High-Precision Measurement Method for Small Angles Based on the Defect Spot Mode of the Position-Sensitive Detector
Abstract
:1. Introduction
2. Detection Principle
2.1. The Conventional PSD-Based AutoCollimation Methods and the Defect Spot Working Mode of the PSD
2.2. Small-Angle Measurement Principle Based on the Defect Spot Mode of the PSD
3. Experiments and Analysis
3.1. System Stability Experiment
3.2. Calibration Experiments
3.3. Comparison Experiments
3.4. Error Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ren, C.; Tan, Y.; Zhang, S. Angle measurement based on orthogonally polarized lasers. Opt. Tech. 2010, 36, 193–199. [Google Scholar]
- Chen, X.; Liao, J.; Gu, H.; Zhang, C.; Jiang, H.; Liu, S. Remote Absolute Roll-Angle Measurement in Range of 180° Based on Polarization Modulation. Nanomanufacturing Metrol. 2020, 3, 228–235. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Li, K.; Ban, J.; Wang, M. A calibration method for the errors of ring laser gyro in rate-biased mode. Sensors 2019, 19, 4754. [Google Scholar] [CrossRef] [PubMed]
- Ravaille, A.; Feugnet, G.; Debord, B.; Gérôme, F.; Benabid, F.; Bretenaker, F. Rotation measurements using a resonant fiber optic gyroscope based on Kagome fiber. Appl. Opt. 2019, 58, 2198–2204. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, D.; Cheng, R.; Gao, Y.; Hoenders, B.J.; Cai, Y. 0–360 Degrees angular measurements using spatial displacement. Appl. Phys. Lett. 2023, 122, 111106. [Google Scholar] [CrossRef]
- Huang, P.S.; Kiyono, S.; Kamada, O. Angle measurement based on the internal-reflection effect: A new method. Appl. Opt. 1992, 31, 6047–6055. [Google Scholar] [CrossRef]
- Liu, Y.; Kuang, C.; Ku, Y. Small angle measurement method based on the total internal multi-reflection. Opt. Laser Technol. 2012, 44, 1346–1350. [Google Scholar] [CrossRef]
- Yang, B.; Wang, C.; Zhang, J.; Ni, J. A small-angle self-mixing measurement system with improved detection resolution based on a rotatable pentagonal prism. Opt. Commun. 2018, 429, 29–34. [Google Scholar] [CrossRef]
- Wang, X.; Su, J.; Yang, J.; Miao, L.; Huang, T. Modified homodyne laser interferometer based on phase modulation for simultaneously measuring displacement and angle. Appl. Opt. 2021, 60, 4647–4653. [Google Scholar] [CrossRef]
- Zhu, F.; Tan, J.; Cui, J. Common-path design criteria for laser datum based on measurement of small angle deviations and laser autocollimation method in compliance with the criteria with high accuracy and stability. Opt. Express 2013, 21, 11391–11403. [Google Scholar] [CrossRef]
- Guo, Y.; Cheng, H.; Wen, Y.; Feng, Y. Three-degree-of-freedom autocollimator based on a combined target reflector. Appl. Opt. 2020, 59, 2262–2269. [Google Scholar] [CrossRef]
- Shimizu, Y.; Tan, S.L.; Murata, D.; Maruyama, T.; Ito, S.; Chen, Y.; Gao, W. Ultra-sensitive angle sensor based on laser auto collimation for measurement of stage tilt motions. Opt. Express 2016, 24, 2788–2805. [Google Scholar] [CrossRef]
- Gao, W.; Ohnuma, T.; Satoh, H.; Shimizu, H.; Kiyono, S. A Precision Angle Sensor Using a Multi-cell Photodiode Array. CIRP Ann.-Manuf. Technol. 2004, 53, 425–428. [Google Scholar] [CrossRef]
- Kuang, C.; Hong, E.; Feng, Q. High-accuracy method for measuring two-dimensional angles of a linear guideway. Opt. Eng. 2007, 46, 051016. [Google Scholar]
- Li, R.; Xie, L.; Zhen, Y.; Xiao, H.; Wang, W.; Guo, J.; Konyakhin, I.; Nikitin, M.; Yu, X. Roll angle autocollimator measurement method based on a cylindrical cube-corner reflector with a high resolution and large range. Opt. Express 2022, 30, 7147–7161. [Google Scholar] [CrossRef]
