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Abstract: This research presents a sleep posture monitoring system designed to assist the elderly and
patient attendees. Monitoring sleep posture in real time is challenging, and this approach introduces
hardware-based edge computation methods. Initially, we detected the postures using minimally
optimized sensing modules and fusion techniques. This was achieved based on subject (human)
data at standard and adaptive levels using posture-learning processing elements (PEs). Intermittent
posture evaluation was performed with respect to static and adaptive PEs. The final stage was
accomplished using the learned subject posture data versus the real-time posture data using posture
classification. An FPGA-based Hierarchical Binary Classifier (HBC) algorithm was developed to
learn and evaluate sleep posture in real time. The IoT and display devices were used to communicate
the monitored posture to attendant/support services. Posture learning and analysis were developed
using customized, reconfigurable VLSI architectures for sensor fusion, control, and communication
modules in static and adaptive scenarios. The proposed algorithms were coded in Verilog HDL,
simulated, and synthesized using VIVADO 2017.3. A Zed Board-based field-programmable gate
array (FPGA) Xilinx board was used for experimental validation.

Keywords: sleep posture recognition; adaptive posture analysis; FPGA; sensor fusion

1. Introduction

The human life cycle and health are linked to sleep duration and posture. Over the
last three decades, researchers have conducted sleep analysis and monitoring. According
to medical reports and history, the impacts of improper sleep on daily life include mus-
culoskeletal strain, respiratory issues, circulation problems, reduced sleep quality, and
digestive issues. Indirect poor sleep affects human behavior and daily activities. Research
has shown that 9% to 38% of the general population is affected by sleep apnea [1]; in
the future, this is expected to increase. Sleep posture recognition and analysis are crucial
for researchers and medical systems when recommending various medications and other
equivalent systems for better sleep in patients as well as the general population. The
American Sleep Disorders Association and Sleep Research Society have been investigating
the impact of sleep disorders on human activities for the last four decades [2,3].
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To date, sleep posture analysis has faced various challenges, including data acquisition,
in assisting patients and individuals. Data acquisition has been performed by researchers
using wearable and non-wearable pressure and non-contact sensing devices [4,5]. Piezore-
sistive arrays or pressure-sensor-based bedsheets and beds are utilized for data acquisition
for posture analysis [5,6]. A few challenges are raised with these methods; the data acqui-
sition error percentage is higher in this case, and a large amount of data are required to
compute the posture. Other researchers have conducted posture analysis using wearable
devices; this approach has been used in initial learning and regular patient monitoring [7,8].
Recent advancements in sleep posture data acquisition have been achieved using non-
contact methods, such as radar or ultrasonic sensor arrays [5] and vision approaches. Wear-
able sensors such as 3-axis accelerometers [9] and thermostats, as well as electromyography
(EMG), electroencephalography (EEG), and photoplethysmography (PPG) devices [10],
have been utilized for sleep posture data capture. These wearable sensors are integrated
into Fit-Bit modules or smart watches. Similarly, non-wearable technology and sensors,
such as multimodal sensor fusion [11] and smart phones [12], have been utilized for sleep
posture analysis by various researchers. Selection of the sensor type is a challenge in sleep
posture analysis.

Different sensor data have been processed using data processing analysis techniques,
such as data mining and classifiers. Computation methods play a vital role in sleep
posture data analysis. Classifiers such as random forests and binary-type decision trees,
as well as supervised classifiers such as hidden Markov models (HMMs), support vector
machines (SVMs), and k-nearest neighbors (kNNs) [13], have been employed. Classifiers
are used for learning, and real-time feature matching can be utilized to determine sleep
posture. In this regard, researcher-driven deep learning methods have been adopted in sleep
research, such as recurrent NNs (RNNs), long short-term memory (LSTM) networks [6],
convolutional NNs (CNNs), and generative adversarial NNs (GNNs) [14]. In this process,
computing devices such as microcontrollers, GPUs, and CPUs, as well as cloud computing,
are essential for sleep posture data acquisition, data processing with classifiers, and posture
accomplishment [15,16]. Research studies addressing sleep posture require low-power-
consuming devices and effective computation for analysis during learning and real-time
implementation in static and adaptive states. Edge computing devices, such as FPGAs,
are essential for real-time sleep posture systems at present and in the future, making it
challenging to provide complete solutions.

The proposed hardware-efficient methods provide sleep posture analysis for present
and future usage in real-time implementations. The FPGA-based adaptive sleep posture
analysis accelerator has three novel embedded methods:

1. An FPGA-based learning algorithm for acquiring data regarding the standard and
adaptive conditions of sleep postures. Real-time adaptive learning was developed for
various subjects (humans).

