Feasibility of Backscattering Coefficient Evaluation of Soft Tissue Using High-Frequency Annular Array Probe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissue-Mimicking Phantoms
2.2. Annular Array Probe and Synthetic Focusing Method
2.3. Data Acquisition with Annular Array Probe
2.4. Data Acquisition with Single-Element Transducer
2.5. Data Acquisition with Linear Array Probe
2.6. Evaluation of Speed of Sound and Attenuation Coefficient
2.7. BSC Analysis Using Reference Phantom Method
3. Results and Discussions of Basic Study
3.1. Basic Echo Characteristics of Each Phantom
3.2. BSC of Each Phantom
4. Results and Discussions of Comparative Study
4.1. Differences in Basic Echo Characteristics Among the Three Types of Sensors
4.2. Comparison of Single-Element Transducer and Annular Array Probe
4.3. Comparison of Linear Array Probe and Annular Array Probe
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Foster, F.S.; Pavlin, C.J.; Harasiewicz, K.A.; Christopher, D.A.; Turnbull, D.H. Advances in ultrasound biomicroscopy. Ultrasound Med. Biol. 2000, 26, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Gazzard, G.; Friedman, D.S.; Devereux, J.G.; Chew, P.; Seah, S.K. A prospective ultrasound biomicroscopy evaluation of changes in anterior segment morphology after laser iridotomy in Asian eyes. Ophthalmology 2003, 110, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zheng, Y.; Leung, S.F.; Choi, A.P. High frequency ultrasound assessment of skin fibrosis: Clinical results. Ultrasound Med. Biol. 2007, 33, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Vogt, M.; Ermert, H. In vivo ultrasound biomicroscopy of skin: Spectral system characteristics and inverse filtering optimization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 1551–1559. [Google Scholar] [CrossRef]
- De Korte, C.L.; Van der Steen, A.F.W.; Cespedes, E.I.; Pasterkamp, G.; Carlier, S.G.; Mastik, F.; Schoneveld, A.H.; Serruys, P.W.; Bom, N. Characterization of plaque components and vulnerability with intravascular ultrasound elastography. Phys. Med. Biol. 2000, 45, 1465–1475. [Google Scholar] [CrossRef]
- Qiu, W.; Chen, Y.; Li, X.; Yu, Y.; Cheng, W.F.; Tsang, F.K.; Zhou, Q.; Shung, K.K.; Dai, J.; Sun, L. An open system for intravascular ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 2201–2209. [Google Scholar]
- Friedrich-Rust, M.; Wunder, K.; Kriener, S.; Sotoudeh, F.; Richter, S.; Bojunga, J.; Herrmann, E.; Poynard, T.; Dietrich, C.F.; Vermehren, J.; et al. Liver fibrosis in viral hepatitis: Noninvasive assessment with acoustic radiation force impulse imaging versus transient elastography. Radiology 2009, 252, 595–604. [Google Scholar] [CrossRef]
- Ronot, M.; Ferraioli, G.; Muller, H.P.; Fredrich-Rust, M.; Filice, C.; Vilgrain, V.; Cosgrove, D.; Lim, A.K. Comparison of liver stiffness measurements by a 2D-shear wave technique and transient elastography: Results from a European prospective multi-centre study. Eur. Radiol. 2021, 31, 1578–1587. [Google Scholar] [CrossRef]
- Iijima, H.; Tada, T.; Kumada, T.; Kobayashi, N.; Yoshida, M.; Aoki, T.; Nishimura, T.; Nakano, C.; Ishii, A.; Takashima, T.; et al. Comparison of liver stiffness assessment by transient elastography and shear wave elastography using six ultrasound devices. Hepatol. Res. 2019, 49, 676–686. [Google Scholar] [CrossRef]