- Korolev, A.N.; Gartsuev, A.I.; Polishchuk, G.S.; Tregub, V.P. A digital autocollimator. J. Opt. Technol. 2009, 76, 624–628. [Google Scholar] [CrossRef]
- Gao, M.; Dong, Z.; Bian, Z.; Ye, Q.; Fang, Z.; Qu, R. Robust CCD photoelectric autocollimator for outdoor use. Chin. Opt. Lett. 2011, 9, 091201. [Google Scholar]
- Yuan, J.; Long, X. CCD-area-based autocollimator for precision small-angle measurement. Rev. Sci. Instrum. 2003, 74, 1362–1365. [Google Scholar] [CrossRef]
- Cowsik, R.; Srinivasan, R.; Kasturirengan, S.; Kumar Senthil, A. Design and performance of a sub-nanoradian resolution autocollimating optical lever. Rev. Sci. Instrum. 2007, 78, 035105. [Google Scholar] [CrossRef]
- Chen, Y.L.; Shimizu, Y.; Tamada, J.; Nakamura, K.; Matsukuma, H.; Chen, X.; Gao, W. Laser autocollimation based on an optical frequency comb for absolute angular position measurement. Precis. Eng. 2018, 54, 284–293. [Google Scholar] [CrossRef]
- Li, K.; Kuang, C.; Liu, X. Small angular displacement measurement based on an autocollimator and a common-path compensation principle. Sci. Instrum. 2013, 84, 015108. [Google Scholar] [CrossRef] [PubMed]
- St. John, W.D. Cylinder gauge measurement using a position sensitive detector. Appl. Opt. 2007, 46, 7469–7474. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Zhao, Y.; Yan, S.; Zhang, Z.; Geng, L.; Zhang, R.; Yang, K.; Kuang, C. High-precision detection method for an object edge based on a position-sensitive detector. Appl. Opt. 2023, 62, 1815–1821. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Zhang, B.; Cui, C.; Kuang, C.; Zhai, Y.; You, F. Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide. Opt. Express 2013, 21, 25805–25819. [Google Scholar]
- Kumar, R.; Kaura, S.K.; Sharma, A.K.; Chhachhia, D.P.; Aggarwal, A.K. Knife-edge diffraction pattern as an interference phenomenon: An experimental reality. Opt. Laser Technol. 2007, 39, 256–261. [Google Scholar] [CrossRef]
- Bibikova, E.A.; Al-wassiti, N.; Kundikova, N.D. Diffraction of a Gaussian beam near the beam waist. J. Eur. Opt. Soc.-Rapid Publ. 2019, 15, 17. [Google Scholar] [CrossRef]
- Ren, W.; Cui, J.; Tan, J. Precision roll angle measurement system based on autocollimation. Appl. Opt. 2022, 61, 3811–3818. [Google Scholar] [CrossRef]
- Li, R.; Xiao, H.; Xie, L.; Feng, T.; Ma, Y.; Guo, J.; Zhou, M.; Nikitin, M.; Konyakhin, I. Autocollimation angle-measurement method with a large range based on spot deformation. Opt. Express 2022, 30, 38727–38744. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, Y.; Wang, G.; Zhao, Y.; Wu, R.; Zhang, L.; Su, Z.; Zhang, Z.; Yang, P.; Zhang, R. High-Precision Measurement Method for Small Angles Based on the Defect Spot Mode of the Position-Sensitive Detector. Sensors 2024, 24, 7120. https://doi.org/10.3390/s24227120
Zhai Y, Wang G, Zhao Y, Wu R, Zhang L, Su Z, Zhang Z, Yang P, Zhang R. High-Precision Measurement Method for Small Angles Based on the Defect Spot Mode of the Position-Sensitive Detector. Sensors. 2024; 24(22):7120. https://doi.org/10.3390/s24227120
Chicago/Turabian StyleZhai, Yusheng, Guorong Wang, Yiheng Zhao, Rongxin Wu, Lin Zhang, Zhan Su, Zhifeng Zhang, Peng Yang, and Ruiliang Zhang. 2024. "High-Precision Measurement Method for Small Angles Based on the Defect Spot Mode of the Position-Sensitive Detector" Sensors 24, no. 22: 7120. https://doi.org/10.3390/s24227120
APA StyleZhai, Y., Wang, G., Zhao, Y., Wu, R., Zhang, L., Su, Z., Zhang, Z., Yang, P., & Zhang, R. (2024). High-Precision Measurement Method for Small Angles Based on the Defect Spot Mode of the Position-Sensitive Detector. Sensors, 24(22), 7120. https://doi.org/10.3390/s24227120