2. An FPGA-based hierarchical binary classifier (HBC) algorithm was developed for
the classification of sensor fusion data in the learning and analysis stages for event-
driven conditions.

3. Hardware-based sleep posture analysis is the next stage of the proposed method. The
FPGA-based solution for sleep posture analysis is the first of its kind for adaptive-
based event conditions.

This paper is structured as follows. This section presents the background and moti-
vation for sleep posture analysis research using FPGA implementation. In Section 2, the
details of the proposed methodology are presented with theoretical and hardware schemes.
The proposed method was validated, and the results are presented in Section 3 in the form
of synthesis, power consumption, and experimental details with comparison. The final
section concludes the study with future perspectives.
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2. Hardware-Based Algorithms

Sleep posture analysis was executed in two stages as per the proposed method.
Hardware-based algorithms were first developed for sleep posture analysis, and secondly,
hardware schemes for analysis were explored. See Table 1.

Table 1. Proposed research-related abbreviations.

Abbreviation Definition

SPR

S: Ultrasonic sensors {H_R, H_L, A_R, A_L, R_L and L_L}
P: Position of sensor at head (H), abdomen (A), and limb (L)
R: Position at right (R) and left (L) sides

PP Past posture

CP Current posture

T Time

Postures Right yearner (RY), left yearner (LY), left fetal (LF), right fetal (RF),
left lateral posture (LLP), and supine posture (SP)

LUT Look-up table

PC Pose current

Pp Pose past

TpC Pose T current

Tpp Pose T past

Ps Pose Static

2.1. Hardware-Based Algorithm for Sleep Posture Analysis

Figure 1 presents an overall flowchart of the proposed hardware-based sleep analysis.
The initial conditions are as follows: The algorithm checks whether there is a subject on
the bed. Next, it determines whether data have previously been recorded for this subject’s
profile. If the subject is new to the sensor radar, it starts learning all their postures; such an
adaptive process not only relies on near-sensor fusion data. If the subject is recognized, their
posture is classified using a hardware-based hierarchical binary classifier (HBC) algorithm.
The HBC provides the along class, and the subject is either in a static or adaptive state. In
a static pose, the subject’s posture is recorded. If the subject switches from one pose to
another, this is recorded along with the time spent in the respective postures.
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The sleep posture details are presented in Figure 2 and are broadly classified into four
groups: supine (SP), left (LP), right (RP), and frog posture (FP). Posture details are learned
by an edge computing device using sensor fusion data. These posture data are learned
at the sleep-posture-learning stage and are utilized in the sleep posture analysis in the
classifier stage, defining the type of posture.
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2.1.1. Hardware-Based Algorithm for Sleep Posture Learning

This section addresses sleep posture learning. Algorithm 1 represents the pseudocode
of the sleep posture learning in versatile scenarios.

Algorithm 1: Pseudocode for hardware-based sleep posture learning

1. Initialize sensory distance into sensor fusion data (SF)
2. always @ (posedge clk) begin
3. {sleep_posture_analysis, learn_new_posture, adapt_sf_data, retry} = 0.
4. Case (state)
5. INIT: Next State = WAIT_PIR.
6. WAIT_PIR: Next_State = (PIR == 1)? CHECK_DATA_RANGE: WAIT_PIR.
7. CHECK_DATA_RANGE:
8. Next_state= (subject data == range data)? CHECK_POSE: ADAPT
9. CHECK_POSTURE:
10. next_state = (posture_HBC)? ANALYSIS: Learn.
11. ANALYSIS: {sleep_posture_analysis = 1, next_state = WAIT_PIR};
12. LEARN: {learn_new_posture = 1, next_state = WAIT_PIR};
13. ADAPT: {adapt_sf_data = 1, next_state = WAIT_PIR};
14. RETRY: next_state = (PIR == 1)? CHECK_DATA_RANGE: RETRY.
15. default: next_state = INIT.
16. end case, End.

Algorithm 1 describes the pseudocode for hardware-based sleep posture learning.
In step 1 (line 1), the sensors are initialized; the data in the sensor fusion from the sleep
posture details are presented in Figure 2. The flowchart of Algorithm 1 is shown in Figure 3.
The system clock synchronizes the sensor fusion data and enables the sleep posture to be
learned with a continuous, adaptive approach (lines 2 and 3). The PIR sensor data are
utilized to determine whether there is a human on the bed (line 6). Sensor fusion data are
classified into two forms, standard posture and time-invariant data, which are considered
adaptive sleep postures (line 8). Standard posture information related to existing subject
postures is then determined (line 10). The proposed method learns any new postures
and registers them using the hierarchical binary classifier (HBC) (line 12). Sleep postures
are analyzed using the HBC method (line 11). The subject’s movement from one posture
to another is evaluated as an adaptive posture (line 13). Adaptive posture evaluation is
essential for assisting the subject in their struggle with pain or other issues as it alerts
attendants to the medical assistance system. This is a continuous process in the estimation
of sleep postures (lines 14 and 15).
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2.1.2. Hardware-Based Hierarchical Binary Classifier Algorithm for Sleep Posture

