancing the multi-layer feature fusion
method is essential.

3. Method

In this paper, an image-dimension emotion prediction network, joint affective region,
and multi-channel fusion named ARMNet is designed to predict the valence and arousal
(VA) values of images, as shown in Figure 1. The ARMNet comprises three components: the
union affective region extraction module, the improved channel attention module, and the
VA values prediction module. Firstly, the union affective region extraction module utilized
a pre-trained ResNet-101 [32] to extract image features, followed by the combined detection
of eye fixation and spatial attention to generate the union affective regions (details in
Section 3.1). Secondly, the improved channel attention module fuses the multi-level features
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by considering their different contributions through attention-based weight adjustment
(details in Section 3.2). Finally, the ARMNet predicts the emotion of the image based on
the valence-arousal space through three fully connected layers (details in Section 3.3). The
training of the entire framework is performed in an end-to-end manner.
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Figure 1. Illustration of the ARMNet.

3.1. The Union Affective Region Extraction Module
3.1.1. The Multi-Level Features Fusion Module

To extract the image features, the pre-trained ResNet101 is selected as the backbone of
the multi-level features fusion module. The features of Conv2, Conv3, Conv4, and Conv5
branches are defined as {F2, F3, F#, F°}, as shown in Equation (1). The Convl is not included
due to its large memory cost.

1 1 1 1,2
F=[ff f o fo] e R 1)

where ¢! is the number of channels, I is the number of branches, and x is the length of the
feature. After the dimension in convolution mode is decreased, the spatial size of features
is identical to x2. {F2, F3, F4, F5} are concatenated along the channel dimension to obtain
the multi-level feature F, as shown in Equation (2) and illustrated in Figure 2.

Fe R(cz+c3+c4+(:5)x2 )

3.1.2. The Human Eye Fixation Detection Module

To generate the union effective region, the Salicon [28] network is directly integrated
into the eye fixation detection module. Then, the raw image is injected into the pre-trained
Salicon network to obtain the eye fixation map M.

3.1.3. The Spatial Attention Module

The spatial attention module can attend to a significant amount of non-salient emo-
tional regions to generate the union affective region. In the Convolutional Block Attention
Module (CBAM), the spatial attention module adopts both AvgPool and MaxPool to im-
prove the scale of the feature set [33]. But, AvgPool and MaxPool cannot capture the details
of spatial information, which leads to the problem that CBAM has insufficient information
when guiding attention learning. Sermanet et al. [34] proposed the concept of L2Pool and
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claimed that its generalization ability is better than MaxPool. The calculation process is
shown in Equation (3).

L2Pool (fyx) = (% Y f?) 2 3)
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Figure 2. The multi-level features fusion module.

To enrich the feature description and extract useful intermediate features, L2Pool
was added to calculate the two-dimensional spatial information as an additional feature
descriptor of CBAM, as shown in Figure 3 and Equation (4).

Fs = Mg ® Fg (4)

A

/ conv sigmoid

[Avgpool.Maxpool.L2 pool] B Ms F
S

~ 1
1‘5

Figure 3. Spatial attention module.

For the ARMNet, after the eye fixation detection module processes the image, the
multi-layer feature is weighted by the eye fixation map to obtain saliency information, as
shown in Equation (5).

Fo=(Mg+1)OF (5)

F; is fed into the attentional module to generate the spatial attention map and the chan-
nel attention map. First, F; is received by the spatial attention module. Then, three context
descriptions, AvgPool (Fg), MaxPool (Fg), and L2Pool (F;), were derived using AvgPool,
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MaxPool and L2Pool operations, respectively. And these Spatial context descriptors are
concatenated along the channel dimension noted as l-:é Then, the union affective region
map Mg € RH*Wx1 is generated via a convolution layer and a Sigmoid activation function
successively, as shown in Equation (6).