- Ferraioli, G.; De Silvestri, A.; Lissandrin, R.; Maiocchi, L.; Tinelli, C.; Filice, C.; Barr, R.G. Evaluation of Inter-System Variability in Liver Stiffness Measurements. Ultraschall. Med. 2019, 40, 64–75. [Google Scholar] [CrossRef]
- Sandrin, L.; Fourquet, B.; Hasquenoph, J.M.; Yon, S.; Fournier, C.; Mal, F.; Christdis, C.; Ziol, M.; Poulet, B.; Kazemi, F.; et al. Transient elastography: A new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med. Biol. 2003, 29, 1705–1713. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, H.; Mori, S.; Arakawa, M.; Kanai, H. Measurement of viscoelasticity of anisotropic viscoelastic phantom by dual ultrasound excitation. Jpn. J. Appl. Phys. 2020, 59, SKKE24. [Google Scholar] [CrossRef]
- Watanabe, R.; Arakawa, M.; Kanai, H. Frequency characteristics of vibration generated by dual acoustic radiation force for estimating viscoelastic properties of biological tissues. Jpn. J. Appl. Phys. 2018, 57, 07LF09. [Google Scholar] [CrossRef]
- Shiina, T.; Nightingale, K.R.; Palmeri, M.L.; Hall, T.J.; Bamber, J.C.; Barr, R.G.; Castera, L.; Choi, B.I.; Chou, Y.H.; Cosgrove, D.; et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography:Part1:Basic principles and terminology. Ultrasound Med. Biol. 2015, 41, 1126–1147. [Google Scholar] [CrossRef]
- Destrempes, F.; Franceschini, E.; Yu, F.T.; Cloutier, G. Unifying Concepts of Statistical and Spectral Quantitative Ultrasound Techniques. IEEE Trans. Med. Imaging 2016, 35, 488–500. [Google Scholar] [CrossRef]
- Wang, Y.; Itoh, K.; Taniguchi, N.; Toei, H.; Kawai, F.; Nakamura, M.; Omoto, K.; Yokota, K.; Ono, T. Studies on tissue characterization by texture analysis with co-occurrence matrix method using ultrasonography and CT imaging. J. Med. Ultrason. 2002, 29, 211–223. [Google Scholar] [CrossRef]
- Kurokawa, Y.; Taki, H.; Yashiro, S.; Nagasawa, K.; Ishigaki, Y.; Kanai, H. Estimation of size of red blood cell aggregates using backscattering property of high-frequency ultrasound: In vivo evaluation. Jpn. J. Appl. Phys. 2016, 55, 07KF12. [Google Scholar] [CrossRef]
- Oelze, M.L.; Mamou, J. Review of Quantitative Ultrasound: Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 336–351. [Google Scholar] [CrossRef]
- Gammell, P.M.; Le Croissette, D.H.; Heyser, R.C. Temperature and frequency dependence of ultrasonic attenuation in selected tissues. Ultrasound Med. Biol. 1979, 5, 269–277. [Google Scholar] [CrossRef]
- Parker, K.J.; Lerner, R.M.; Waag, R.C. Attenuation of ultrasound: Magnitude and frequency dependence for tissue characterization. Radiology 1984, 153, 785–788. [Google Scholar] [CrossRef]
- Omura, M.; Yoshida, K.; Akita, S.; Yamaguchi, T. High-frequency ultrasonic backscatter coefficient analysis considering microscopic acoustic and histopathological properties of lymphedema dermis. Jpn. J. Appl. Phys. 2020, 59, SKKE15. [Google Scholar] [CrossRef]
- Jeon, S.K.; Lee, J.M.; Byun, Y.H.; Jee, J.H.; Kang, M. Development and validation of multivariable quantitative ultrasound for diagnosing hepatic steatosis. Sci. Rep. 2023, 13, 15235. [Google Scholar] [CrossRef] [PubMed]
- Nguyuen, T.N.; Podkowa, A.S.; Park, T.H.; Miller, R.J.; Do, M.N.; Oelze, M.L. Use of a convolutional neural network and quantitative ultrasound for diagnosis of fatty liver. Ultrasound Med. Biol. 2021, 47, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Hachiya, H. Proposal of a parametric imaging method for quantitative diagnosis of liver fibrosis. J. Med. Ultrason. 2010, 37, 155–166. [Google Scholar] [CrossRef]