This subsection presents the sensor fusion data classified using the hierarchical binary
classifier (HBC) algorithm. Each sleep posture is learned as described in Section 2.1.1 and
classified with respect to sleep posture, as shown below.

Figure 4 presents the sensor fusion data captured for the left lateral posture (LLP) and
supine posture (SP). Table 2 lists the details of the sensor fusion data for sleep posture
analysis. Figure 4 and Table 2 provide basic information for the execution of the hierarchical
binary classifier (HBC) algorithm.
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Table 2. Sensor fusion data for sleep posture analysis.

Posture Head_Right
(H_R)

Head_Left
(H_L)

Abdomen_Right
(A_R)

Abdomen_Left
(A_L)

Right Leg
(R_L)

Left Leg
(L_L)

Right yearner (RY) 1 1 0 1 0 1
Left yearner (LY) 1 1 1 0 1 0
Left fetal (LF) 1 1 1 1 0 1
Right fetal (RF) 1 1 1 1 1 0
Right lateral posture (RLP) 1 0 1 0 1 0
Left lateral posture (LLP) 0 1 0 1 0 1
Supine posture (SP) X X 1 1 1 1
Frog posture (FP) 1 1 1 1 0 0
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Algorithm 2 and the flow chart in Figure 5 provide details of the hardware-based HBC
algorithm for sleep posture learning and analysis. Data from the six pairs of sensors are
captured from the positions of the human limbs, abdomen, and head. Sensor fusion data
initialization and triggered operations are performed in lines 1 and 2, respectively. The
HBC classifies data into three positions: lower limb, abdomen, and head (lines 3–14).

Algorithm 2: Pseudocode for hardware-based hierarchical binary classifier algorithm

1. Initialize sensory distance into sensor fusion data (SF)
2. always @ (posedge clk) begin {H_R, H_L, A_R, A_L, R_L & L_L} = 0;
3. Case (Posture Data)
4. Posture: (R_L & L_L =2′b00)? Frog posture: Posture _1.
5. Posture _1: (R_L & L_L =2′b11)? Supine posture: Posture _2.
6. Posture _2: (R_L & L_L =2′b01)? Right posture: Left posture.
7. Case (Right posture)
8. Right_1: (A_R & A_L=2′b11)? Right Foetus: Right_2.
9. Right_2: ((A_R & A_L=2′b01) && (H_R & H_L=2′b11))? LY: RLP.
10. Case (Left posture)
11. Left_1: (A_R & A_L=2′b11)? Left Foetus: Left_2.
12. Left_2: ((A_R & A_L=2′b10) && (H_R & H_L=2′b11))? RY: LLP.
13. Default {H_R, H_L, A_R, A_L, R_L & L_L} = 0.
end case, End.
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Figure 5. Flow chart of hierarchical binary classifier algorithm for sleep posture.

Early classification is performed using the lower limb position when the right and left
lower limbs (R_L and L_L) are equal to the two-bit information 2′b00. When the limbs are
detected as not positioned at the lower end of the bed, the subject’s pose is determined
to be a frog posture (line 4). If this condition fails, then the classifier switches to the next
state. When the lower limbs are 2′b11, the supine posture is recorded (line 5); otherwise,
the process switches to the next state. The classifier utilizes sensor data for the entire lower
limbs to establish the right (lines 7 to 9) or left (lines 10 to 12) side postures. When the
abdomen sensor data (A_R and A_L) are equal to 2′b11, they are recorded as the right fetal
position (line 8), similar to the left fetal position mentioned in line 11. When lower limb and
abdomen sensor fusion data cannot be classified, the HBC depends on the head position on
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the right or left side (H_R and H_L). The final stage of the hierarchy classifies the postures
of the left yearner (LY) and right lateral posture (RLP) (line 9), and similar line postures
are classified as the right yearner (RY) or left lateral posture (RLP) (line 12) based on the
hierarchy conditions. Default conditions are considered to indicate that the postures are
not available or improper (line 13). The adaptive approach considers improper posture
evaluation for learning and analysis using time-of-flight (ToF) methods.