Ms = a(conv( Aé)) (6)

3.2. The Improved Channel Attention Module

The improved channel attention module is proposed to fuse the multi-level features
by considering their different contributions through attention-based weight adjustment.
The structure of the enhanced channel attention module is demonstrated in Figure 4.
L2Pool operations and cross-channel feature normalization are implemented, and the fully
connected layer is replaced by a gating mechanism [35], as shown in Equation (7).

o et ()] o)

L2Pool(Fs) = T (7)
(H x W)2
Ye-12
L2 pool ¢ lﬂ_’l lﬁ &
Avgpool /lyc_qu B . MC
lj (O 3 X t tanh—)

Maxpool

y

Ye-max
s

Fs¢
Figure 4. Enhanced channel attention module.

The channel information is aggregated through AvgPool , MaxPool and L2Pool and

then can be expressed as S¢— ayg, Sc—Max, and S._jp by normalization. € is a very small con-
stant, which avoids the problem of taking the division at 0, as shown in
Equations (8)—(10).

S/c\—l2 _ L2Pool(Fs) i ®)
{ (£ [L2Pooi (F5)?) + ¢}
@g _ AvgPool (Fs) i ©)
{ (Zlczl [Angool(Fs)}z) + e} ’
S:Ex _ MaxPool(Fs) (10)

{ (£ 1 Maxpool () ?) + e}%

Appropriate cross-channel interaction can preserve performance while drastically
decreasing model complexity. By analyzing the channel attention module in the Squeeze-
and-Excitation Network (SENet) [36], Efficient Channel Attention Network (ECANet) [37]
empirically shows that avoiding dimensionality reduction is critical for learning channel
attention. Therefore, referring to the gating mechanism of the Gated channel transformation
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(GCT) module [35], the fully connected layer is replaced, and the trainable parameters
Ye—Avgs Ye—Maxs Ve—12, and B are designed in this module.

Ye—Avgs Ye—Max, and y._jp control the activation state of the three-channel descriptors
and assign different weights to the three descriptions, respectively. Finally, the weight map
M, € RE*1 of channel attention is obtained, as shown in Equation (11).

P P — )

Ye—AvgSc—Avg T Yo—MaxSc—Max + Ye—125c—12 + p

M, =1+ tanh ( 3

(11)

3.3. The VA Values Prediction Module

To predict the emotion of the image based on the valence-arousal space, the VA values
prediction module is proposed. This section utilizes a residual structure where the input of
the network consists of both the global features of the image and the features of the joint
emotion map branch.

For the global features of the image, as illustrated in Figure 1, we use the outputs of
the last residual block of the pre-trained ResNet101 for each stage. The channel dimensions
are denoted as {c2, ¢3, ¢#, ¢} for the Conv2, Conv3, Conv4, and Conv5 outputs, respectively.
The multi-level feature F € R(€++¢*+¢)x* js obtained by a multi-layer feature fusion
module, and the global semantic vector f4p is obtained by using the average pooling on F.

For the features of the joint emotion map branch, the union feature Fsc is obtained
by calculating F with the weight Mg of the spatial attention first and then calculating the
result with the weight M¢ of the channel attention. In addition, average pooling is used to
obtain the semantic vector fsc4p, as shown in Equation (12) and Equation (13) separately.

Fsc = Mc ® (Ms © F) (12)

fscap = AvgPool (Fsc) (13)

As mentioned above, f4p and fscap are concatenated to generate the semantic vector
f. Finally, f is input into the full connection layers to predict the image emotion based on
valence—arousal space.

4. Experiment and Results Analysis
4.1. Implementation Details

All our experiments are carried out on two NVIDIA RTX 2080Ti GPUs using the
PyTorch 1.12.1. Images are resized to 300 x 300. To reduce overfitting, images are randomly
horizontally flipped and randomly cropped to 224 x 224 patches as a way of data augmen-
tation. We employed the SGD optimizer to fine-tune all layers with 0.0001 as the learning
rate with a 0.0005 weight decay, a 0.9 momentum, and a batch size of 32 for 400 epochs.
The valence—-arousal labels are normalized to [0, 1], and the dataset is randomly divided
into 70% training set, 20% testing set, and 10% validation set. The number of network
parameters is 124M, and the average training time is about 20 h.