- Tsui, P.H.; Ho, M.C.; Tai, D.I.; Lin, Y.H.; Wang, C.Y.; Ma, H.Y. Acoustic structure quantification by using ultrasound Nakagami imaging for assessing liver fibrosis. Sci. Rep. 2016, 6, 33075. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, Q.; Wu, W.; Wu, S.; Tsui, P.H. Hepatic steatosis assessment using quantitative ultrasound parametric imaging based on backscatter envelope statistics. Appl. Sci. 2019, 9, 661. [Google Scholar] [CrossRef]
- Tamura, K.; Yoshida, K.; Maruyama, H.; Hachiya, H.; Yamaguchi, T. Proposal of compound amplitude envelope statistical analysis model considering low scatterer concentration. Jpn. J. Appl. Phys. 2018, 57, 07LD19. [Google Scholar] [CrossRef]
- Shankar, P.M.; Reid, J.M.; Ortega, H.; Piccoli, C.W.; Goldberg, B.B. Use of non-Rayleigh statistics for the identification of tumors in ultrasonic B-scans of the breast. IEEE Trans. Med. Imaging 1993, 12, 687–692. [Google Scholar] [CrossRef]
- Dutt, V.; Greenleaf, J.F. Adaptive speckle reduction filter for log-compressed B-scan images. IEEE Trans. Med. Imaging 1996, 15, 802–813. [Google Scholar] [CrossRef]
- Cramblitt, R.M.; Parker, K.J. Generation of non-Rayleigh speckle distributions using marked regularity models. IEEE Trans. Ferroelectr. Freq. Control 1999, 46, 867–874. [Google Scholar] [CrossRef]
- Shankar, P.M. Ultrasonic tissue characterization using a generalized Nakagami model. IEEE Trans. Ferroelectr. Freq. Control 2001, 48, 1716–1720. [Google Scholar] [CrossRef] [PubMed]
- Tsui, P.H.; Zhou, Z.; Lin, Y.H.; Hung, C.M.; Chung, S.J.; Wan, Y.L. Effect of ultrasound frequency on the Nakagami statistics of human liver tissues. PLoS ONE 2017, 12, e0181789. [Google Scholar] [CrossRef] [PubMed]
- Tsui, P.H.; Huang, C.C.; Sun, L.; Dailey, S.H.; Shung, K.K. Characterization of lamina propria and vocal muscle in human vocal fold tissue by ultrasound Nakagami imaging. Med. Phys. 2011, 38, 2019–2026. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Fang, J.; Li, Q.; Tai, D.I.; Wan, Y.L.; Tamura, K.; Yamaguchi, T.; Tsui, P.H. Ultrasound assessment of hepatic steatosis by using the double Nakagami distribution: A feasibility study. Diagnostics 2020, 10, 557. [Google Scholar] [CrossRef]
- Brown, J.A.; Demore, C.E.M.; Lockwood, G.R. Design and fabrication of annular arrays for high frequency ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51, 1010–1017. [Google Scholar] [CrossRef]
- Ketterling, J.A.; Aristizabal, O.; Turnbull, D.H.; Lizzi, F.L. Design and fabrication of a 40-MHz annular array transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 672–681. [Google Scholar] [CrossRef]
- Snook, K.A.; Hu, C.; Shrout, T.R.; Shung, K.K. High-frequency ultrasound annular array imaging, Part I: Array design and fabrication. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 300–308. [Google Scholar] [CrossRef]
- Gottlieb, E.J.; Cannata, J.M.; Hu, C.; Shung, K.K. Development of a high-frequency (>50 MHz) copolymer annular-array, ultrasound transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 1037–1045. [Google Scholar] [CrossRef]
- Chabok, H.R.; Cannata, J.M.; Kim, H.H.; Williams, J.A.; Park, J.; Shung, K.K. A high-frequency annular-array transducer using an interdigital bonded 1-3 composite. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 206–214. [Google Scholar] [CrossRef]