2.1.3. Hardware-Based Adaptive Sleep Posture Analysis Algorithm

The proposed hardware-based adaptive algorithm for sleep posture analysis under
time-varying event conditions is presented in this subsection. Adaptive sleep posture anal-
ysis provides accurate information regarding the status of the patients/elderly individual’s
motion and sleep conditions. This method depends on the selection of the sensor, which
provides the time-of-flight-based sensing, time-stamped data, and time-dependent features
and drives the detection of human motion on the bed. Few researchers have used hidden
Markov models for motion detection [18,19]. The proposed hardware-based algorithm was
developed using a binary-based adaptive threshold for digitizing the motion action in sleep
postures. A human transitioning from a left lateral posture (LLP) to a supine posture (SP)
is shown in Figure 3.

The sensor captures and calculates the distance to the object or human based on the
echo signal between the sensor and human. The formula used is as follows:

Distance =
Speed of Signal × Time of Flight

2
(1)

Algorithm 3 and Figure 6 present the adaptive sleep posture evaluation method. In
this algorithm, the time-variant data are the main concern with respect to posture. This
algorithm operates concurrently to evaluate the timing of static and dynamic human
postures with respect to other postures. Once the human subject is identified through the
PIR sensor using sensor fusion data, their pose is determined. During sleep, patients in
pain change from one posture to another. In this context, postural dynamics are essential
for estimating patient challenges. Until the pose changes, it is considered to be the same
posture as that mentioned in line 4. When posture changes are not observed, the time
duration is evaluated using the counter count_1 (lines 9 to 10). If the pose is associated with
a time variable, it is evaluated in lines 6–8. The count parameter is deployed to calculate
the timing of the dynamic posture variants (line 7). The adaptive posture is defined as a
two-level posture, and the process reverts to the original posture, identified as per line 1.
Otherwise, the posture is evaluated using the HBC, and the learning time is recorded. This
timing is useful, and abrupt changes in the posture time will improve the adaptiveness of
the method.

Algorithm 3: Pseudocode of adaptive-based algorithm for sleep posture analysis

1. Sensor fusion data & Present posture, count_1 = 8′d0, count = 8′d0.
2. If (PIR)
3. Case (Pose)
4. Pose 1: (Pose current = Pose past)? Same posture: Pose 2.
5. Pose 2: (Pose_T_current = Pose_T_past)? Pose 6: Pose 3.
6. Case (Pose 3)
7. Pose 4: (Pose_ static = Poses)? count: count <= count + 1.
8. Pose 5: (count > count_step1)? HBC: Pose 1.
9. Case (Pose 6)
10. Pose 7: (Pose_ static = Pose current)? count_1: count_1 <= count_1 + 1.
11. end case, End.
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3. Hardware Schemes for Sleep Posture Analysis

This section outlines hardware schemes that are equivalent to the hardware-based
algorithm proposed in Section 2. The hardware schemes for the sleep posture analysis are
given in the following. Initially, the hardware accelerator, learning, HBC, and adaptive
posture evaluation-based hardware schemes are presented.

3.1. Hardware Accelerator for Sleep Posture Analysis

Figure 7 presents the hardware accelerator for the analysis at the learning and evalua-
tion stages. The hardware accelerator is integrated with sensors as represented in orange
colours, a Wi-Fi module, and a display unit is represented with red colour line in the figure.
the data bus is represented with dark and light blue colour. The overall architecture is
controlled using the proposed algorithm with a control unit as represented with yellow
colour data bus. The control unit operates and synchronizes the overall system. Passive
infrared motion (PIR) sensors enable the system to capture the next level of data. In the
absence of a human on the bed, PIR provides logic ‘0’, and the accelerator continues in the
sleep condition until PIR = ‘1’. Six pairs of ultrasonic sensors were integrated to capture
sleep data. The sensors were concurrently triggered by a control unit. Every 20 bits of
sensory data are shared with the distance converter and the fusion module. The control unit
initially shares the data with the static posture-learning PE module; if any time-variant data
are observed, it switches to an adaptive posture-learning module using a demultiplexer
(DEMUX). Posture learning is performed by comparing the sensor fusion data with the
reference subject data.
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Figure 7. Overall hardware accelerator for sleep posture analysis.

The learning posture utilizes an HBC PE and communicates using 8-bit data. Postures
that are not part of the reference model or the time-variant-type posture are learned using
the adaptive posture-learning PE. If the pose is within the range of the reference poses,
the learning stage enables the posture evaluation of the PE. The posture evaluation PE
interfaces with the posture HB classifier module for evaluation. The defined posture is
processed as an output through the execution unit (EU). The output is presented in the form
of messages to the attendants/service team through the Wi-Fi module. These messages are
displayed on the FPGA-based, seven-segment LCD display. This novel approach is used
to adaptively analyze variations in the pose of the patient/elderly subject. In the learning
stage, if the posture is not a standard pose, it is recorded as an adaptive posture of the
subject. Under certain conditions, the subject performs the posture with respect to the time
variable, and the adaptive posture evaluation PE registers the posture and compares it to
the time-variant data between postures, and this is fed to the output.