4.2. Datasets

CGnA10766 dataset [13] is composed of 10,766 images searched from Flickr, including
eight emotion categories (Amusement, Awe, Contentment, Excitement, Anger, Disgust,
Fear, and Sad). The Amazon Mechanical Turk (AMT) assigned the valence-arousal values
for all the images in the CGnA10766 dataset ranging from 1 to 9. The valence is ranged from
most negative (1 to 3), negative (3 to 5), positive (5 to 7), and most positive (7 to 9). The
arousal is ranged from most calm (1 to 3), calm (3 to 5), exciting (5 to 7), and most exciting
(7 t0 9). Each image has been evaluated by at least five annotators, and the average value
has been finally assigned to each image. The distribution of images in the CGnA10766
dataset is shown in Figure 5 [13]. Compared with other image emotion datasets, the
emotion distribution of CGnA10766 is more extensive [17].
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Figure 5. Emotion distribution of CGnA10766 and IAPS based on VA emotion space.

4.3. Performance Comparison

Three commonly used indicators of the regression model are used to evaluate the
model performance: Mean Squared Error (MSE), Mean Absolute Error (MAE), and Co-
efficient of Determination (R?) [16]. The proposed network structure ARMNet is com-
pared with other visual emotion regression models, including a pre-training ResNet101,
PDANET [16] (we obtained experimental results on the CGnA dataset using this paper’s
open-source code), Vision Transformer (ViT) [38], and SCEP [17] with a ResNet101 back-
bone. The proposed ARMNet performs the best in every indicator. As shown in Table 1,
comparing with the best results, experiments on the CGnA10766 dataset show that the
performance of ARMNet is improved by 4.74%, 3.53%, 3.62%, 1.93%, 6.29%, and 7.23%,
respectively. Experiments show that ARMNet has better robustness and performance by
combining the attention mechanism promoted by CBAM with the human eye fixation
prediction module.

Table 1. Comparison experiment results (“V” and “A” represent “valence” and “arousal”, respectively.
“1” indicates that the value should be as smaller as possible, “1” indicates that the value should be as
larger as possible. The bold numbers indicate the best results).

MSE V] MSEA| MAEV]| MAEA| R2V?% RZ_ A1

ResNet101 [32] 0.02701 0.02246 0.1289 0.1199 0.3644 0.2467
PDANet [16] 0.02589 0.02083 0.1263 0.1159 0.3909 0.3014
ViT [38] 0.03462 0.02705 0.1455 0.1351 0.1852 0.0927
SCEP [17] 0.02539 0.02117 0.1261 0.1160 0.4024 0.2900
ARMNet (ours) 0.02424 0.02012 0.1217 0.1137 0.4294 0.3249

4.4. Ablation Experiments

The proposed ARMNet contains three major components: the multi-level features
fusion module, the human eye fixation detection module, and the spatial-channel attention
module. To quantitatively show performance improvement, the network structure (the
fully connected layers, the holistic feature vector, etc.) is maintained while the major
components are removed separately. In addition, the learning rate, weight decay, batch
size, and other hyperparameters are the same as in Section 4.1. Finally, MSE is selected as
the comparison indicator.

As shown in Table 2, the results reveal the following information:

(1) According to rows 1 and 2 of Table 2, the results of the model with the multi-level
features fusion module are better than those without the multi-level features fusion
module. The MSE value for valence and arousal of the model with the multi-level
features fusion module was reduced by 4.45% and 1.58%, respectively.
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(2) According to rows 1, 3, 4, and 5 of Table 2, the eye fixation detection module and the
spatial attention mechanism can improve performance. The combination of them
performs better than every single module. This proves the necessity of adding a
human attention detection module and a spatial attention detection module to the
ARMNet. For example, the eye fixation detection module reduced the MSE value
for valence and arousal by 1.33% and 1.56%, respectively. Additionally, the spatial
attention mechanism module reduces the MSE value by 3.26% in the valence domain,
but the MSE value in the arousal domain is almost the same.