- Liu, C.; Djutha, F.; Li, X.; Chen, R.; Zhou, Q.; Shung, K.K. Micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular array. Ultrasonics 2012, 52, 497–502. [Google Scholar] [CrossRef]
- Brown, J.A.; Lockwood, G.R. A digital beamformer for high frequency annular arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 52, 1262–1269. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.H.; Snook, K.A.; Cao, P.J.; Shung, K.K. High-frequency ultrasound annular array imaging, Part II: Digital beamformer design and imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 309–316. [Google Scholar] [PubMed]
- Ketterling, J.A.; Ramachandran, S.; Aristizabal, O. Operational verification of a 40-MHz annular array transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Silverman, R.H.; Ketterling, J.A.; Mamou, J.; Lloyd, H.O.; Filoux, E.; Coleman, D.J. Pulse-encoded ultrasound imaging of the vitreous with an annular array. Ophthalmic Surg. Lasers Imaging Retin. 2012, 43, 82–86. [Google Scholar] [CrossRef]
- Silverman, R.H. Focused ultrasound in ophthalmology. Clin. Ophthalmol. 2016, 10, 1865–1875. [Google Scholar] [CrossRef]
- Aristizábal, O.; Mamou, J.; Ketterling, J.A.; Turnbull, D.H. High-Throughput, High-Frequency 3-D Ultrasound for in Utero Analysis of Embryonic Mouse Brain Development. Ultrasound Med. Biol. 2013, 39, 2321–2332. [Google Scholar] [CrossRef]
- Mamou, J.; Aristizábal, O.; Silverman, R.H.; Ketterling, J.A.; Turnbull, D.H. High-Frequency Chirp Ultrasound Imaging with an Annular Array for Ophthalmologic and Small-Animal Imaging. Ultrasound Med. Biol. 2009, 35, 1198–1208. [Google Scholar] [CrossRef]
- Foster, F.S.; Arditi, M.; Patterson, M.S.; Lee-Chahal, D.; Hunt, J.W. Breast imaging with a conical transducer/annular array hybrid scanner. Ultrasound Med. Biol. 1983, 9, 151–164. [Google Scholar] [CrossRef]
- Liu, J.; Insana, M.F. Coded pulse excitation for ultrasonic strain imaging. IEEE Trans. Ferroelectr. Freq. Control 2005, 52, 231–240. [Google Scholar]
- Nasholm, S.P.; Johansen, T.F.; Angelsen, B.A.J. An annular array design proposal with multiple geometric pre-foci. IEEE Trans. Ferroelectr. Freq. Control 2009, 56, 146–155. [Google Scholar] [CrossRef]
- Lee, J.; Moon, J.Y.; Chang, J.H. A 35 MHz/105 MHz Dual-Element Focused Transducer for Intravascular Ultrasound Tissue Imaging Using the Third Harmonic. Sensors 2018, 18, 2290. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Yu, Y.; Chabok, H.R.; Liu, C.; Tsang, F.K.; Zhou, Q.; Shung, K.K.; Zheng, H.; Sun, L. A flexible annular-array imaging platform for micro-ultrasound. IEEE Trans. Ferroelectr. Freq. Control 2013, 60, 178–186. [Google Scholar]
- Chitnis, P.V.; Aristizábal, O.; Filoux, E.; Sampathkumar, A.; Mamou, J.; Ketterling, J.A. Coherence-weighted synthetic focusing applied to photoacoustic imaging using a high-frequency annular-array transducer. Ultrason. Imaging 2016, 38, 32–43. [Google Scholar] [CrossRef]
- Mizoguchi, T.; Yoshida, K.; Mamou, J.; Ketterling, J.A.; Yamaguchi, T. Improved evaluation of backscatter characteristics of soft tissue using high-frequency annular array. Jpn. J. Appl. Phys. 2020, 59, SKKE17. [Google Scholar] [CrossRef]
- Saito, W.; Omura, M.; Ketterling, J.A.; Hirata, S.; Yoshida, K.; Yamaguchi, T. Backscatter properties of two-layer phantoms using a high-frequency ultrasound annular array. Jpn. J. Appl. Phys 2022, 61, SG1049. [Google Scholar] [CrossRef]