3.2. Hardware Schemes for Sleep-Posture-Based Learning

The proposed equivalent internal architecture of Algorithm 1, referred to as the in-
tegration of the generic and adaptive posture-learning PEs, is presented in Figure 8. The
architecture, enabled by the PIR sensor and ultrasonic sensor fusion distance data, has
a FIFO memory structure. Prior postures are analyzed and estimated via either generic
posture learning or adaptive learning using the posture-matching module. The posture-
matching module was developed with three stages of FIFO, which are stored in FIFO_N-2,
FIFO_N-1, and FIFO_N. Each FIFO dimension is an array of six pairs of sensors {H_R, H_L,
A_R, A_L, R_L, and L_L}, each 20 bits in size. The shift encoder shifts the FIFO data from
N-2 to N and performs in line with the concurrent barrel-shifter-based approach.
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Figure 8. Internal architecture of sleep-posture-based learning.

The FIFO data are stored for every 1/6 s and compared using the ‘comp’ module.
L_L sensor-based arrays of N-2, N-1, and N are compared at the L_L comparator at the
same distance. H_R to L_L are encoded, and when 6′b11111 is presented in three iterations,
new generic learning is enabled in the posture-learning PE. Otherwise, adaptive posture
learning is enabled in the PE. The posture-learning PE consists of an internal control module
and FIFO posture learning. The internal control shares the present status with the control
unit, as presented in Figure 4 with different colours. FIFO posture learning is performed
for the standard postures of each subject, as presented in Table 2, from right yearner (RY) to
the frog posture (FP). Eight standard postures are included. A maximum of eight subjects
are recorded, and the learning methods replace unused subject data with new subject
data with control unit permissions. The authors attempted to optimize memory using
time-variant-based learning. This method is optimized for storing datasets, as the execution
of the real-time interference stage faces memory issues. In this regard, time-variant-based
learning is called adaptive learning, which is employed in two scenarios: past subjects with
a new posture and new subject postures. The adaptive posture-learning PE is activated as
per the posture-matching module; it stores New_1 to New_8. H_R to L_L sensor data are
stored as new, standard subject postures. It is also able to memorize new postures for a
new subject, which are labeled in the posture-learning PE. A known subject with a new
posture is allocated a new label beside the FP posture through the FIFO posture learning.
This was a novel attempt, at the inference level, to avoid dataset memory issues. Both
learning methods are regularly interfaced with the learning posture classifier PE for posture
estimation, as shown in Figure 9.
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Figure 9. Hardware scheme for sleep-posture-based hierarchical binary classifier (HBC) PE.

3.3. Hardware Schemes of Hierarchical Binary Classifier for Sleep Posture

Figure 9 presents the internal hardware schemes of the HBC for sleep posture and
signal information is represented in different colours. The proposed binary classifier was
developed in line with the [20,21] binary search tree. The binary search tree classifier was
organized with the center weights of the tree; in the proposed approach, it is heuristic, with
a hierarchical binary classifier.

The HBC is embedded with a 20-bit FIFO structure, (sensor distance) × 6 (H_R, H_L,
A_R, A_L, R_L and L_L) × 1, and receives the data from the learning or posture evaluation
modules, the hierarchical classifier logic, classifier logic control, right posture classifier
logic, and left posture classifier logic. As per the binary search tree, R_L and L_L enable
2-bit information to act as a selector in the hierarchical classifier logic. The frog posture (FP)
and supine posture (SP) were selected as 2′b00 and 2′b11 and 2′b01 and 2′b10 to enable the
right and left posture classifiers. As per the binary hierarchy, with A_R and A_L data, the
classifier logic control defines the right and left postures in detail. A_R and A_L as 2′b11
and R_L and L_L as 2′b10 define the right fetal (RF) postures and enable the selection of
the right lateral posture (RLP). The next level of hierarchy is defined with the top H_R and
H_L bits for the selection of the left postures, such as the lateral, fetal, and yearner postures.
Overall, data from the six pairs of sensors (6′b111101) define the left fetal position using
the left posture classifier logic. Similarly, lines 6′b010101 classify the left lateral posture
(LLP) and 6′b111010 the left yearner (LY) posture. Adaptive learning regularly performs
subclassification in the HBC according to new requirements. The posture modules are
interfaced with the HBC encoder and with the posture evaluation and learning modules.