(8) According to rows 6 and 7 of Table 2, a comparison shows the performance differ-
ences between CAM and SAM. While both combinations (R + M + S + CAM and
R +M + S + SAM) yield similar MSE values, R + M + S + SAM slightly outperforms
R +M + S + CAM in both the valence and arousal domains. This suggests that al-
though CAM effectively captures channel-wise information, SAM shows more robust
performance for spatial attention in the emotional prediction task.

(4) According to rows 6 and 10 of Table 2, the network with the channel attention mecha-
nism module reduces the MSE value for valence and arousal by 2.64% and 1.84% for
valence and arousal, respectively, which verifies the validity of the channel attention
mechanism module.

(5)  When CAM is introduced, as seen in rows 9 and 10 of Table 2, the combination of
R +M + S+ CBAM + CAM does not outperform R + M + S + SAM + CAM, which
delivers better results. This demonstrates that although CBAM has advantages in
certain setups, SAM, when combined with CAM, provides more stable and superior
performance for emotional prediction.

(6) Furthermore, the spatial-channel attention module is designed based on the CBAM
module by adding a gating mechanism, including a spatial attention mechanism
module and a channel attention mechanism module. The result is shown in rows
6, 8,9, and 10 of Table 2. It proves that the CBAM module is effective, while the
spatial-channel attention is better. Compared with the CBAM module network, the
network with the spatial-channel attention module reduced the MSE value for valence
and arousal by 1.03% and 2.49%, respectively.

Table 2. Ablation experiments results (“V”and “A” represent “valence” and “arousal”. “R”, “M”, “S”,
“SAM”, “CAM”, and “CBAM” represent “ResNet101”, “Multi-level features fusion module”, “Sali-
con”, “Spatial Attention Mechanism”, “Channel Attention Mechanism”, and “Convolutional Block
Attention Module”, respectively. “|” indicates that the value should be as smaller as possible, “1”
indicates that the value should be as larger as possible. The bold numbers indicate the best results).

MSE_V | MSE_A|, MAE V], MAEA] RZ_V 1 RZ_A 1
1 R 0.02701 0.02246 0.1289 0.1199 0.3644 0.2467
2 R+M 0.02586 0.02211 0.1259 0.1187 0.3912 0.2586
3 R+S 0.02569 0.02050 0.1259 0.1151 0.3956 0.3126
4 R + SAM 0.02521 0.02082 0.1247 0.1153 0.4067 0.3018
5 R +S+SAM 0.02488 0.02050 0.1237 0.1151 0.4145 0.3124
6 R+M+S+SAM 0.02488 0.02049 0.1235 0.1151 0.4145 0.3129
7 R+M+S+CAM 0.02497 0.02100 0.1239 0.1159 0.4123 0.2955
8 R +M + S+ CBAM 0.02449 0.02062 0.1225 0.1150 0.4237 0.3084
9 R +M + S + CBAM + CAM 0.02797 0.02433 0.1304 0.1236 0.3417 0.1839
10 R+M +S+SAM + CAM 0.02424 0.02012 0.1217 0.1137 0.4294 0.3249

4.5. Visualization

Attention map reflects the varying importance of input features and is widely used to
improve the interpretability of neural networks. The visualizations of the affective regions
and the channel attention of the ARMNet are shown in Figure 6.
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Figure 6. Visualizations of spatial attention: (a) the original images; (b) the salient object maps;
(c) the eye fixation maps; (d) the union attention region map after integrating the human eye fixation
detection module, where the color red represents a higher weight.

4.5.1. Visualization of the Spatial Attention Module

For comparison with existing methods and evaluation of the performance of the union
affective region extraction module proposed in this paper, this section conducts a visual
analysis. As shown in Figure 6, Figure 6a presents the original picture, while Figure 6b
shows one of the affective regions obtained through salient object detection maps using
BASNet (Boundary-Aware Salient Object Detection) [39]. Figure 6¢,d show the extracted
eye fixation map and the union attention region map from ARMNet, respectively.