- Arditi, M.; Taylor, W.B.; Foster, F.S.; Hunt, J.W. An Annular Array System for High Resolution Breast Echography. Ultrason. Imaging 1982, 4, 1–31. [Google Scholar] [CrossRef]
- Arditi, M.; Foster, F.S.; Hunt, J.W. Transient fields of concave annular arrays. Ultrason. Imaging 1981, 3, 37–61. [Google Scholar] [CrossRef]
- Tamura, K.; Mamou, J.; Coron, A.; Yoshida, K.; Feleppa, E.J.; Yamaguchi, T. Effects of signal saturation on QUS parameter estimates based on high-frequency-ultrasound signals acquired from isolated cancerous lymphnodes. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 1501–1513. [Google Scholar] [CrossRef]
- Montaldo, G.; Tanter, M.; Bercoff, J.; Benech, N.; Fink, M. Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 489–506. [Google Scholar] [CrossRef]
- Kuc, R.; Schwartz, M. Estimating the Acoustic Attenuation Coefficient Slope for Liver from Reflected Ultrasound Signals. IEEE Trans. Sonics Ultrason. 1979, 26, 353–361. [Google Scholar] [CrossRef]
- Yao, L.; Zagzebski, J.; Madsen, E. Backscatter coefficient measurements using a reference phantom to extract depth-dependent instrumentation factors. Ultrason. Imaging 1990, 12, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Faran, J.J. Sound Scattering by Solid Cylinders and Spheres. J. Acoust. Soc. Am. 1951, 23, 405–418. [Google Scholar] [CrossRef]
Inner Radius (µm) | Outer Radius (µm) | Area (mm2) | |
---|---|---|---|
Ch.1 | ― | 2.12 | 14.07 |
Ch.2 | 2.22 | 3.06 | 14.03 |
Ch.3 | 3.16 | 3.80 | 14.00 |
Ch.4 | 3.90 | 4.44 | 13.95 |
Ch.5 | 4.53 | 5.00 | 13.92 |
Center frequency (MHz) | 20 |
Material | P(VdF-TrFE) |
Aperture (mm) | 10 |
Radius of curvature (mm) | 31 |
Axial (µm) | Lateral (µm) | |
---|---|---|
Annular array | 75 | 180 |
PT25 | 53 | 104 |
L39-21gD | 80 | 120 |
Phantom (a) | Phantom (b) | Phantom (c) | Phantom (d) | |
---|---|---|---|---|
Diameter of scatters (µm) | 5 | 10 | 20 | 40 |
Att. coefficient (dB/cm/MHz) | 0.139 | 0.144 | 0.144 | 1.026 |
Phantom (a) | Phantom (b) | Phantom (c) | |
---|---|---|---|
Diameter of scatters (µm) | 5 | 10 | 20 |
Att. coefficient (dB/cm/MHz) | 0.471 | 0.571 | 1.078 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Ketterling, J.A.; Mamou, J.; Hoerig, C.; Hirata, S.; Yoshida, K.; Yamaguchi, T. Feasibility of Backscattering Coefficient Evaluation of Soft Tissue Using High-Frequency Annular Array Probe. Sensors 2024, 24, 7118. https://doi.org/10.3390/s24227118
Choi J, Ketterling JA, Mamou J, Hoerig C, Hirata S, Yoshida K, Yamaguchi T. Feasibility of Backscattering Coefficient Evaluation of Soft Tissue Using High-Frequency Annular Array Probe. Sensors. 2024; 24(22):7118. https://doi.org/10.3390/s24227118
Chicago/Turabian StyleChoi, Jungtaek, Jeffrey A. Ketterling, Jonathan Mamou, Cameron Hoerig, Shinnosuke Hirata, Kenji Yoshida, and Tadashi Yamaguchi. 2024. "Feasibility of Backscattering Coefficient Evaluation of Soft Tissue Using High-Frequency Annular Array Probe" Sensors 24, no. 22: 7118. https://doi.org/10.3390/s24227118
APA StyleChoi, J., Ketterling, J. A., Mamou, J., Hoerig, C., Hirata, S., Yoshida, K., & Yamaguchi, T. (2024). Feasibility of Backscattering Coefficient Evaluation of Soft Tissue Using High-Frequency Annular Array Probe. Sensors, 24(22), 7118. https://doi.org/10.3390/s24227118