3.4. Hardware Schemes for Adaptive Posture Evaluation

Algorithm 3 presents hardware-based adaptive posture evaluation using a time-
variant approach. The sensor’s distance varies with time and is considered adaptive
in sleep posture evaluation. Figure 10 presents the internal hardware schemes for adaptive
posture evaluation with different colour lines for data information.
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The adaptive posture evaluation is integrated with an adaptive period logic controller
and adaptive period calculator. At the logic controller, data originating from the sensor
distance bus are utilized to ascertain the past and current poses. When registered con-
currently, once the pose is initiated, the respective counters are triggered until the pose
changes. These counters operate with a device clock frequency of 100 MHz and are syn-
chronized with the AXI lite protocol. The Pose _ T _ Current and Pose _ T _ past counters
are counts utilized in the event of posture registration and reach the threshold for posture
change. If both the count and pose are the same, the posture is recognized as the same
as that classified with the HBC. Otherwise, the adaptive period calculator of time-variant
sleep posture data is enabled. The Pose _ T _ Current module of the period calculator
registers data for every 1/6 s and determines the difference using the 2’s complement adder
method. The duration from the current posture to the adjacent posture time is considered
the adjacent pose period. Once both the adaptive and adjacent pose periods are equal, the
HBC evaluates the posture-to-posture time. The adaptive period module iterates until the
adjacent pose periods match.

4. Results

The proposed FPGA-based accelerator for determining sleep posture under generic
and adaptive conditions is presented in this section. The results are compared in terms of
FPGA resource utilization in implementation, along with power consumption based on
the hardware schemes presented in Figures 7–10. The proposed approach was validated
through real-time experiments with six ultrasonic sensor pairs and a ZedBoard family
field-programmable gate array (FPGA).

4.1. Resource Utilization

The proposed approach is the first of its kind to use the FPGA-based accelerator for
non-contact sleep posture analysis. The hardware schemes were coded using Verilog HDL,
and the Xilinx simulator was used for their functional verification. Vivado tools 17.3 version
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was utilized for HDL synthesis for bit generation. Xilinx tools and the FPGA were procured
from the Xilinx university program.

Xilinx (San Jose, CA, USA) produced the Xilinx Zynq XC7Z020-1CSG484 ZedBoard,
which features approximately 85,000 programmable logic cells. The device incorporates
look-up tables (LUTs) and flip-flops for executing logic operations and short-term memory
storage. The board’s BRAM, accessible via AXI lite, comprises over 140 blocks of 36 kb
each (totaling 4.9 Mb), which are used to store sensor fusion and intermediate data. In
the proposed design, BRAM is primarily utilized in FIFO. The board also includes about
220 DSP slices (18 × 25 MACCs) for handling data transfer and other computational tasks.
Table 3 illustrates how these resources are employed in the proposed approach.

Table 3. ZedBoard FPGA resource utilization for sleep posture analysis accelerator.

Module LUT BRAM DSP Slices

Interfacing modules (sensors, communication (UART),
Xilinx IP cores) 6362 16 22

Sleep-posture-based learning PE 4404 12 15
Hierarchical binary classifier (HBC) PE 3916 8 12
Adaptive posture evaluation PE 5140 22 25
Control unit and PWDC sensor fusion 2692 9 12
Execution modules and display 1958 5 10
Total 24,472 72 96

Table 3 presents the device’s utilization of the sleep posture analysis accelerator. FPGA-
based accelerators provide fast computing and low power consumption [22–24]. The total
device utilization for the proposed approach in the form of look-up tables (LUTs), block
RAM (BRAM), and digital signal processing (DSP) slices was 46% (24,472), 51% (72), and
44% (96), respectively.

Figure 11 presents a quantitative analysis of the resources consumed by the device in
the interfacing module, which are 26% for LUT, 11% for BRAM, and 10% for the DSP slices.
Similarly, other modules include the sleep-posture-based-learning PE (18%, 9%, and 7%),
hierarchical binary classifier (HBC) PE (16%, 6%, and 6%), adaptive posture evaluation
PE (21%, 16%, and 11%), control unit and PWDC sensor fusion (11%, 6%, and 6%), and
execution module and display (8%, 4%, and 4%). It is observed from device utilization
that the interfacing modules and adaptive posture evaluation PE consume more resources.
The interface is embedded with UART using AXI lite to establish and communicate sleep
postures to other devices using Wi-Fi ESP8266 external devices. The resource consumption
of BRAM is approximately 51%, and the sensor fusion distance is passed in a few stages
through FIFO. AXI-based FIFO and an IP core are utilized as part of the programmable
logic (PL) of the ZedBoard FPGA.