As shown in Figure 6d, the final attention weights are not only derived from salient
objects; this phenomenon is more apparent in images without salient objects. Figure 6¢,d
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show that the eye fixation detection module detects the eye fixation maps, which include
the saliency regions, and the spatial attention maps concentrate on the background regions
related to emotions. Therefore, the proposed ARMNet can obtain the affective regions with
or without the salient objects simultaneously based on the fusion of the human eye fixation
detection module and spatial attention mechanism. In other words, the union affective
region extraction module enhances the model’s ability to capture emotional information.

To further illustrate the effectiveness of the proposed fusion attention mechanism, the
images of the CGnA10766 dataset were divided into two categories, as shown in Figure 7.
The first category consists of images that contain a specific target object, such as people
or animals. The second category includes images without a specific target object, such
as landscapes. The first and second categories of images are 6287 and 4479, respectively.
Moreover, as shown in Table 3, the valence prediction error of the first category is much
smaller than that of the second category, whereas the arousal prediction errors for both
categories are almost the same.

(b)

Figure 7. Images from CGnA10766 dataset: (a) images with specific target objects (person, animal,
etc.); (b) images without a specific target subject.

Table 3. Experimental results on two categories of images with or without specific target subjects:
(a) images with specific target objects (person, animal, etc.); (b) images without a specific target
subject. “]” indicates that the value should be as smaller as possible, “1” indicates that the value
should be as larger as possible.

MSE V| MSE_A|] MAEV]| MAEA]| RZV? RZ A7

(@) 0.02528 0.02134 0.1258 0.1167 0.3456 0.2509
(b) 0.01696 0.02167 0.1012 0.1172 0.5229 0.2858
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4.5.2. Visualization of the Improved Channel Attention

The three weight parameters of the improved attention channel 7y ayg, Yc—Max, and
Yc—12 are obtained by Equation (11), and the dimension of the channel is 3680. The values
of Ye— Avg, Ye—Max, and 7y are shown in Figure 8, Figure 9, and Figure 10, respectively.
The visualization results reveal the following information:

(1) The different parameters .- avg, Yc—Max, and 7.2 indicate that the network assigns
different importance to different channel feature descriptors.

(2) The specific values of 7¢— Avg, Vc—Max, and y._p are different. The gating weights of
the output features from the Conv3 and Conv4 branches are approximately zero, and
the gating weights of the output features from the Conv2 branch are small. However,
the gating weights of the output features from the Conv5 branch are bigger and
fluctuate more sharply, which show a greater influence on the final prediction.

0.00025

0.00020 A

0.00015 A

0.00010 A
0.00005 A

0.00000 { bshrpeat
-0.00005 1

-0.00010 A

-0.00015 -
Gonv2| Conv3 Conva Convs.

0 500 1000 1500 2000 2500 3000 3500 4000

Figure 8. Visualization of 7, Avg-
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0.0002 -
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0.0000 { Pt

-0.0001 -
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Figure 9. Visualization of y._ pjax-
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Figure 10. Visualization of y._j5.

5. Conclusions

Emotion recognition and processing are essential research directions for developing
new intelligent sensing systems in the future. Complex emotions can be described better
based on dimensional emotion space, including the subtle emotion representation. This
precise representation of emotion necessitates the use of dimensional emotion prediction
methods to capture emotional information in images with maximum accuracy and com-
prehensiveness. However, existing methods mainly extract affective regions with salient
objects, neglecting the joint influence of objects and background for the emotion of the
image. And even with the same object, there may be differences in emotion due to differ-
ent backgrounds. Additionally, they fused multi-level features without considering their
different contributions to emotion prediction, which makes it challenging to discriminate
between valuable and useless features.

This paper proposes an image emotion prediction network named ARMNet. In ARM-
Net, a union affective region extraction method that combines eye fixation detection and
attention detection is proposed to represent the joint influence of objects and background.
And the multi-level features are fused with considering their different contributions by an
improved channel attention mechanism. We compare the proposed network with other
advanced methods on the CGnA10766 dataset. The proposed network performs the best
in every indicator. The performance of valence and arousal, as measured by MSE, MAE,
and R?, has improved by 4.74%, 3.53%, 3.62%, 1.93%, 6.29%, and 7.23%, respectively. The
effectiveness of each module is also proved by ablation experiments.
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