Figure 12 shows the power consumption of the device when computing a reconfig-
urable device (FPGA). Overall, the static device power consumption as per the Xilinx power
estimator (XPE) is 1.2 watts. The PE evaluation of the adaptive posture consumed 32% of
the overall power. The power consumption of other components was also obtained from
the XPE analysis. Interfacing with external modules consumes the second-largest share
of power.

The total power consumption is 1.2 watts, with the dynamic power and static power
consumption comprising 0.96 watts and 0.24 watts. Hardware schemes were designed with
eight pipeline stages (S), and a device clock time (Tclk) of 10 ns; a total of 30 (N) iterations
were utilized for validation. The 370 ns latency of the proposed hardware schemes is
represented in Equations (2) and (3).

Latency per iteration = 8 × 10 ns = 80 ns (2)

Total latency = (N + S − 1) × Tclk = (30 + 8 − 1) × 10 ns = 370 ns. (3)
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The overall accuracy is 98.4%. This was computed based on the data captured from
the multiple sensors and their fusion. The total number of correct data predictions were 30
and 29, respectively. Equations (4) and (5) represent the accuracy and error rate formulae.
An accuracy of 98.4% and error rate of 1.6% are mentioned in Equations (6) and (7).

Accuracy =
Number of Correct Predictions

Total Predictions
× 100 (4)

Error rate = 1 − Accuracy (5)

Accuracy =
29
30

× 100 = 98.4% (6)

Error rate = 1 − 29
30

× 100 = 1.6% (7)

4.2. Experimental Results

This section describes the experimental setup and experiments for the validation of
the proposed sleep posture analysis accelerator.

4.2.1. Experimental Setup

Figure 10 illustrates sleep posture analysis using the contactless approach proposed in
this study. As shown by the experimental setup in Figure 13, the side views of A_L and
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A_R are different for each subject. The results are shown in Figure 14. The experimental
setup presents the integration of the six ultrasonic sensor pairs from rhydolabz that utilize
an ultrasound echo signal. The sensors were operated with a 40 KHz frequency and voltage
range of 3.3–5 V, and consumed a 5 mA current. The voltage was fetched from the voltage
regulators of 7805 IC modules. Ultrasonic sensors were employed to detect objects using
pulse-width modulation (PWM)-based echo signals that were digitized using an FPGA.
The ultrasonic sensor is capable of capturing data within the ideal distance of 3 m; however,
to remove redundancy and other noise, a 2.7 m to 0.3 m range was more suitable.
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The PIR sensor was positioned between the H_L and H_R sensors to estimate whether
the bed was occupied by a human. The PIR sensor range covered around 3 m from its
position. As shown in Figure 14, the FPGA device was placed on a bedside table and was
used to compute the sleep posture as per the proposed approach. The bed size used in
this experiment was approximately 110 cm. The sensor was positioned from the bed at a
height of 2.4 m, and each sensor covered approximately 47 cm of the bed. The sensors were
positioned to cover an inner-bed range of 94 cm. Figure 10 shows the sensor positions on
the ceiling.

4.2.2. Experimental Results of Sleep Posture Learning

The experimental results of the proposed sleep posture learning method are illustrated
in Figure 15. Three subjects participated in this experiment. The human postures were
evaluated using ultrasonic sensorsIn this regard, the proposed method learns the distance
between sensors and determines the subject’s posture without using any database sets.
In processing the database sets, huge amounts of computing and processing power are
consumed at the inference stage. Figure 15a presents the supine posture of subject 1, which
is displayed on the FPGA Zed Board LCD display. The resulting sleep posture details are
transmitted through the IoT module Wi-Fi ESP8266 to the monitoring or assisting team
for their next course of assistance. Similarly, other postures of subject 1 were learned and
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registered as a reference for future usage, as in Figure 15c,d. The supine and right yearner
postures of subject 2 are demonstrated in Figure 15e,f. Subject 3 was positioned in the
left yearner posture and is displayed in Figure 15g,h. Figure 15b,d,h represent the supine,
left lateral, and left yearner postures on the FPGA Zed-Board LCD display. This display
is useful as interim information when transmitting posture details to the assisting team.
The experimental results are presented as follows: https://www.youtube.com/watch?v=
6nRHrVYnXTQ accessed on 14 September 2024.
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4.2.3. Experimental Results of Adaptive Sleep Posture Analysis

After learning the sleep posture at the inference stage, the proposed approach provides
a better solution for the estimation of posture analysis under both generic and adaptive
event conditions. Figure 16a–f demonstrate the adaptive sleep postures of the initial subject
in the experiment. In Figure 16a, the subject exhibits the left yearner (LY) posture. The
subject changed to the right yearner (RY) pose, as shown in Figure 16c, and the supine
posture (SP), as shown in Figure 16b. The same adaptive sleep posture taken during the
interval of around 9.64 s from the LY end time to the RY start time was presented on the
FPGA LCD display as TD (duration).
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Figure 16. (a–f) Demonstration of results of adaptive sleep posture analysis.

The same subject switched his adaptive posture from right yearner (RY), as demon-
strated in Figure 16c, to the left fetal (LF) position, as shown in Figure 16e, in the supine
posture. The duration was recorded as 11.44 s. Figure 16d shows the past FPGA Zed-Board
LCD display posture as right yearner (RY) and the current posture as left yearner (LY),
along with the time duration. Similarly, 16f represents the adaptive posture of the left
yearner to the right foetus. The experimental results are as follows (https://www.youtube.
com/watch?v=Z8UvHXnd6lY accessed on 14 September 2024).

Table 4 presents a comparison with other research methods of sleep posture analysis.
Most sleep posture detection methods have been developed for use with a bedsheet/mat.
The authors of [17,25] used more sensors for accuracy, as any misleading data from sensors
could impact the sleep posture analysis. However, this affected the power consumption. R.
Tapwal et al. [26] utilized two costly and limited flex force sensors in a method that detected
up to four postures only and proportionally consumed more power, at 17.5 watts. Hu, D
et al. [27] utilized 32 piezoelectric ceramic sensors for analysis, achieving better results for
nuanced pressure disturbances. The proposed methods perform sleep posture analysis
in generic and adaptive scenarios, can be carried out using an FPGA-based accelerator
with a low power consumption of around 1.2 watts, and can be operated using computing
modules with a 100 MHz clock frequency; meanwhile, other comparison methods have a
higher power consumption and require CPU resources. Data acquisition was performed
using the Arduino Nano or Uno operated at 16 MHz. In the proposed method, a single
reconfigurable device provided better results (98.4%) for both data acquisition and analysis.

https://www.youtube.com/watch?v=Z8UvHXnd6lY
https://www.youtube.com/watch?v=Z8UvHXnd6lY
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Table 4. Comparison of sleep posture analysis with relevant research methods.

Reference
Paper

Sensory Approach
Algorithm Hardware Number of

Postures
Pros Accuracy Cons

Method Fusion

Q. Hu et al., 2021
[17]

1024 pressure
sensors Yes HOG, SVM,

and CNN

Arduino
Nano and

CPU
6

<400 ms,
sampling, and

processing,

86.94% to
91.24%

Contact
approach

Mater et al., 2020
[25] 1728 FSR sensors Yes HOG + LBP,

FFANN CPU 4 Health
monitoring 97%

Increased
usage of
sensors

R. Tapwal et al.,
2023
[26]

Two flex force
sensors Yes K-means

Arduino
Uno and

CPU
4 Health

monitoring ~99.3%

Consumes
17.5 W,
contact

approach

Hu, D et al., 2024
[27]

32 piezoelectric
sensors Yes S3CNN N/A 4

Effectively
detects

nuanced
pressure

disturbances

93.0% N/A

Proposed 6 ultrasonic
sensors Yes

HBC,
heuristic
learning

FPGA 8

Parallel
computing,

<370 ns,
sampling, and
computation.

98.4%

PR flow
would be

preferred in
future usage

5. Conclusions

Sleep posture analysis has attracted considerable attention as a means of monitoring
patients/children and the elderly. The proposed approach is the first of its kind to provide
a solution with hardware schemes. Hardware schemes were adopted, alongside machine-
learning-based heuristic methods, in the processing of sleep posture analysis at the learning,
classification, and evaluation stages with processing elements (PEs). Sound-based data
acquisition was successful in concurrently capturing and fusing data at a rate of 25 µs.
The proposed method provides a better solution at the inference stage by using hardware
schemes with adaptive subject sleep posture recognition and analysis with standard forms.
This avoids excessive memory use at the learning and evaluation stages. Each subject
and each posture-learning method was validated in 30 iterations, and the latency of the
proposed hardware was around 370 ns. The results of the experiment showed 98.4%
accuracy and a 1.6% error rate. The resource consumption of the optimized hardware
schemes was 51% for the BRAM, 46% for the LUTs, and 44% for the DSP slices. Overall,
1.2 watts of power was consumed for computation. It is hoped that the device will be
optimized in the future via partial reconfiguration methods and multi-subject sleep posture
detection for hospital patients and senior citizens.
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